Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = KOSEN

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1297 KB  
Article
Predicting Performance in Working Memory During the Waking Period by Applying a Convolutional Neural Network to EEG Data in the N-Back Task: A Pilot Study
by Masaya Shigemoto, Soma Shimizu and Kiyohisa Natsume
Sensors 2026, 26(3), 772; https://doi.org/10.3390/s26030772 - 23 Jan 2026
Viewed by 110
Abstract
Memory performance is regulated by circadian rhythms, and electroencephalograms (EEG) measure biological signals related to memory mechanisms and circadian rhythms. Therefore, EEG could be used to detect changes in diurnal memory. In this study, we measured the EEG signals of participants conducting a [...] Read more.
Memory performance is regulated by circadian rhythms, and electroencephalograms (EEG) measure biological signals related to memory mechanisms and circadian rhythms. Therefore, EEG could be used to detect changes in diurnal memory. In this study, we measured the EEG signals of participants conducting a memory-related task and tested the effectiveness of a convolutional neural network (CNN) in predicting memory task performance at different times. EEG signals from participants performing N-back tasks at 8–9 a.m. and 3–4 p.m. were recorded. While performance showed no significant differences between times, differences were observed in EEG relative power. A CNN was trained using the relative power and raw waveform data of the EEG signals recorded during the tasks. When predicting the time at which the working memory (WM) was enhanced, the relative power CNN exhibited a significantly higher accuracy than the raw waveform CNN. However, the performance dropped in the test where the training data did not include the EEG data of the same participant. Overall, these results suggest that while EEG signals using a relative power CNN have high predictive potential, developing a personalized classification system that reflects individual chronotypes is effective for practical applications. Full article
(This article belongs to the Special Issue Machine Learning in Biomedical Signal Processing)
Show Figures

Figure 1

13 pages, 5889 KB  
Article
Metallic Structures and Tribological Properties of Ti-15mass%Nb Alloy After Gas Nitriding and Quenching Process
by Yoshikazu Mantani, Riho Takahashi, Tomoyuki Homma and Eri Akada
Metals 2026, 16(1), 98; https://doi.org/10.3390/met16010098 - 16 Jan 2026
Viewed by 218
Abstract
This study aimed to experimentally investigate the differences in metallic structures owing to the gas nitriding and quenching process (GNQP) temperature of the Ti-15mass%Nb alloy and differences in the tribological properties of the surface layer. The GNQP heating temperature was 1023 K or [...] Read more.
This study aimed to experimentally investigate the differences in metallic structures owing to the gas nitriding and quenching process (GNQP) temperature of the Ti-15mass%Nb alloy and differences in the tribological properties of the surface layer. The GNQP heating temperature was 1023 K or 1223 K, and the holding time was set to 1 h. In the X-ray diffraction profiles, the diffraction peak of the (101¯1) plane of the hexagonal close-packed phase exhibited a shift toward lower angles, following the sequence AN:α, AQ:α′, and GNQP:α-TiN0.3. In both the 1023 K and 1223 K GNQP specimens, the α″ phase exhibited lower values than the α′ phase; nonetheless, it still exhibited larger values than the annealed α phase. Based on transmission electron microscopy observations, the high core hardness of the 1223 K GNQP specimen was attributed to solid-solution strengthening caused by nitrogen diffusion or to strain hardening associated with the diffusion and was not attributed to the influence of precipitation phases, such as the ω phase. In the friction and wear tests, both the 1023 K and 1223 K GNQP specimens exhibited narrower wear track widths, clearly demonstrating that the GNQP enhanced the wear resistance. Moreover, the TiO2 layer was effective in maintaining a low coefficient of friction. Full article
(This article belongs to the Section Crystallography and Applications of Metallic Materials)
Show Figures

