Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (22,628)

Search Parameters:
Keywords = Iron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4505 KB  
Review
Surface-Modified Magnetic Nanoparticles for Photocatalytic Degradation of Antibiotics in Wastewater: A Review
by Melissa Ariza Gonzalez, Supawitch Hoijang, Dang B. Tran, Quoc Minh Tran, Refia Atik, Rafiqul Islam, Sugandika Maparathne, Sujitra Wongthep, Ramtin Yarinia, Ruwanthi Amarasekara, Pailinrut Chinwangso and T. Randall Lee
Appl. Sci. 2026, 16(2), 844; https://doi.org/10.3390/app16020844 - 14 Jan 2026
Abstract
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable [...] Read more.
Recent advancements in nanotechnology and materials science have enabled the development of magnetic photocatalysts with improved efficiency, stability, and reusability, offering a promising approach for wastewater treatment. The integration of magnetic nanoparticles (MNPs) into photocatalytic processes has gained significant attention as a sustainable method for addressing emerging pollutants—such as antibiotics and pharmaceutical compounds—which pose environmental and public health risks, including the proliferation of antibiotic resistance. Surface modification techniques, specifically applied to MNPs, are employed to enhance their photocatalytic performance by improving surface reactivity, reducing nanoparticle agglomeration, and increasing photocatalytic activity under both visible and ultraviolet (UV) light irradiation. These modifications also facilitate the selective adsorption and degradation of target contaminants. Importantly, the modified nanoparticles retain their magnetic properties, allowing for facile separation and reuse in multiple treatment cycles via external magnetic fields. This review provides a comprehensive overview of recent developments in surface-modified MNPs for wastewater treatment, with a focus on their physicochemical properties, surface modification strategies, and effectiveness in the removal of antibiotics from aqueous environments. Furthermore, the review discusses advantages over conventional treatment methods, current limitations, and future research directions, emphasizing the potential of this technology for sustainable and efficient water purification. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in the Environmental Sciences)
Show Figures

Figure 1

16 pages, 930 KB  
Article
Associations Between Consumption of Ultra-Processed Foods and Diet Quality Among Children and Adolescents
by Evgenia Petridi, Emmanuella Magriplis, Sotiria Kotopoulou, Niki Myrintzou, Evelina Charidemou, Elena Philippou and Antonis Zampelas
Nutrients 2026, 18(2), 272; https://doi.org/10.3390/nu18020272 - 14 Jan 2026
Abstract
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary [...] Read more.
Background: Ultra-processed foods (UPFs) have emerged as a critical component of diet quality, yet data on the associations between UPF and nutrient intakes remain limited. This study aimed to evaluate nutrient consumption in relation to UPF intake and adherence to international dietary guidelines for non-communicable disease (NCD) prevention. Methods: Data from 469 individuals aged 2–18 years enrolled in the Hellenic National Nutrition and Health Survey (HNNHS) were analyzed. Intakes were assessed using two 24 h recalls, and foods were classified according to the NOVA system. Participants were categorized by UPF energy intake tertiles. Nutrient adequacy was assessed using Nordic Nutrition Recommendations, European Society of Cardiology guidelines for macronutrients, and the Institute of Medicine’s Estimated Average Requirements and Adequate Intake values for micronutrients. Results: Children in the highest UPF tertile had significantly higher intakes of energy, carbohydrates, added sugars, saturated fats, polyunsaturated fats, and cholesterol, but lower intakes of protein compared to those in the lowest tertile. Fiber intake remained inadequate across all tertiles, with no significant differences. Regarding adherence to NCD prevention guidelines, children in the 3rd UPF tertile had a 2.3 times higher prevalence ratio for exceeding added sugar recommendations, while their protein intake prevalence ratio was 0.8 times lower. For micronutrients, the highest UPF tertile showed significantly elevated intakes of vitamins E, B1, folate, calcium, iron, copper, and sodium, but lower potassium intake compared to the lowest tertile. Conclusions: Our results underscore the need for effective public health strategies to improve diet quality in children and adolescents and prevent diet-related NCDs. Full article
(This article belongs to the Special Issue Ultra-Processed Foods and Chronic Diseases Nutrients)
Show Figures

