Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = K-geopolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8622 KiB  
Article
Low-Carbon Insulating Geopolymer Binders: Thermal Properties
by Agnieszka Przybek, Jakub Piątkowski, Paulina Romańska, Michał Łach and Adam Masłoń
Sustainability 2025, 17(15), 6898; https://doi.org/10.3390/su17156898 - 29 Jul 2025
Viewed by 207
Abstract
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating [...] Read more.
In the context of the growing need to reduce greenhouse gas emissions and to develop sustainable solutions for the construction industry, foamed geopolymers represent a promising alternative to traditional binders and insulation materials. This study investigates the thermal properties of novel low-emission, insulating geopolymer binders made from fly ash with diatomite, chalcedonite, and wood wool aiming to assess their potential for use in thermal insulation systems in energy-efficient buildings. The stability of the foamed geopolymer structure is also assessed. Measurements of thermal conductivity, specific heat, microstructure, density, and compressive strength are presented. The findings indicate that the selected geopolymer formulations exhibit low thermal conductivity, high heat capacity and low density, making them competitive with conventional insulation materials—mainly load-bearing ones such as aerated concrete and wood wool insulation boards. Additionally, incorporating waste-derived materials reduces the production carbon footprint. The best results are represented by the composite incorporating all three additives (diatomite, chalcedonite, and wood wool), which achieved the lowest thermal conductivity (0.10154 W/m·K), relatively low density (415 kg/m3), and high specific heat (1.529 kJ/kg·K). Full article
Show Figures

Figure 1

19 pages, 6665 KiB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 180
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

30 pages, 10507 KiB  
Article
Thermal Properties of Geopolymer Concretes with Lightweight Aggregates
by Agnieszka Przybek, Paulina Romańska, Kinga Korniejenko, Krzysztof Krajniak, Maria Hebdowska-Krupa and Michał Łach
Materials 2025, 18(13), 3150; https://doi.org/10.3390/ma18133150 - 3 Jul 2025
Cited by 1 | Viewed by 536
Abstract
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that [...] Read more.
Despite the availability of various materials for chimney applications, ongoing research seeks alternatives with improved thermal and chemical resistance. Geopolymers are a promising solution, exhibiting exceptional resistance to high temperatures, fire, and aggressive chemicals. This study investigates fly ash-based lightweight geopolymer concretes that incorporate expanded clay aggregate (E.C.A.), perlite (P), and foamed geopolymer aggregate (F.G.A.). The composites were designed to ensure a density below 1200 kg/m3, reducing overall weight while maintaining necessary performance. Aggregate content ranged from 60 to 75 wt.%. Physical (density, thickness, water absorption), mechanical (flexural and compressive strength), and thermal (conductivity, resistance) properties were evaluated. F.G.A. 60 achieved a 76.8% reduction in thermal conductivity (0.1708 vs. 0.7366 W/(m·K)) and a 140.4% increase in thermal resistance (0.1642 vs. 0.0683). The F.G.A./E.C.A./P 60 mixture showed the highest compressive strength (18.069 MPa), reaching 52.7% of the reference concrete’s strength, with a 32.3% lower density (1173.3 vs. 1735.0 kg/m3). Water absorption ranged from 4.9% (REF.) to 7.3% (F.G.A. 60). All samples, except F.G.A. 70 and F.G.A. 75, endured heating up to 800 °C. The F.G.A./E.C.A./P 60 composite demonstrated well-balanced performance: low thermal conductivity (0.2052 W/(m·K)), thermal resistance up to 1000 °C, flexural strength of 4.386 MPa, and compressive strength of 18.069 MPa. The results confirm that well-designed geopolymer lightweight concretes are suitable for chimney and flue pipe linings operating between 500 and 1000 °C and exposed to acidic condensates and aggressive chemicals. This study marks the initial phase of a broader project on geopolymer-based prefabricated chimney systems. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials—Second Edition)
Show Figures