Figure 1

20 pages, 5109 KB  
Article
Improvement of Fast Simulation Method of the Flow Field in Vertical-Axis Wind Turbine Wind Farms and Consideration of the Effects of Turbine Selection Order
by Md. Shameem Moral, Yutaka Hara and Yoshifumi Jodai
Energies 2025, 18(23), 6294; https://doi.org/10.3390/en18236294 - 29 Nov 2025
Viewed by 336
Abstract
To determine the optimal arrangement of vertical-axis wind turbines (VAWTs) within wind farms, we previously developed a technique (method-1) that constructs a flow field based on two-dimensional (2D) velocity data derived from computational fluid dynamics (CFD) simulations. In this study, we introduce an [...] Read more.
To determine the optimal arrangement of vertical-axis wind turbines (VAWTs) within wind farms, we previously developed a technique (method-1) that constructs a flow field based on two-dimensional (2D) velocity data derived from computational fluid dynamics (CFD) simulations. In this study, we introduce an improved approach (method-2), which follows the same fundamental concept as method-1 but incorporates a more efficient algorithm for generating the flow field. Comparative analyses confirmed that method-2 produces results equivalent to those of method-1 while significantly reducing computational time and cost. Method-2 reduces the computation time of method-1 by approximately 50% for parallel layouts (θ = 0°) and up to 60% for slanted layouts (θ = ±45°). Using method-2, we further investigated the performance of a wind farm composed of eight VAWT rotors arranged in a linear configuration under the assumption of a 2D flow. The results highlighted two important aspects. First, the predicted power output is unaffected by the order in which the flow fields are superimposed during calculation; second, the method exhibits high sensitivity to even small variations in rotor placement within the layout when the spacings between rotors are short. Additionally, we examined how rotor spacing affects the distribution of power generation across the rotor array. These findings of this study validate the efficiency of method-2 and offer practical insights for designing optimized VAWT layouts. Full article
Show Figures

Figure 1

17 pages, 3533 KB  
Article
Ferroelectric Properties and Ambipolar Carrier Transport of 9-Fluorenone-Based Liquid Crystals
by Sou-un Doi, Syota Yamada, Ken’ichi Aoki and Atsushi Seki
Crystals 2025, 15(12), 1021; https://doi.org/10.3390/cryst15121021 - 28 Nov 2025
Viewed by 569
Abstract
The functional integration of chiral liquid crystals and π-conjugated compounds has great potential for creating novel exotic materials. A series of chiral donor–acceptor (D–A)-type fluorenone derivatives was synthesized to investigate the influence of molecular structure upon their liquid-crystalline phase-transition behavior, ferroelectricity, photophysical properties, [...] Read more.
The functional integration of chiral liquid crystals and π-conjugated compounds has great potential for creating novel exotic materials. A series of chiral donor–acceptor (D–A)-type fluorenone derivatives was synthesized to investigate the influence of molecular structure upon their liquid-crystalline phase-transition behavior, ferroelectricity, photophysical properties, and photoconductive properties. Polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analyses revealed that several D–A-type fluorenone derivatives exhibited liquid crystal (LC) phases. These chiral LC fluorenone derivatives exhibited polarization hysteresis in the chiral smectic C (SmC*) phase. Among the four fluorenone-based ferroelectric liquid crystals (FLCs), (R,R)-2a exhibited the largest spontaneous polarization (over 3.0 × 102 nC cm−2). The formation of intramolecular charge-transfer (ICT) states in each compound was evidenced by the UV–vis absorption spectroscopy. Ambipolar carrier transport in the SmC* phases of the fluorenone-based FLCs was elucidated by the time-of-flight (TOF) method. The mobilities of holes and electrons in the SmC* phases were on the order of 10−5 cm2 V−1 s−1, which is on par with the carrier mobilities of low-ordered smectic phases in conventional LC semiconductors. Full article
(This article belongs to the Special Issue State-of-the-Art Liquid Crystals Research in Japan (2nd Edition))
Show Figures

Figure 1

14 pages, 5542 KB  
Article
High-Resolution Infrared Spectroscopy of IRS 16CC and IRS 33N: Stellar Parameters and Implications for Star Formation Near Sgr A*
by Shogo Nishiyama, Wakana Sato, Moeka Hotta, Momoka Ikarashi, Hiromi Saida, Yohsuke Takamori, Tetsuya Nagata, Hiroyuki Ikeda and Masaaki Takahashi
Universe 2025, 11(10), 332; https://doi.org/10.3390/universe11100332 - 5 Oct 2025
Viewed by 592
Abstract
IRS 16CC and IRS 33N are among more than 100 young, massive stars identified within 0.5 pc from the Galactic central supermassive black hole Sgr A*, where conventional star formation processes are expected to be strongly suppressed. A subset of these stars, including [...] Read more.
IRS 16CC and IRS 33N are among more than 100 young, massive stars identified within 0.5 pc from the Galactic central supermassive black hole Sgr A*, where conventional star formation processes are expected to be strongly suppressed. A subset of these stars, including IRS 16CC, has been confirmed to reside in a clockwise rotating stellar disk, and is thought to have formed in a massive, gaseous disk around Sgr A*. In contrast, other young massive stars, such as IRS 33N, exhibit dynamical behaviors that deviate significantly from those of the disk population, and their formation mechanism is still uncertain. To investigate their formation mechanism, we carried out near-infrared, high-resolution spectroscopic observations of IRS 16CC and IRS 33N using the Infrared Camera and Spectrograph on the Subaru telescope, equipped with an adaptive optics system. We compared the profiles of He I absorption lines with synthetic spectra generated from model atmospheres, and then compared derived stellar parameters with stellar evolutionary tracks to estimate their ages and initial masses. Our analysis yields their effective temperatures of ∼23,000 K, surface gravities of ∼2.8, and initial masses of 37±6M and 273+4M, consistent with spectral types of B0.5–1.5 supergiants. The ages of IRS 16CC and IRS 33N are estimated to be 4.4±0.7 Myr and 5.30.7+1.1 Myr, respectively. These results suggest that, despite their different dynamical properties, the two stars are likely to share a common origin. Full article
(This article belongs to the Special Issue 10th Anniversary of Universe: Galaxies and Their Black Holes)
Show Figures