Figure 1

26 pages, 8975 KB  
Article
Green Synthesis of ZnO Nanoparticles: Effect of Synthesis Conditions on Their Size and Photocatalytic Activity
by Veronika Yu. Kolotygina, Arkadiy Yu. Zhilyakov, Maria A. Bukharinova, Ekaterina I. Khamzina and Natalia Yu. Stozhko
ChemEngineering 2026, 10(1), 15; https://doi.org/10.3390/chemengineering10010015 - 14 Jan 2026
Abstract
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles [...] Read more.
Green technologies are actively being used to produce nanosized zinc oxide, which is in demand for water purification processes to remove pollutants. Despite the success of the green synthesis of ZnO nanoparticles, no scientific approach exists for selecting plant extracts to produce nanoparticles with the desired properties. This study shows that the antioxidant activity of the plant extracts used is a key parameter influencing the properties of the resulting ZnO nanoparticles. This conclusion is based on the results of nanoparticle synthesis with the use of various plant extracts. The antioxidant activity of the extracts increases in the following order: plum–gooseberry–black currant–strawberry–sea buckthorn. The synthesized ZnO nanoparticles were characterized by UV–visible spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The catalytic properties of ZnO nanoparticles were tested under the degradation of a synthetic methylene blue dye after exposure to UV light. We found that with an increase in the AOA of plant extracts, the size of the nanoparticles decreases, while their photocatalytic activity increases. The smallest (d = 13 nm), most uniform in size (polydispersity index 0.1), and most catalytically active ZnO nanoparticles with a small band gap (2.85 eV) were obtained using the sea buckthorn extract with the highest AOA, pH 10 of the reaction mixture and 0.1 M Zn(СH3COO)2∙2H2O as a precursor salt. ZnO nanoparticles synthesized in the sea buckthorn extract demonstrated the highest dye photodegradation efficiency (96.4%) compared with other nanoparticles. The established patterns demonstrate the “antioxidant activity–size–catalytic activity” triad can be considered as a practical guide for obtaining ZnO nanoparticles of a given size and with given properties for environmental remediation applications. Full article
Show Figures

