Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames
Abstract
1. Introduction
2. Measurement Tests
3. SPOD Mathematical Model
3.1. Snapshot Matrix Construction
3.2. Matrix Chunking and Windowing
3.3. Feature Decomposition
4. Results and Analysis
4.1. Flicker Characterization of the Flame
4.2. Spectral Characterization of Flame Flickering
4.3. Spatial Structure of Flame Flicker Modes
5. Conclusions
- (1)
- The flame was dominated by the K-H instability during combustion. The shear effect sucks in the surrounding air for unstable combustion, and the flame exhibits nonlinear oscillation characteristics of periodic lifting, necking and breaking.
- (2)
- The flame SPOD spectrum shows an octave distribution law. With an increase in the velocity ratio of the co-flow, the peak frequency increased gradually. The dominant flickering frequency of the flame without the co-flow was slightly lower than that of the flame with the co-flow.
- (3)
- The spatial distribution characteristics of the SPOD modes revealed the dominant mode of combustion oscillation. As the frequency increased, the spatial distribution of the modes gradually moved downstream from the flame. With an increase in the mode order, the spatial structure scale of the modes gradually decreases, and the symmetry of the modes is weakened.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, T.S.; Chen, C.P.; Chen, C.S.; Li, H.Y.; Wu, C.Y.; Chao, Y.C. Characteristics of microjet methane diffusion flames. Combust. Theory Model. 2006, 10, 861–881. [Google Scholar] [CrossRef]
- Hammis, A.; Yang, J.C.; Kashiwagi, T. An experimental investigation of the pulsation frequency of flames. Symp. Combust. 1992, 24, 1695–1702. [Google Scholar] [CrossRef]
- Katta, V.R.; Goss, L.P.; Roquemore, W.M. Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame. Combust. Flame 1994, 96, 60–74. [Google Scholar] [CrossRef]
- Katta, V.; Roquemore, W. Role of inner and outer structures in transitional jet diffusion flame. Combust. Flame 1993, 92, 274–282. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y. Fuel variability effect on flickering frequency of diffusion flames. Front. Energy Power Eng. China 2009, 3, 134–140. [Google Scholar] [CrossRef]
- Cao, S.; Bennett, B.A.V.; Ma, B.; Giassi, D.; Stocker, D.P.; Takahashi, F.; Smooke, M.D. A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity. Proc. Combust. Inst. 2015, 35, 897–903. [Google Scholar] [CrossRef]
- Darabkhani, H.; Zhang, Y. Stabilisation Mechanism of a Flickering Methane Diffusion Flame with Co-flow of Air. Eng. Lett. 2010, 18, 369–375. [Google Scholar]
- Fujisawa, N.; Okuda, T. Effects of co-flow and equivalence ratio on flickering in partially premixed flame. Int. J. Heat Mass Transf. 2018, 121, 1089–1098. [Google Scholar] [CrossRef]
- Sahu, K.; Kundu, A.; Ganguly, R.; Datta, A. Effects of fuel type and equivalence ratios on the flickering of triple flames. Combust. Flame 2009, 156, 484–493. [Google Scholar] [CrossRef]
- Darabkhani, H.G.; Wang, Q.; Chen, L.; Zhang, Y. Impact of co-flow air on buoyant diffusion flames flicker. Energy Convers. Manag. 2011, 52, 2996–3003. [Google Scholar] [CrossRef]
- Manikantachari, K.R.V.; Raghavan, V.; Srinivasan, K. Natural flickering of methane diffusion flames. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2011, 5, 2423–2428. [Google Scholar]
- Wang, Q.; Darabkhani, H.G.; Chen, L.; Zhang, Y. Vortex dynamics and structures of methane/air jet diffusion flames with air coflow. Exp. Therm. Fluid Sci. 2012, 37, 84–90. [Google Scholar] [CrossRef]