Figure 1

13 pages, 3918 KiB  
Article
Fayalite-Based Geopolymer Foam
by Aleksandar Nikolov, Mihail Tarassov, Ivan Rostovsky, Miryana Raykovska, Ivan Georgiev and Kinga Korniejenko
Ceramics 2025, 8(2), 77; https://doi.org/10.3390/ceramics8020077 - 19 Jun 2025
Viewed by 400
Abstract
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water [...] Read more.
The present work is the first study exploring the potential of geopolymer foams based on fayalite slag, an industrial by-product, as the primary precursor, for lightweight and fireproof construction applications. The research involved the synthesis and characterization of geopolymer foams with varying water to solid ratio, followed by testing their physical and mechanical properties. The phase composition and microstructure of the obtained geopolymer foams were examined using powder XRD, Micro-CT and SEM. The geopolymer foams at optimal water to solid ratio (0.15) demonstrated 73.2% relative porosity, 0.92 g/cm3 apparent density and 1.3 MPa compressive strength. The use of an air-entraining admixture improved compressive strength to 2.8 MPa but lowered the relative porosity to 64.5%. Real-size lightweight panel (300 × 300 × 30 mm) specimens were prepared to measure thermal conductivity coefficient (0.243 W/mK) and evaluate size effect and the reaction to direct fire. This study demonstrates the successful preparation of geopolymer foam products containing 81% fayalite slag, highlighting its potential as a lightweight, insulating and fire-resistant material for sustainable construction applications. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Graphical abstract

37 pages, 8780 KiB  
Article
Sustainable Self-Healing Geopolymer Concrete Incorporating Recycled Plastic, Brick Waste, and Bacillus sphaericus
by Tamer I. Ahmed, Ahmed S. Rashed and Dina E. Tobbala
Ceramics 2025, 8(2), 72; https://doi.org/10.3390/ceramics8020072 - 17 Jun 2025
Cited by 2 | Viewed by 773
Abstract
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted [...] Read more.
This research aims to develop self-healing geopolymer concrete (SHG) to address the limitations of conventional repair methods, including reduced thermal conductivity and density, while promoting sustainable construction. The incorporation of the self-healing method (SHM), crushed brick (CB), and minced water bottles (F-PET) resulted in reduced thermal conductivity, maintenance costs, and environmental impact. This study investigated the effects of varying amounts of CB, F-PET, and SHM on several properties, including flowability, setting times, densities, ductility index (DI), and mechanical strengths, across 13 different mixtures. Additionally, water absorption (WA%), residual weight loss (WL%), and relative dynamic modulus of elasticity (RDME%) were assessed following freeze–thaw cycles, alongside SEM analysis and thermal transport measurements of the SHG mixtures. The inclusion of up to 50% CB enhanced density and thermal conductivity but negatively affected other properties. In contrast, incorporating 25% F-PET led to modest improvements in mechanical, thermal, and durability properties; however, it did not reduce density and thermal conductivity as effectively as CB. Among the three mixtures containing both CB and F-PET, the formulation with 37.5% CB and 12.5% F-PET exhibited the lowest density (1650 kg/m3) and thermal conductivity (1.083 W/m·K). The self-healing capacity of SHM was demonstrated through its ability to close cracks, facilitated by the deposition of CaCO3 under combined durability conditions. Incorporating 2%, 3%, and 4% SHM into the 37.5% CB and 12.5% F-PET mixture significantly improved key properties, including strength, water absorption, freeze–thaw resistance, SEM characteristics, density, and thermal conductivity. The addition of 4% SHM enhanced the mechanical performance of the geopolymer concrete (GVC) after 28 days, resulting in increases of 27% in compressive strength, 40.5% in tensile strength, 81% in flexural strength, and 61.6% in ductility index. Further, the inclusion of SHM improved density, reduced WA% and WL%, and enhanced RDME% after 300 freeze–thaw cycles. Specifically, thermal conductivity decreased from 1.8 W/m·K to 0.88 W/m·K, and density reduced from 2480 kg/m3 to 1760 kg/m3. Meanwhile, WA%, WL%, and RDME% improved from 3%, 4.5%, and 45% to 2%, 2.5%, and 50%, respectively. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