Graphical abstract

39 pages, 1549 KB  
Systematic Review
Effectiveness of Interventions and Control Measures in the Reduction in Campylobacter in Poultry Farms: A Comprehensive Meta-Analysis
by Odete Zefanias, Ursula Gonzales-Barron and Vasco Cadavez
Foods 2026, 15(2), 307; https://doi.org/10.3390/foods15020307 - 14 Jan 2026
Abstract
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current [...] Read more.
Campylobacter is a leading foodborne bacterial pathogen, and poultry production is a major reservoir contributing to human exposure. Reducing Campylobacter at farm level is therefore critical to limit downstream contamination. This systematic review and meta-analysis aimed to identify and quantitively summarise the current interventions and control measures applied in poultry farms to control the contamination and bird colonisation by Campylobacter. The Scopus electronic database was accessed to collect primary research articles that focused on observational studies and in vivo experiments, reporting results on Campylobacter concentrations or prevalence in both non-intervened and intervened groups. A total of 4080 studies were reviewed, from which 112 were selected and included in the meta-analysis according to predefined criteria, yielding 1467 observations. Meta-regression models were adjusted to the full data set and by intervention strategy based on the type of outcome measure (i.e., concentration and prevalence). In general terms, the results reveal that the effectiveness to reduce Campylobacter colonisation vary among interventions. A highly significant effect (p < 0.001) was observed in interventions such as organic acids, bacteriophages, plant extracts, probiotics, and organic iron complexes added to feed or drinking water; although drinking water was proven to be a more effective means of administration than feed for extracts and organic acids. In contrast, interventions such as chemical treatments, routine cleaning and disinfection, and vaccination showed both lower and more heterogeneous effects on Campylobacter loads. Vaccination effects were demonstrated to be driven by route and schedule, with intramuscular administration, longer vaccination periods and sufficient time before slaughter linked to greater reduction in Campylobacter colonisation. Probiotics, plant extracts and routine cleaning and disinfection were associated with lower Campylobacter prevalence in flocks. Meta-regression models consistently showed that the interventions were proven more effective when the sample analysed was caecal contents in comparison to faeces (p < 0.001). Overall, the findings of this meta-analysis study emphasise the application of a multi-barrier approach that combines targeted interventions with robust biosecurity and hygiene measures in order to reduce Campylobacter levels in poultry farms. Full article
(This article belongs to the Special Issue Quality and Safety of Poultry Meat)
25 pages, 11524 KB  
Article
Research on Hyperspectral Remote Sensing Prospecting Model for Porphyry Copper Deposits: A Case Study of the Qulong–Jiama Ore District
by Chunhu Zhang, Li He, Jiansheng Gong, Zhengwei He, Junkang Zhao and Xin Chen
Minerals 2026, 16(1), 78; https://doi.org/10.3390/min16010078 - 14 Jan 2026
Abstract
The Qulong–Jiama polymetallic ore concentration area, located in the eastern segment of the Gangdese metallogenic belt, is one of China’s most significant copper resource production zones. With the growing demand for copper resources, this area has become a key target for mineral exploration. [...] Read more.
The Qulong–Jiama polymetallic ore concentration area, located in the eastern segment of the Gangdese metallogenic belt, is one of China’s most significant copper resource production zones. With the growing demand for copper resources, this area has become a key target for mineral exploration. The current study aims to explore the application potential of multispectral and hyperspectral remote sensing technologies in porphyry copper deposit prospecting, establish a hyperspectral remote sensing prospecting model tailored to this region, and provide technical support for prospecting prediction and resource exploration of similar deposits. Sentinel-2 and Landsat 8 data were used to outline major alteration anomalies at the regional scale, while GF-5 hyperspectral data enabled precision mineral mapping. Results show clear porphyry-style alteration zoning. Hyperspectral mineral identification reveals 33 mineralization- and alteration-related minerals, including muscovite, biotite, pyrophyllite, dickite, chlorite, epidote, and limonite. The ore concentration area exhibits a well-developed inner–middle–outer alteration sequence: (1) an inner potassic–silicic zone locally accompanied by skarn; (2) a middle phyllic and argillic zone dominated by quartz–sericite–pyrite assemblages; and (3) an outer propylitic zone of chlorite–epidote–carbonate with supergene iron oxides. These alteration patterns spatially coincide with known deposits and metallogenic structures such as faults, annular features, and intrusive contacts. Based on these spatial relationships, a hyperspectral remote sensing prospecting model was constructed. The model defines diagnostic mineral assemblages for each zone, highlights structurally altered overlapping areas as priority targets, and effectively predicts the distribution of ore-related alteration belts. The strong correspondence between remote sensing-derived anomalies and existing deposits demonstrates that hyperspectral alteration information is a reliable indicator of ore-forming systems. The proposed model not only provides a scientific basis for further prospecting and exploration in the Qulong–Jiama area but also serves as a reference for copper exploration in the Gangdese metallogenic belt and other similar porphyry–epithermal metallogenic systems. Full article
26 pages, 823 KB  
Review
Underlying Mechanisms of Osteoporosis in the Context of Multimorbidity: Clinical Challenges and Management Strategies
by Alberto Castagna, Carmelo Pujia, Elisa Mazza, Samantha Maurotti, Yvelise Ferro, Valeria Rizzo, Martina Formica, Rosy Conforto, Caterina Mercuri, Angela Sciacqua, Carmine Gazzaruso, Arturo Pujia and Tiziana Montalcini
Nutrients 2026, 18(2), 262; https://doi.org/10.3390/nu18020262 - 14 Jan 2026
Abstract
Osteoporosis and chronic conditions such as type 2 diabetes mellitus, cardiovascular disease, heart failure, and chronic kidney disease share several common biological mechanisms, including chronic inflammation, oxidative stress, hormonal dysregulation, and metabolic alterations. In this context, multimorbidity presents an increasing clinical challenge, particularly [...] Read more.
Osteoporosis and chronic conditions such as type 2 diabetes mellitus, cardiovascular disease, heart failure, and chronic kidney disease share several common biological mechanisms, including chronic inflammation, oxidative stress, hormonal dysregulation, and metabolic alterations. In this context, multimorbidity presents an increasing clinical challenge, particularly in older populations, where osteoporosis remains frequently underdiagnosed and undertreated. This review aims to explore the complex interplay between skeletal fragility and cardiometabolic diseases, emphasizing the role of nutritional deficiencies (such as iron and vitamin C), shared molecular pathways (advanced glycation end-products, Renin–Angiotensin–Aldosterone System, RANK Ligand, RANK), and the systemic impact of chronic inflammation and tissue hypoperfusion. The review also addresses the effects of various drug classes—antidiabetics, antihypertensives, anticoagulants, and anti-osteoporotic agents—on bone metabolism and cardiovascular risk. Special focus is given to the implementation of integrated and personalized care models, particularly multidisciplinary team-based approaches, which have demonstrated significant reductions in mortality and refracture rates, despite their still limited adoption in clinical practice. In conclusion, this review highlights the shared mechanisms between osteoporosis and cardiometabolic conditions in the context of multimorbidity, underscoring persistent clinical challenges related to diagnosis, drug interactions, and care fragmentation that warrant further research into integrated care models. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Graphical abstract