Figure 1

13 pages, 4232 KB  
Article
Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy
by Nobumitsu Hirai, Yuhei Miwa, Shunta Hattori, Hideyuki Kanematsu, Akiko Ogawa and Futoshi Iwata
Microorganisms 2025, 13(8), 1779; https://doi.org/10.3390/microorganisms13081779 - 30 Jul 2025
Cited by 1 | Viewed by 1440
Abstract
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected [...] Read more.
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected to provide insight into this. In this study, we report on the successful in situ nanoscale observations of a marine bacterial biofilm on glass in phosphate buffer solution (PBS) using both scanning ion conductance microscopy (SICM) and confocal laser scanning microscopy (CLSM) over the same area. By observing the same area by SICM and CLSM, we were able to clarify the three-dimensional morphology of the biofilm, the arrangement of bacteria within the biofilm, and the difference in local ion conductivity within the biofilm simultaneously, which could not be achieved by observation using a microscope alone. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

21 pages, 2575 KB  
Article
Gait Analysis Using Walking-Generated Acceleration Obtained from Two Sensors Attached to the Lower Legs
by Ayuko Saito, Natsuki Sai, Kazutoshi Kurotaki, Akira Komatsu, Shinichiro Morichi and Satoru Kizawa
Sensors 2025, 25(14), 4527; https://doi.org/10.3390/s25144527 - 21 Jul 2025
Viewed by 1458
Abstract
Gait evaluation approaches using small, lightweight inertial sensors have recently been developed, offering improvements in terms of both portability and usability. However, accelerometer outputs include both the acceleration that is generated by human motion and gravitational acceleration, which changes along with the posture [...] Read more.
Gait evaluation approaches using small, lightweight inertial sensors have recently been developed, offering improvements in terms of both portability and usability. However, accelerometer outputs include both the acceleration that is generated by human motion and gravitational acceleration, which changes along with the posture of the body part to which the sensor is attached. This study presents a gait analysis method that uses the gravitational, centrifugal, tangential, and translational accelerations obtained from sensors attached to the lower legs. In this method, each sensor pose is sequentially estimated using sensor fusion to combine data obtained from a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer. The estimated sensor pose is then used to calculate the gravitational acceleration that is included in each axis of the sensor coordinate system. The centrifugal and tangential accelerations are determined from the gyroscope output. The translational acceleration is then obtained by subtracting the centrifugal, tangential, and gravitational accelerations from the accelerometer output. As a result, the acceleration components contained in the outputs of the accelerometers attached to the lower legs are provided. As only the acceleration components caused by walking motion are captured, thus reflecting their characteristics, it is expected that the developed method can be used for gait evaluation. Full article
(This article belongs to the Special Issue IMU and Innovative Sensors for Healthcare)
Show Figures