20 pages, 8848 KiB  
Article
Study on the Properties and Pore Structure of Geopolymer Foam Concrete Incorporating Lead–Zinc Tailings
by Yifan Yang, Ming Li, Qi He and Chongjie Liao
Buildings 2025, 15(10), 1703; https://doi.org/10.3390/buildings15101703 - 18 May 2025
Viewed by 490
Abstract
Geopolymer foam concrete (GFC) is a green, lightweight material produced by introducing bubbles into the geopolymer slurry. The raw materials for GFC are primarily silicon–aluminum-rich minerals or solid waste. Lead–zinc tailings (LZTs), as an industrial solid waste with high silicon–aluminum content, hold significant [...] Read more.
Geopolymer foam concrete (GFC) is a green, lightweight material produced by introducing bubbles into the geopolymer slurry. The raw materials for GFC are primarily silicon–aluminum-rich minerals or solid waste. Lead–zinc tailings (LZTs), as an industrial solid waste with high silicon–aluminum content, hold significant potential as raw materials for building materials. This study innovatively utilized LZTs to prepare GFC, incorporating MK, GGBS, and alkali activators as silicon–aluminum-rich supplementary materials and using H2O2 as a foaming agent, successfully producing GFC with excellent properties. The effects of different LZT content on the pore structure and various macroscopic properties of GFC were comprehensively evaluated. The results indicate that an appropriate addition of LZT effectively optimizes the pore structure, resulting in uniform pore distribution and pore shapes that are more spherical. Spherical pores exhibit better geometric compactness. The optimal LZT content was determined to be 40%, at which the GFC exhibits the best compressive strength, thermal conductivity, and water resistance. At this content, the dry density of GFC is 641.95 kg/m3, the compressive strength reaches 6.50 MPa after 28 days, and the thermal conductivity is 0.176 (W/(m·K)). XRD and SEM analyses indicate that under the combined effects of geopolymerization and hydration reactions, N–A–S–H gel and C–S–H gel were formed. The preparation of GFC using LZTs shows significant potential and research value. This study also provides a feasible scheme for the recycling and utilization of LZTs. Full article
Show Figures

Figure 1

19 pages, 18508 KiB  
Article
Lightweight Insulating Geopolymer/Phase-Change Materials Applied Using an Innovative Spray Method
by Agnieszka Przybek, Paulina Romańska, Jakub Piątkowski and Michał Łach
Appl. Sci. 2025, 15(10), 5481; https://doi.org/10.3390/app15105481 - 14 May 2025
Viewed by 637
Abstract
Foamed geopolymer materials are increasingly studied due to their inherent fire resistance. To date, these materials have primarily been produced by casting into moulds, with foaming occurring during mixing or within the moulds, shortly before setting. For practical applications, however, it is advantageous [...] Read more.
Foamed geopolymer materials are increasingly studied due to their inherent fire resistance. To date, these materials have primarily been produced by casting into moulds, with foaming occurring during mixing or within the moulds, shortly before setting. For practical applications, however, it is advantageous to apply these materials directly onto surfaces with complex geometries. Although several techniques for geopolymer spraying have been described in the literature, many exhibit limitations that restrict their practical implementation. This study presents a novel spraying technology developed on a dedicated process line, enabling in situ dosing of the foaming agent immediately before application. The system integrates infrared heating to ensure controlled curing of the geopolymer. This paper outlines the design of the process line and its core functionalities while presenting selected results of material tests conducted on the obtained geopolymer coatings. Tests performed on approximately 200 m2 of surface confirmed the functionality of the process. The thermal conductivity of the sprayed foams was about 0.07 W/m-K. The inclusion of a phase-change material (PCM) in the geopolymers further enhanced their ability to store and regulate thermal energy. The adhesion strength results, consistently exceeding 1 MPa across various substrates (steel, geopolymer, gypsum board), confirmed the practical suitability of the proposed solution. This was also demonstrated by the homogeneous foamed structure obtained. Full article
(This article belongs to the Special Issue Recent Progress and Future Directions in Building Materials)
Show Figures