15 pages, 2859 KB  
Article
An Investigation into Removing Zinc from the Zinc-Bearing Dusts Using the Cold Briquetting-Direct Reduction Process
by Gen Li, Deqing Zhu, Jian Pan, Congcong Yang and Mingzhou Hou
Metals 2026, 16(1), 91; https://doi.org/10.3390/met16010091 - 14 Jan 2026
Abstract
This study developed a composite binder cold briquetting-direct reduction process for zinc removal and resource recovery from zinc-containing dust. Through systematic briquetting and reduction experiments, the optimal briquette parameters were identified, and the mechanisms of zinc migration and removal during reduction were discussed. [...] Read more.
This study developed a composite binder cold briquetting-direct reduction process for zinc removal and resource recovery from zinc-containing dust. Through systematic briquetting and reduction experiments, the optimal briquette parameters were identified, and the mechanisms of zinc migration and removal during reduction were discussed. The results showed that under optimized reduction conditions at 1275 °C for 25 min and with 4% carbon content in the briquettes, the process achieved a zinc removal rate of 98.25% and an iron metallization rate of 90.54%, indicating high Zn removal performance under the tested conditions. Notably, compared with briquettes prepared with conventional organic binders (OB1), the composite binder (CB1) briquettes exhibited higher compressive strength while maintaining comparable Zn removal and metallization performance. The CB1 offers both economic advantages and improved mechanical strength, being successfully applied in industrial lines. Moreover, this process offers an industrially applicable route for the efficient treatment and resource utilization of zinc-bearing dust in the steel industry. Full article
Show Figures