Figure 1

18 pages, 4285 KB  
Article
Application of a Phase-Change Material Heat Exchanger to Improve the Efficiency of Heat Pumps at Partial Loads
by Koharu Tani, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2025, 18(14), 3694; https://doi.org/10.3390/en18143694 - 12 Jul 2025
Viewed by 1395
Abstract
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the [...] Read more.
Inverter-equipped heat pumps allow for increased energy efficiency. However, air conditioning (AC) systems often operate at low load ratios below where inverter control is effective, which reduces their energy efficiency. We developed an AC system that increases the apparent load ratio of the heat pump by using a phase-change material (PCM). Cooling and heating experiments were conducted with a PCM heat exchanger, which comprised aluminum plates and fins filled with paraffinic PCM. The result indicated a high heat transfer coefficient of >70 W/(m2·K). A simplified numerical model of the PCM heat exchanger as a lumped constant system was created based on the experiment. The calculations generally reproduced the experimental results, with root mean squared errors of 0.39 K for cooling and 0.84 K for heating, confirming their accuracy. Simulations were then conducted to evaluate the energy performance of the proposed system for the cooling season. While low load operation accounted for 39% of the total AC time for a non-PCM system, it was reduced to 2.7% for the proposed system. The proposed system demonstrated load ratios of 50–60% for most of the season, achieving an energy reduction of 11.4% owing to the improved efficiency at partial load ratios. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

14 pages, 2121 KB  
Article
Community-Integrated Project-Based Learning for Interdisciplinary Engineering Education: A Mechatronics Case Study of a Rideable 5-Inch Gauge Railway
by Hirotaka Tsutsumi
Educ. Sci. 2025, 15(7), 806; https://doi.org/10.3390/educsci15070806 - 23 Jun 2025
Viewed by 2144
Abstract
This study presents a case of community-integrated project-based learning (PBL) at a Japanese National Institute of Technology (KOSEN). Three students collaborated to design and build a rideable 5-inch gauge railway system, integrating mechanical design, brushless motor control, and computer vision. The project was [...] Read more.
This study presents a case of community-integrated project-based learning (PBL) at a Japanese National Institute of Technology (KOSEN). Three students collaborated to design and build a rideable 5-inch gauge railway system, integrating mechanical design, brushless motor control, and computer vision. The project was showcased at public events and a partner high school, providing authentic feedback and enhancing learning relevance. Over 15 weeks, students engaged in hands-on prototyping, interdisciplinary teamwork, and real-world problem-solving. The course design was grounded in four educational frameworks: experiential learning, situated learning, constructive alignment, and self-regulated learning (SRL). SRL refers to students’ ability to plan, monitor, and reflect on their learning—a key skill for managing complex engineering tasks. A mixed-methods evaluation—including surveys, reflections, classroom observations, and communication logs—revealed significant gains in technical competence, engagement, and learner autonomy. Although limited by a small sample size, the study offers detailed insights into how small-scale, resource-conscious PBL can support meaningful interdisciplinary learning and community involvement. This case illustrates how the KOSEN approach, combining technical education with real-world application, can foster both domain-specific and transferable skills, and provides a model for broader implementation of authentic, student-driven engineering education. Full article
(This article belongs to the Topic Advances in Online and Distance Learning)
Show Figures

Figure 1

17 pages, 1667 KB  
Article
Evaluating the Contribution of Sporosarcina to Carbonate Precipitation in Anaerobic Soils: A Microbial Community and Quantitative Analysis
by Zen-ichiro Kimura, Ko-shiro Kirihara, Saki Komoto, Wataru Sera, Ryota Kojima, Sota Ihara, Yuya Itoiri, Daisuke Tanikawa and Yuki Iwasaki
Appl. Microbiol. 2025, 5(2), 53; https://doi.org/10.3390/applmicrobiol5020053 - 30 May 2025
Viewed by 1369
Abstract
Microbially induced calcite precipitation (MICP) has attracted attention as an environmentally friendly soil stabilization method, with Sporosarcina pasteurii being a key ureolytic bacterium in this process. However, its behavior in oxygen-limited environments remains poorly understood, limiting the predictability of MICP outcomes in natural [...] Read more.
Microbially induced calcite precipitation (MICP) has attracted attention as an environmentally friendly soil stabilization method, with Sporosarcina pasteurii being a key ureolytic bacterium in this process. However, its behavior in oxygen-limited environments remains poorly understood, limiting the predictability of MICP outcomes in natural soils. This study investigated the population dynamics of Sporosarcina in compacted soil reactors operated under aerobic and anaerobic conditions, including saturated environments. Quantitative PCR and 16S rRNA gene sequencing revealed that Sporosarcina thrived and became dominant under aerobic, unsaturated conditions, but failed to maintain a high abundance under anaerobic or saturated conditions. These findings indicate that gas-phase oxygen—not merely its presence in the overlying atmosphere—is essential for effective Sporosarcina-driven MICP. The results highlight a critical environmental constraint that limits the application of biostimulation strategies relying on indigenous Sporosarcina in oxygen-poor soils. This study provides the first in situ evidence linking oxygen availability and microbial dominance in MICP systems, with implications for optimizing microbial soil stabilization in real-world conditions. Full article
Show Figures