Figure 1

17 pages, 7919 KiB  
Article
Recycling Face Mask Fibers in Geopolymer-Based Matrices for Sustainable Building Materials
by Roberto Ercoli, Paola Stabile, Elena Ossoli, Irene Luconi, Alberto Renzulli and Eleonora Paris
Ceramics 2025, 8(2), 54; https://doi.org/10.3390/ceramics8020054 - 12 May 2025
Cited by 1 | Viewed by 938
Abstract
This study investigates the upcycling of disposable face masks, which were produced in vast quantities during the COVID-19 pandemic and are now widely stockpiled in public institutions, destined for landfills after reaching expiration dates. The research focuses on incorporating shredded mask fibers into [...] Read more.
This study investigates the upcycling of disposable face masks, which were produced in vast quantities during the COVID-19 pandemic and are now widely stockpiled in public institutions, destined for landfills after reaching expiration dates. The research focuses on incorporating shredded mask fibers into geopolymer matrices, evaluating the effects on mechanical and thermal properties to develop sustainable, high-performance materials. This approach addresses critical environmental, social, and economic challenges by transforming problematic waste into valuable resources while promoting sustainable building practices, such as developing insulating products for the construction industry. Mechanical testing demonstrated that adding shredded mask fibers (2 mm and 6 mm in size, up to 5 wt.%) enhanced the flexural strength of geopolymeric products. The optimal performance was achieved by adding 3 wt.% of 2 mm-length fibers, resulting in a flexural strength of 4.56 ± 0.23 MPa. Regarding compressive strength, the highest value (54.78 ± 2.08 MPa) was recorded in geopolymers containing 1 wt.% of 2 mm fibers. Thermal insulation properties of the materials improved with higher mask content, as evidenced by reductions in thermal conductivity, diffusivity, and specific heat. The lowest thermal conductivity values were observed in geopolymers containing 5 wt.% (0.4346 ± 0.0043 W·m−1·K−1) and 3 wt.% (0.6514 ± 0.0002 W·m−1·K−1) of 2 mm mask fibers. To further enhance thermal insulation, geopolymers with 5 wt.% mask fibers were foamed using H2O2 to obtain highly porous light materials, obtaining a reduction of thermal conductivity (0.3456 and 0.3710 ± 0.0007 W·m−1·K−1). This research highlights the potential of integrating fibrous waste materials into advanced construction technologies, offering solutions for waste reduction and development in the building sector toward sustainability. Full article
(This article belongs to the Special Issue The Production Processes and Applications of Geopolymers, 2nd Edition)
Show Figures

Figure 1

24 pages, 10646 KiB  
Article
Influence of Silicate Modulus and Eggshell Powder on the Expansion, Mechanical Properties, and Thermal Conductivity of Lightweight Geopolymer Foam Concrete
by Mohamed Abdellatief, Mohamed Mortagi, Hassan Hamouda, Krzysztof Skrzypkowski, Krzysztof Zagórski and Anna Zagórska
Materials 2025, 18(9), 2088; https://doi.org/10.3390/ma18092088 - 2 May 2025
Cited by 5 | Viewed by 643
Abstract
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this [...] Read more.
To address the demands of the low-carbon era, this study proposed a solution by using eggshell powder (ESP), fly ash, and ground granulated blast furnace slag together with alkaline solution in the preparation of lightweight geopolymer foam concrete (LWGFC). The aim of this study is to investigate the influence of replacing precursor materials with 5–20% ESP on the expansion behavior, physical, mechanical characteristics, and thermal conductivity of LWGFC. Additionally, the study examines the effect of varying the silicate modulus (SiO2/Na2O ratios of 1.0, 1.25, and 1.5) on the properties of LWGFC. Incorporating ESP from 5% to 20% with a constant SiO2/Na2O ratio reduced the initial setting time, while a high SiO2/Na2O ratio controlled the setting time and expansion volume. The high SiO2/Na2O ratio decreased the porosity and enhanced the compressive strength of the LWGFC but increased the thermal conductivity. The inclusion of more than 10% ESP content negatively affected compressive strength; however, a high SiO2/Na2O ratio can mitigate this detrimental effect. The thermal conductivity of optimal-content ESP mixtures with a SiO2/Na2O ratio of 1.0 was about 0.84 W/m·K, which is 2.1% lower than mixtures with a ratio of 1.25 and 18.6% lower than those with a ratio of 1.5. High-content ESP mixtures had a density of 1707 kg/m3, 0.97 W/m·K, and a compressive strength of 18.9 MPa at a low SiO2/Na2O ratio. Finally, the inclusion of ESP in the LWGFC, along with the use of an appropriate silicate modulus, resulted in improved strength development while decreasing porosity. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