Figure 1

15 pages, 563 KB  
Article
Assessment of Juniper Ash Elemental Composition for Potential Use in a Traditional Indigenous Dietary Pattern
by Julie M. Hess, Madeline E. Comeau, Derek D. Bussan, Kyra Schwartz and Claudia PromSchmidt
Nutrients 2026, 18(2), 260; https://doi.org/10.3390/nu18020260 - 14 Jan 2026
Abstract
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether [...] Read more.
Background/Objectives: Ash made from juniper trees and added to cornmeal-based dishes may have provided calcium (Ca) to traditional Indigenous diets. Few studies have quantified the mineral content of juniper ash, including its Ca content. The objective of this study was to determine whether juniper ash could serve as a safe source of non-dairy Ca in an intervention study. Methods: Branches from two varieties of Juniper (Rocky Mountain Juniper, or Juniperus scopulorum and Eastern Red Cedar, or Juniperus virginiana) were harvested and burned to ash in a laboratory setting. Juniper ash from the southwestern U.S. available for retail purchase was used for comparison. All samples were tested for content of 10 nutritive elements (Ca, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, selenium, and zinc) and 20 potentially toxic elements (silver, aluminum, arsenic, barium, beryllium, cadmium, cobalt, chromium, mercury, lithium, molybdenum, nickel, lead, antimony, tin, strontium, thallium, uranium, and vanadium) as well as n = 576 pesticide residues. Results: All samples contained both nutritive and potentially toxic elements. Each teaspoon of ash contained an average of 445 ± 141 mg Ca. However, the samples also contained lead in amounts ranging from 1.09 ppm to 15 ppm. Conclusions: Information on the nutritive and potentially toxic elemental content of juniper ash and how it may interact within a food matrix is insufficient to determine its safety as a Ca source. Further investigation is needed on the bioavailability of calcium oxide and its interaction with other dietary components to clarify the potential role of juniper ash in contemporary food patterns. Full article
(This article belongs to the Special Issue Mineral Nutrition on Human Health and Disease—2nd Edition)
Show Figures

Figure 1

13 pages, 1384 KB  
Article
Experimental Study on a New Cement-Based Grouting Material for Iron Tailings Sand
by Ruibao Jin, Chaoyu Yang, Yangyang Luo, Yingchun Cai, Pan Guo, Dong Wei and Heng Liu
Materials 2026, 19(2), 328; https://doi.org/10.3390/ma19020328 - 14 Jan 2026
Abstract
This study develops a green, high-performance, cement-based grout by replacing manufactured sand with iron tailings sand (ITS) at ratios of 0–50% to address resource depletion. Fluidity, mechanical strength, and expansion rates were experimentally evaluated to determine engineering feasibility. The results indicate that while [...] Read more.
This study develops a green, high-performance, cement-based grout by replacing manufactured sand with iron tailings sand (ITS) at ratios of 0–50% to address resource depletion. Fluidity, mechanical strength, and expansion rates were experimentally evaluated to determine engineering feasibility. The results indicate that while ITS inclusion reduces fluidity due to particle morphology, it significantly enhances compressive strength through a physical filling effect. Specifically, the 30% replacement group achieved a peak 28-day compressive strength of 100.4 MPa. Comprehensive analysis identifies 40% as the optimal replacement rate, where the grout strictly satisfies relevant industry specifications regarding fluidity, early strength, and volume stability. This research demonstrates the practical significance of utilizing industrial solid waste to produce high-performance sleeve grout for prefabricated construction. Full article
(This article belongs to the Special Issue Advances in Modern Cement-Based Materials for Composite Structures)
Show Figures