- Gotoda, H.; Asano, Y.; Chuah, K.H.; Kushida, G. Nonlinear analysis on dynamic behavior of buoyancy-induced flame oscillation under swirling flow. Int. J. Heat Mass Transf. 2009, 52, 5423–5432. [Google Scholar] [CrossRef]
- Fujisawa, N.; Matsumoto, Y.; Yamagata, T. Influence of Co-flow on Flickering Diffusion Flame. Flow Turbul. Combust. 2016, 97, 931–950. [Google Scholar] [CrossRef]
- Fujisawa, N.; Sakai, K.; Yamagata, T. Observation of large-scale structure in flickering diffusion flame by time-resolved particle image velocimetry and shadowgraph imaging. Exp. Therm. Fluid Sci. 2018, 92, 286–294. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mukhopadhyay, A.; Sen, S. Stability Study of Laminar Flame Using Proper Orthogonal Decompostion and Dynamic Mode Decomposition. In Proceedings of the N3l-Int’l Summer School and Workshop on Non-Normal and Nonlinear Effects in Aero-And Thermoacoustics, Munich, Germany, 18–21 June 2013; N3l: Cornwall, UK, 2013. [Google Scholar]
- Zeng, X.; Zhang, Y.; He, C.; Liu, Y. Time- and frequency-domain spectral proper orthogonal decomposition of a swirling jet by tomographic particle image velocimetry. Exp. Fluids 2022, 64, 1–27. [Google Scholar] [CrossRef]
- Sieber, M.; Paschereit, C.O.; Oberleithner, K. Spectral proper orthogonal decomposition. J. Fluid Mech. 2016, 792, 798–828. [Google Scholar] [CrossRef]
- Schmidt, O.; Towne, A.; Colonius, T.; Cavalieri, A.V.G.; Jordan, P.; Brès, G.A. Wavepackets and trapped acoustic modes in a turbulent jet: Coherent structure eduction and global stability. J. Fluid Mech. 2017, 825, 1153–1181. [Google Scholar] [CrossRef]
- Ataya, D.; Colonius, T.; Dabiri, J. Transition to bluff-body dynamics in the wake of vertical-axis wind turbines. J. Fluid Mech. 2017, 813, 346–381. [Google Scholar]
- Abreu, L.; Cavalieri, A.; Wolf, W. Coherent Hydrodynamic Waves and Trailing-Edge Noise. In Proceedings of the 23rd AIAA/CEAS Aeroacoustics Conference, Denver, CO, USA, 5–9 June 2017; ARC: Columbus, OH, USA, 2017; p. 3173. [Google Scholar]
- Julius, S.B.; Allan, G.P. Random Data Analysis and Measurement Procedures; John Wiley and Sons Incorporated: Hoboken, NJ, USA, 2000. [Google Scholar]
- Kovasznay, L.S.; Favre, A.; Buchhave, P.; Hansen, B.W. Proceedings of the Dynamic Flow Conference 1978 on Dynamic Measurements in Unsteady Flows; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- Yuan, T.; Durox, D.; Villermaux, E. An analogue study for flame flickering. Exp. Fluids 1994, 17, 337–349. [Google Scholar] [CrossRef]
Type | Experimental Conditions |
---|---|
Fuels | Methane (purity 99.99%) |
Accompanying gases | Air (78.08% nitrogen + 20.94% oxygen + other gases) |
Environment | Room temperature 290 K |
31% humidity | |
Atmospheric pressure (100,000 Pa) |
Methane | Air | Velocity Ratio | |||
---|---|---|---|---|---|
Case No. | (L/min) | Uf (m/s) | (L/min) | Uc (m/s) | Ur (=Uc/Uf) |
Case 1 | 0.4 | 0.085 | 60 | 0.13 | 1.53 |
Case 2 | 0.4 | 0.085 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Q.; Zhou, Z.; Sun, A.; Meng, X.; Zhang, P. Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames. Fire 2025, 8, 255. https://doi.org/10.3390/fire8070255
Niu Q, Zhou Z, Sun A, Meng X, Zhang P. Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames. Fire. 2025; 8(7):255. https://doi.org/10.3390/fire8070255
Chicago/Turabian StyleNiu, Qinglin, Zengjie Zhou, Ao Sun, Xiaying Meng, and Pengjun Zhang. 2025. "Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames" Fire 8, no. 7: 255. https://doi.org/10.3390/fire8070255
APA StyleNiu, Q., Zhou, Z., Sun, A., Meng, X., & Zhang, P. (2025). Frequency Spectrum Characterization of Infrared Thermal Images of Methane Diffusion Flames. Fire, 8(7), 255. https://doi.org/10.3390/fire8070255