26 pages, 10141 KiB  
Article
Study of Novel Geopolymer Concrete Prepared with Slate Stone Cutting Sludge, Chamotte, Steel Slag and Activated with Olive Stone Bottom Ash
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(9), 1974; https://doi.org/10.3390/ma18091974 - 26 Apr 2025
Cited by 2 | Viewed by 652
Abstract
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from [...] Read more.
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from mining, ceramics, olive oil production, and steel manufacturing. Specifically, slate stone cutting sludge (SSCS) and chamotte (CH) are used as aluminosilicate precursors, with olive biomass bottom ash (OSBA) acting as an alkaline activator, along with sodium silicate, and steel granulated slag (SGS) incorporated as an aggregate. Novel geopolymers were prepared with consistent proportions of SSCS and OSBA while varying the CH content from 10 to 2 wt.%. The SGS proportion was adjusted from 35 to 50 wt.%, and different Na2SiO3/OSBA ratios (0.35, 0.31, 0.19, and 0.08) were examined. To identify the optimal mix, a series of physical and mechanical tests was conducted, complemented by FTIR and SEM analysis to evaluate the chemical and microstructural changes. The best-performing formulation achieved a compressive strength of 42.8 MPa after 28 days of curing. FTIR analysis identified quartz and carbonate phases, suggesting that quartz did not fully dissolve and that carbonates formed during the heating process. SEM examination of the optimal mixture indicated that the incorporation of SGS (up to 45 wt.%) facilitated the creation of a compact, low-porosity structure. EDX results revealed the presence of Ca-, Na-, Si-, Al-, and K-enriched phases, supporting the formation of (N, C)-A-S-H gel networks. These results demonstrate the potential of utilizing SSCS, CH, OSBA, and SGS to create geopolymer concretes, showcasing the viability of using industrial by-products as eco-friendly substitutes for traditional construction materials. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

35 pages, 22378 KiB  
Article
Study of Properties of Novel Geopolymers Prepared with Slate Stone Cutting Sludge and Activated with Olive Stone Bottom Ash
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(8), 1774; https://doi.org/10.3390/ma18081774 - 13 Apr 2025
Cited by 2 | Viewed by 599
Abstract
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte [...] Read more.
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte (CH) as aluminosilicate sources, and olive stone bottom ash (OSBA) as an alkaline activator, combined with sodium silicate (Na2SiO3). Eight geopolymer families were prepared with constant amounts of SSCS and CH and varying proportions of OSBA/Na2SiO3 (0.88–1.31). The evaluation phase included physical, chemical, mechanical, and microstructural tests. The results showed that the optimum geopolymer formulation (GP E) contained 25% SSCS, 15% CH, and 19% OSBA with a Na2SiO3/OSBA ratio of 1.0, achieving a compressive strength of 24.12 MPa after 28 days of curing. GP E also showed the lowest porosity (19.54%), minimal water absorption (6.86%), and favorable thermal conductivity (0.688 W/mK). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the formation of dense and homogeneous matrices. These results demonstrate the feasibility of manufacturing geopolymers using SSCS, CH, and OSBA as substitutes for traditional binders, promoting sustainable practices, reusing industrial by-products, and reducing carbon emissions in construction. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Graphical abstract