Graphical abstract

19 pages, 1602 KB  
Article
Microscopic Thermal Behavior of Iron-Mediated Platinum Group Metal Capture from Spent Automotive Catalysts
by Xiaoping Zhu, Ke Shi, Chuan Liu, Yige Yang, Jinrong Zhao, Xiaolong Sai, Shaobo Wen and Shuchen Sun
J. Manuf. Mater. Process. 2026, 10(1), 34; https://doi.org/10.3390/jmmp10010034 - 13 Jan 2026
Abstract
This research investigates the micro-mechanisms and process control associated with the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs) through iron capturing. High-temperature smelting experiments, complemented by SEM-EDS and XRD analyses, demonstrate that PGMs spontaneously migrate from the slag phase [...] Read more.
This research investigates the micro-mechanisms and process control associated with the recovery of platinum group metals (PGMs) from spent automotive catalysts (SACs) through iron capturing. High-temperature smelting experiments, complemented by SEM-EDS and XRD analyses, demonstrate that PGMs spontaneously migrate from the slag phase to the iron phase, driven by interfacial energy, where they are captured to form alloy droplets with a PGM content exceeding 4 wt.%. The composite flux (CaO/H3BO3) markedly diminishes slag viscosity and enhances the density differential between slag and metal. This facilitates the aggregation, sedimentation, and separation of alloy droplets in accordance with Stokes’ law, thereby lowering the effective capture temperature from 1700 °C to 1500 °C and reducing energy consumption. Additionally, the flux inhibits the formation of detrimental Fe-Si alloys. PGMs form substitutional solid solutions that are uniformly dispersed within the iron matrix. This study provides both the theoretical and technical foundations necessary for the development of efficient, low-energy processes aimed at capturing and recovering Fe-PGMs alloys. Full article
28 pages, 509 KB  
Review
Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies
by Angelika Krūmiņa, Indra Zeltiņa, Paula Simsone, Emile Eulitz, Aigars Reinis and Ludmila Vīksna
Medicina 2026, 62(1), 163; https://doi.org/10.3390/medicina62010163 - 13 Jan 2026
Abstract
Pseudomonas aeruginosa is a resilient Gram-negative pathogen frequently implicated in healthcare associated infections, particularly among immunocompromised individuals and those with chronic conditions such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), or cancer. It is well known for its high resistance to [...] Read more.
Pseudomonas aeruginosa is a resilient Gram-negative pathogen frequently implicated in healthcare associated infections, particularly among immunocompromised individuals and those with chronic conditions such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), or cancer. It is well known for its high resistance to antibiotic treatment. This review briefly mentions P. aeruginosa’s resistance mechanisms, biofilm formation, and virulence factors, while primarily focusing on treatment challenges and recent advancements in therapeutic strategies aimed at overcoming resistance. Covered are novel non-antibiotic interventions such as quorum sensing inhibitors, quorum quenching agents, iron chelators, lectin and efflux pump inhibitors, as well as antimicrobial peptides and nanoparticles. Traditional medicine, phytochemicals, and probiotics are also evaluated. Additionally, this review explores the development of a viable vaccine, bacteriophage therapy, lactoferrin-hypothiocyanite combination, and topical use of electrochemical scaffolds. This review emphasizes the need for extensive safety studies and in vivo validation of these emerging non-antibiotic therapeutic strategies to determine their efficacy, pharmacological behavior, and clinical feasibility before they can be translated into practice. Many of these emerging treatments could play a vital role in future combination therapies by enhancing the efficacy of existing antibiotics and countering resistance and virulence mechanisms. Advancing these approaches from laboratory to clinical application remains a major challenge, making the development of approved therapies or vaccines a critical scientific and public health priority. Full article
(This article belongs to the Section Pharmacology)
16 pages, 285 KB  
Article
Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners
by Marta Carrasco-Marginet, Silvia Puigarnau, Javier Espasa-Labrador, Álex Cebrián-Ponce, Fabrizio Gravina-Cognetti, Nil Piñol-Granadino and Alfredo Irurtia
Healthcare 2026, 14(2), 200; https://doi.org/10.3390/healthcare14020200 - 13 Jan 2026