Figure 1

16 pages, 4554 KB  
Article
Design of Tool Shape and Evaluation of Deformation Behavior by Digital Image Correlation Method in V-Bending of Sheet Metal Using Plastic Tools Manufactured by 3D Printer
by Naotaka Nakamura, Yuri Hata, Witthaya Daodon, Daiki Ikeda, Nozomu Adachi, Yoshikazu Todaka and Yohei Abe
Materials 2025, 18(3), 608; https://doi.org/10.3390/ma18030608 - 29 Jan 2025
Viewed by 2429
Abstract
In the V-bending of sheet metals using a pair of plastic punch and die manufactured by a 3D printer, the effects of two different dimensions designed with the same tool geometry on the deformation behaviors of the punch, die, and sheet were evaluated. [...] Read more.
In the V-bending of sheet metals using a pair of plastic punch and die manufactured by a 3D printer, the effects of two different dimensions designed with the same tool geometry on the deformation behaviors of the punch, die, and sheet were evaluated. The deformation behavior and strain distribution of the punch, die, and sheet were analyzed using a digital image correlation method. Sheets from pure aluminum to ultra-high-strength steel were bent using the two tools with different spans; one was designed on the assumption of tool steel material, and the other was designed on the assumption of plastic material. In both tools, the large compressive strain appeared around the center of the punch tip and on the corners of the die. The tools with a long span for the plastic material gave a lower bending force and small deformation of the plastic tools. The angle difference between a bent sheet at the bottom dead center and a tool was smaller for the tools with the long span, although the springback in the bent sheet appeared. It was found that the design method on the assumption of the plastic material is effective for the V-bending plastic tools. Full article
(This article belongs to the Special Issue State of the Art in Materials for Additive Manufacturing)
Show Figures

Graphical abstract

32 pages, 10088 KB  
Article
Fast Simulation of the Flow Field in a VAWT Wind Farm Using the Numerical Data Obtained by CFD Analysis for a Single Rotor
by Yutaka Hara, Md. Shameem Moral, Aoi Ide and Yoshifumi Jodai
Energies 2025, 18(1), 220; https://doi.org/10.3390/en18010220 - 6 Jan 2025
Cited by 3 | Viewed by 1759
Abstract
The effects of an increase in output power owing to the close arrangement of vertical-axis wind turbines (VAWTs) are well known. With the ultimate goal of determining the optimal layout of a wind farm (WF) for VAWTs, this study proposes a new method [...] Read more.
The effects of an increase in output power owing to the close arrangement of vertical-axis wind turbines (VAWTs) are well known. With the ultimate goal of determining the optimal layout of a wind farm (WF) for VAWTs, this study proposes a new method for quickly calculating the flow field and power output of a virtual WF consisting of two-dimensional (2-D) miniature VAWT rotors. This new method constructs a flow field in a WF by superposing 2-D velocity numerical data around an isolated single VAWT obtained through a computational fluid dynamics (CFD) analysis. In the calculation process, the VAWTs were gradually increased one by one from the upstream side, and a calculation subroutine, in which the virtual upstream wind speed at each VAWT position was recalculated with the effects of other VAWTs, was repeated three times for each arrangement with a temporal number of VAWTs. This method includes the effects of the velocity gradient, secondary flow, and wake shift as models of turbine-to-turbine interaction. To verify the accuracy of the method, the VAWT rotor power outputs predicted by the proposed method for several types of rotor pairs, four-rotor tandem, and parallel arrangements were compared with the results of previous CFD analyses. This method was applied to four virtual WFs consisting of 16 miniature VAWTs. It was found that a layout consisting of two linear arrays of eight closely spaced VAWTs with wide spacing between the arrays yielded a significantly higher output than the other three layouts. The high-performance layout had fewer rotors in the wakes of the other rotors, and the induced flow speeds generated by the closely spaced VAWTs probably mutually enhanced their output power. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