21 pages, 8076 KiB  
Article
Eco-Friendly Synthesis of Geopolymer Foams from Natural Zeolite Tuffs and Silica Fume: Effects of H2O2 and Calcium Stearate on Foam Properties
by Ethem Ilhan Şahin and Jamal-Eldin F. M. Ibrahim
Buildings 2025, 15(6), 970; https://doi.org/10.3390/buildings15060970 - 19 Mar 2025
Viewed by 671
Abstract
The need for environmentally friendly and energy-efficient building materials has increased significantly. This study synthesizes geopolymer foams with enhanced thermal insulation properties using silica fume and natural zeolite tuff. Zeolite’s porous structure and active sites improve polymerization and strengthen the foam, while silica [...] Read more.
The need for environmentally friendly and energy-efficient building materials has increased significantly. This study synthesizes geopolymer foams with enhanced thermal insulation properties using silica fume and natural zeolite tuff. Zeolite’s porous structure and active sites improve polymerization and strengthen the foam, while silica fume reacts with NaOH to release sodium silicate, forming a durable geopolymer matrix. Foam porosity is introduced by generating oxygen gas from H2O2 and NaOH, with calcium stearate stabilizing the foam structure. Comparative analysis of the compressive strength, bulk density, porosity, and thermal conductivity shows that incorporating H2O2 and calcium stearate significantly reduces thermal conductivity (from 0.19 to 0.06 W/m·K) while ensuring a highly porous system (66–82.6% porosity) with adequate mechanical strength (1.6–3.39 MPa). These findings highlight the potential of the developed geopolymer foam for sustainable insulation applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 3825 KiB  
Article
Thermal, Mechanical, and Microstructural Properties of Novel Light Expanded Clay Aggregate (LECA)-Based Geopolymer Concretes
by Tinkara Marija Podnar and Gregor Kravanja
J. Compos. Sci. 2025, 9(2), 69; https://doi.org/10.3390/jcs9020069 - 4 Feb 2025
Cited by 3 | Viewed by 1571
Abstract
The construction sector’s reliance on traditional cement significantly contributes to CO2 emissions, underscoring the urgent need for sustainable alternatives. This study investigates fine (0–4 mm), rounded, uncoated, porous-surfaced lightweight expanded clay aggregate (LECA)-based geopolymers, which combine the low-carbon benefits of geopolymers with [...] Read more.
The construction sector’s reliance on traditional cement significantly contributes to CO2 emissions, underscoring the urgent need for sustainable alternatives. This study investigates fine (0–4 mm), rounded, uncoated, porous-surfaced lightweight expanded clay aggregate (LECA)-based geopolymers, which combine the low-carbon benefits of geopolymers with LECA’s lightweight and insulating properties. Geopolymers were synthesized using lignite-rich fly ash with varying ratios of LECA to aggregate. Mechanical testing revealed that the reference mixture without LECA (REF-GEO) achieved the highest compressive strength of 37.89 ± 0.75 MPa and flexural strength of 7.62 ± 0.11 MPa, while complete substitution of the aggregate with LECA (LECA-100%) reduced the compressive strength to 17.31 ± 0.88 MPa and flexural strength to 3.41 ± 0.11 MPa. The density of the samples decreased from 2.06 g/cm3 for REF-GEO to 1.31 g/cm3 for LECA-100%, and thermal conductivity dropped significantly from 1.15 ± 0.07 W/mK to 0.38 ± 0.01 W/mK. Microstructural analysis using XRD and SEM-EDX highlighted changes in the material’s internal structure and the increase in porosity with higher LECA content. Water vapor permeability increases over time, particularly in samples with higher LECA content. These findings suggest that LECA-based geopolymers are suitable for low-load or non-structural elements. They are ideal for sustainable, energy-efficient construction that requires lightweight, insulating, and breathable materials. Full article
Show Figures