Abstract
Background: This study investigated the relationships between hematological and bone metabolism variables in 35 elite female trail runners, focusing on identifying key hematological correlates of bone health. Methods: Forty-four hematological variables, including biochemical, hormonal, metabolic, liver enzyme, and iron profiles, as well as [...] Read more.
Background: This study investigated the relationships between hematological and bone metabolism variables in 35 elite female trail runners, focusing on identifying key hematological correlates of bone health. Methods: Forty-four hematological variables, including biochemical, hormonal, metabolic, liver enzyme, and iron profiles, as well as complete blood count and platelet indices, were analyzed. Bone mineral density (BMD) and bone mineral content (BMC) were assessed at multiple skeletal regions via dual-energy X-ray absorptiometry (DXA). A cross-sectional design was employed, utilizing descriptive statistics, correlation analyses, and multiple linear regression to analyze the associations between hematological markers and BMC and BMD. Results: Significant but moderate associations were identified: magnesium consistently emerged as a negatively associated factor, particularly associated with BMC and BMD in the lumbar spine (L1–L4) and whole-body, potentially reflecting hypothesized mineral mobilization during chronic physical stress. Follicle-stimulating hormone showed positive associations with BMD, suggesting a potential protective association in bone turnover regulation. Additionally, calcium and thyroid hormones were linked to regional bone properties, highlighting site-specific skeletal vulnerabilities. Conclusions: These findings suggest a complex interplay between mineral homeostasis and hormonal balance that may be related to skeletal integrity in elite female trail runners. This work provides a foundation for developing evidence-based guidelines to support the health and performance of female endurance athletes. Further research is warranted to confirm these results through longitudinal evaluations. Full article
(This article belongs to the Special Issue From Prevention to Recovery in Sports Injury Management)
22 pages, 14195 KB  
Article
Study of Phase Transformations of Iron Minerals During Electrochemical Reduction of Unmilled Bauxite Particles in an Alkaline Media and Subsequent High-Pressure Bayer Process Leaching
by Andrei Shoppert, Dmitrii Valeev, Irina Loginova and Denis Pankratov
Minerals 2026, 16(1), 74; https://doi.org/10.3390/min16010074 - 13 Jan 2026
Abstract
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert [...] Read more.
This article focuses on studying the phase transformation of bauxite iron minerals during electrolytic reduction processes in alkaline solutions (400 g/L Na2O), with the aim of improving aluminum extraction in the subsequent Bayer process. The research employs electrolytic reduction to convert the refractory minerals in unmilled bauxite (alumogoethite (Fe,Al)OOH, alumohematite (Fe,Al)2O3, chamosite (Fe2+,Mg,Al,Fe3+)6(Si,Al)4O10(OH,O)8) into magnetite, elemental iron (Fe) and to minimize aluminum (Al) extraction during electrolysis. Preliminary thermodynamic research suggests that the presence of hematite (α-Fe2O3) and chamosite in boehmitic bauxite increases the iron concentration in the solution. Cyclic voltammetry revealed that, in the initial stage of electrolysis, overvoltage at the cathode decreases as metallic iron deposited and conductive magnetite form on the surface of the particles. After 60 min, the reduction efficiency begins to decrease. The proportion of the current used for magnetization and iron deposition on the cathode decreased from 89.5% after 30 min to 67.5% after 120 min. After 120 min of electrolytic reduction, the magnetization rate exceeded 65%; however, more than 60% of the Al was extracted simultaneously. Al extraction after electrolysis and subsequent Bayer leaching exceeded 91.5%. Studying the electrolysis product using SEM-EDS revealed the formation of a dense, iron-containing reaction product on the particles’ surface, preventing diffusion of the reaction products (sodium ferrite and sodium aluminate). Mössbauer spectroscopy of the high-pressure leaching product revealed that the primary iron-containing phases of bauxite residue are maghemite (γ-Fe2O3), formed during the hydrolysis of sodium ferrite. Full article
(This article belongs to the Special Issue Advances in Process Mineralogy)
Show Figures

Graphical abstract

41 pages, 2207 KB  
Review
Emerging Electrode Materials for Next-Generation Electrochemical Devices: A Comprehensive Review
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Micromachines 2026, 17(1), 106; https://doi.org/10.3390/mi17010106 - 13 Jan 2026
Abstract
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence [...] Read more.
The field of electrochemical devices, encompassing energy storage, fuel cells, electrolysis, and sensing, is fundamentally reliant on the electrode materials that govern their performance, efficiency, and sustainability. Traditional materials, while foundational, often face limitations such as restricted reaction kinetics, structural deterioration, and dependence on costly or scarce elements, driving the need for continuous innovation. Emerging electrode materials are designed to overcome these challenges by delivering enhanced reaction activity, superior mechanical robustness, accelerated ion diffusion kinetics, and improved economic feasibility. In energy storage, for example, the shift from conventional graphite in lithium-ion batteries has led to the exploration of silicon-based anodes, offering a theoretical capacity more than tenfold higher despite the challenge of massive volume expansion, which is being mitigated through nanostructuring and carbon composites. Simultaneously, the rise of sodium-ion batteries, appealing due to sodium’s abundance, necessitates materials like hard carbon for the anode, as sodium’s larger ionic radius prevents efficient intercalation into graphite. In electrocatalysis, the high cost of platinum in fuel cells is being addressed by developing Platinum-Group-Metal-free (PGM-free) catalysts like metal–nitrogen–carbon (M-N-C) materials for the oxygen reduction reaction (ORR). Similarly, for the oxygen evolution reaction (OER) in water electrolysis, cost-effective alternatives such as nickel–iron hydroxides are replacing iridium and ruthenium oxides in alkaline environments. Furthermore, advancements in materials architecture, such as MXenes—two-dimensional transition metal carbides with metallic conductivity and high volumetric capacitance—and Single-Atom Catalysts (SACs)—which maximize metal utilization—are paving the way for significantly improved supercapacitor and catalytic performance. While significant progress has been made, challenges related to fundamental understanding, long-term stability, and the scalability of lab-based synthesis methods remain paramount for widespread commercial deployment. The future trajectory involves rational design leveraging advanced characterization, computational modeling, and machine learning to achieve holistic, system-level optimization for sustainable, next-generation electrochemical devices. Full article
17 pages, 3839 KB  
Article
Characteristics of Steel Slag and Properties of High-Temperature Reconstructed Steel Slag
by Zhiqiang Xu and Xiaojun Hu
Metals 2026, 16(1), 85; https://doi.org/10.3390/met16010085 - 13 Jan 2026
Abstract
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden [...] Read more.
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden calculation, the chemical composition ratio of this reconstructed steel slag approximated the silicate phase region. The high-temperature reconstruction process outside the furnace was simulated through reheating. The composition, structure, and cementitious characteristics of the reconstructed steel slag were investigated through X-ray diffraction (XRD), FactSage software (FactSage version 7.0 (GTT-Technologies, Aachen, Germany, 2015))analysis, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis, setting time determination, compressive strength measurement, and thermodynamic computation. The findings indicated that the primary mineral compositions of the reconstructed steel slag were predominantly silicates, such as Ca3Al2O6, Ca2SiO4, Ca2MgSi2O7, Ca2Al(AlSiO7), Ca2(SiO4), and FeAlMgO4. In comparison with the original steel slag, these compositions underwent substantial alterations. The α′-C2S phase appears at 1100 K and gradually transforms into α-C2S at 1650 K. The liquid phase begins to precipitate at approximately 1550 K. Spinel exists in the temperature range from 1300 to 1700 K, and Ca3MgSi2O8 melts into the liquid phase at 1400 K. As the temperature increases to 1600 K, the minerals C2AF, Ca2Fe2O5, and Ca2Al2O5 gradually melt into the liquid phase. Melilite melts into the liquid phase at 1700 K. It was observed that the initial and final setting times of the reconstructed steel slag exhibited reductions of 7 and 43 min, respectively, in comparison to those of the original steel slag. In comparison with steel slag, the compressive strength of the reconstructed steel slag exhibited an increase of 0.6 MPa at the 3-day strength stage, 1.6 MPa at the 7-day strength stage, and 3.4 MPa at the 28-day strength stage. The reduction in setting time and the enhancement in compressive strength verified the improved cementitious activity of the reconstructed steel slag. Thermodynamic calculations of the principal reactions of the reconstructed steel slag at elevated temperatures verified that the primary reaction at 1748 K is thermodynamically favorable. Full article
Show Figures

Graphical abstract

Back to TopTop