24 pages, 13665 KB  
Article
Effects of Rice Husk Ash Particle Size and Luxan Value Influence on Mortar Properties and Proposal of Hydration Ratio Measurement Method
by Junho Kim, Hikaru Fumino and Manabu Kanematsu
Materials 2025, 18(1), 21; https://doi.org/10.3390/ma18010021 - 25 Dec 2024
Cited by 1 | Viewed by 2395
Abstract
A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs [...] Read more.
A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent. In this study, the pore structure was modified, and fluidity was improved by adjusting the particle size of the RHA. From a quality control perspective, this study aims to classify grades using Luxan values. While the characterization of RHA is based on Luxan values, the methodology for measuring its hydration response has not been reviewed. The test methods used in this study are as follows. To test the raw materials, density, specific surface area, XRF, SEM, and isothermal adsorption–desorption curves were measured, and fluidity was measured in fresh mortar. In a hardened mortar, compressive strength and drying shrinkage length change rate were measured. In addition, XRD and TG were measured for specimens after the compressive strength test. The selective dissolution method was used to measure the hydration rate. By adjusting the particle size of RHA to 45 µm, fluidity was enhanced. The relationship between the Luxan value and the basic properties of the mortar indicates that higher Luxan values correspond to greater compressive strength and drying shrinkage. We believe that the method used in this experiment can be used to quantify RHA. Full article
(This article belongs to the Special Issue Towards Sustainable Low-Carbon Concrete)
Show Figures

Figure 1

15 pages, 4874 KB  
Article
Energy-Saving Effects of the Intermittent Control of Pumps in Ground Source Variable Refrigerant Flow Systems with a Buffer Water Tank
by Toya Tanaka, Sayaka Kindaichi, Keita Kawasaki and Daisaku Nishina
Energies 2024, 17(22), 5564; https://doi.org/10.3390/en17225564 - 7 Nov 2024
Viewed by 1847
Abstract
Variable refrigerant flow (VRF) systems are common air-conditioning systems used in regions with moderate climates that have cooling and heating demands. Unlike typical air-source VRF systems, ground-source VRF systems require heat-source water circulation, and reducing the pumping power remains a significant problem. Herein, [...] Read more.
Variable refrigerant flow (VRF) systems are common air-conditioning systems used in regions with moderate climates that have cooling and heating demands. Unlike typical air-source VRF systems, ground-source VRF systems require heat-source water circulation, and reducing the pumping power remains a significant problem. Herein, the intermittent pump control for circulating heat source water was achieved by installing a buffer water tank between the ground heat exchangers and VRF units. An intermittent control methodology was developed based on the indices of water transport efficiency and incorporated into a system simulation model with 72 boreholes, a cooling capacity of 252 kW, and a buffer water tank of 30 m3. Results indicated that intermittent control was achieved at heat load ratios lower than 40% as expected. This intermittent control allowed more efficient water transport with 38% lower pumping power than conventional inverter controls. Although the proposed system equipped more pumps and heat exchangers than conventional systems, it exhibited higher energy efficiencies for most measurement days than the conventional air-conditioning systems. The annual energy consumption was thus reduced by 34% and 8% compared to air-source VRF systems and conventional ground-source VRF systems, respectively. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 7998 KB  
Article
Regional Analysis and Evaluation Method for Assessing Potential for Installation of Renewable Energy and Electric Vehicles
by Yutaro Akimoto, Raimu Okano, Keiichi Okajima and Shin-nosuke Suzuki
World Electr. Veh. J. 2024, 15(10), 477; https://doi.org/10.3390/wevj15100477 - 19 Oct 2024
Cited by 1 | Viewed by 1435
Abstract
Many countries are adopting renewable energy (RE) and electric vehicles (EVs) to achieve net-zero emissions by 2050. The indicators of RE and EV potentials are different. Decision-makers want to introduce RE and EVs; however, they need a method to find suitable areas. In [...] Read more.
Many countries are adopting renewable energy (RE) and electric vehicles (EVs) to achieve net-zero emissions by 2050. The indicators of RE and EV potentials are different. Decision-makers want to introduce RE and EVs; however, they need a method to find suitable areas. In addition, this is required in the time-series analysis to provide a detailed resolution. In this study, we conducted a time-series analysis in Japan to evaluate suitable areas for the combined use of RE and EVs. The results showed the surplus RE areas and shortage RE urban areas. The time-series analysis has quantitatively shown that it is not enough to charge EV batteries using surplus RE. Moreover, a ranking methodology was developed for the evaluation based on electric demand and vehicle numbers. This enables the government’s prioritization of prefectures and the prefectures’ prioritization of municipalities according to their policies. Full article
(This article belongs to the Special Issue Power and Energy Systems for E-mobility)
Show Figures

Figure 1

Back to TopTop