Graphical abstract

13 pages, 4456 KiB  
Article
Mechanical Properties and Microstructure of Geopolymer-Based PFSS Synthesized from Excavated Loess
by Shujie Chen, Hengchun Zhang, Zhengzhou Yang, Chao Feng, Yao Wang, Demei Yu, Tengfei Fu, Feng Zhang and Xia Huang
Materials 2025, 18(1), 30; https://doi.org/10.3390/ma18010030 - 25 Dec 2024
Cited by 1 | Viewed by 708
Abstract
Pre-mixed fluidized solidified soil (PFSS) has the advantages of pumpability, convenient construction, and a short setting time. This paper took the excavated loess in Fuzhou as the research object and used cement–fly–ash–ground granulated blast furnace slag–carbide slag as a composite geopolymer system (CFGC) [...] Read more.
Pre-mixed fluidized solidified soil (PFSS) has the advantages of pumpability, convenient construction, and a short setting time. This paper took the excavated loess in Fuzhou as the research object and used cement–fly–ash–ground granulated blast furnace slag–carbide slag as a composite geopolymer system (CFGC) to synthesize PFSS. This study investigated the fluidity and mechanical strength of PFSS under different water–solid ratios and curing agent dosages; finally, the microstructure of the composite geopolymer system–pre-mixed fluidized solidified soil (CFGC-PFSS) was characterized. The results showed that when the water–solid ratio of PFSS increased from 0.46 to 0.54, the fluidity increased by 77 mm, and the flexural strength and compressive strength at 28 d decreased to 450.8 kPa and 1236.5 kPa. When the curing agent dosage increased from 15% to 25%, the fluidity increased by 18.0 mm, and the flexural strength and compressive strength at 28 d increased by 1.7 times and 1.6 times. A large number of needle-like AFt, C-S-H gel, and C-(A)-S-H gel coagulate with soil particles to form a three-dimensional reticular structure, which is the mechanism of the strength formation of PFSS under the action of CFGC. Full article
Show Figures

Figure 1

12 pages, 6447 KiB  
Article
A Novel K+ Slow-Release Cementitious Material Developed from Subway Tunnel Muck for Ecological Concrete Applications
by Daien Yang, Fushen Zhang, Leyang Lv, Zhiyuan Zhang, Ziyang Liu, Qianqian Liu and Yanjun Liu
Buildings 2024, 14(12), 4051; https://doi.org/10.3390/buildings14124051 - 20 Dec 2024
Viewed by 697
Abstract
This study explored a novel cementitious material developed from subway tunnel muck (STM) intended for ecological concrete (EC) preparation. The effects of three alkaline activators (NaOH, KOH, and CaO) on the properties of the cementitious materials were systematically examined. The results indicated that [...] Read more.
This study explored a novel cementitious material developed from subway tunnel muck (STM) intended for ecological concrete (EC) preparation. The effects of three alkaline activators (NaOH, KOH, and CaO) on the properties of the cementitious materials were systematically examined. The results indicated that NaOH exhibited the most effective activation performance, followed by KOH, with CaO being the least effective. The NaOH-activated materials exhibited the highest compressive strength (reaching up to 12.15 MPa), the densest microstructure (characterized by the lowest porosity and smallest average pore size), the most substantial gel formation (evidenced by the highest mass loss in thermogravimetric analysis), and the optimal gel structure (indicated by the pronounced peak sharpening in Fourier transform infrared spectroscopy) after a 28-day curing period. Moreover, the crystallization of potassium salts under KOH activation detrimentally impacted the microstructure of KOH-activated materials. To balance the need for structural strength and nutrient provision, NaOH + KOH-activated materials were selected for the preparation of EC. Notably, the application of NaOH + KOH-activated materials resulted in a significant increase in K+ concentration in the soil layer, compared to common soil. Furthermore, NaOH + KOH-activated materials exhibited a slow-release effect, thereby offering sustained nutrient support conducive to plant development. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop