Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Procedures
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis
3.2. Correlational Analysis
3.3. Multivariate Analysis
4. Discussion
4.1. Descriptive Analysis of Hematological Markers
4.2. Descriptive Analysis of DXA Markers
4.3. Correlational Analysis: Hematological vs. Bone Metabolism (BMC and BMD)
4.4. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMD | Bone Mineral Density |
| BMC | Bone Mineral Content |
| DXA | Dual-Energy X-ray Absorptiometry |
| BMI | Body Mass Index |
| FSH | Follicle-Stimulating Hormone |
| LH | Luteinizing Hormone |
| T3 | Triiodothyronine |
| T4 | Thyroxine |
| TSH | Thyroid-Stimulating Hormone |
| AST | Aspartate Aminotransferase |
| ALT | Alanine Aminotransferase |
| GGT | Gamma-Glutamyl Transferase |
| LDH | Lactate Dehydrogenase |
| CK | Creatine Kinase |
| MPV | Mean Platelet Volume |
| VAT | Visceral Adipose Tissue |
| ITRA | International Trail Running Association |
| ISCD | International Society for Clinical Densitometry |
| FEDME | Federación Española de Deportes de Montaña y Escalada |
References
- Rodríguez-Medina, J.; Carballo-Leyenda, B.; Gutiérrez-Arroyo, J.; García-Heras, F.; Rodríguez-Marroyo, J.A. Analyzing Competitive Demands in Mountain Running Races: A Running Power-Based Approach. Int. J. Sports Physiol. Perform. 2025, 20, 275–281. [Google Scholar] [CrossRef]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic Markers in Sports Medicine. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 56, pp. 1–54. [Google Scholar]
- Lee, E.C.; Fragala, M.S.; Kavouras, S.A.; Queen, R.M.; Pryor, J.L.; Casa, D.J. Biomarkers in Sports and Exercise: Tracking Health, Performance, and Recovery in Athletes. J. Strength Cond. Res. 2017, 31, 2920–2937. [Google Scholar] [CrossRef]
- Gallant, T.L.; Ong, L.F.; Wong, L.; Sparks, M.; Wilson, E.; Puglisi, J.L.; Gerriets, V.A. Low Energy Availability and Relative Energy Deficiency in Sport: A Systematic Review and Meta-Analysis. Sports Med. 2025, 55, 325–339. [Google Scholar] [CrossRef]
- D’Souza, A.C.; Wageh, M.; Williams, J.S.; Colenso-Semple, L.M.; McCarthy, D.G.; McKay, A.K.A.; Elliott-Sale, K.J.; Burke, L.M.; Parise, G.; MacDonald, M.J.; et al. Menstrual Cycle Hormones and Oral Contraceptives: A Multimethod Systems Physiology-Based Review of Their Impact on Key Aspects of Female Physiology. J. Appl. Physiol. 2023, 135, 1284–1299. [Google Scholar] [CrossRef]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) Consensus Statement on Relative Energy Deficiency in Sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1097. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Carlson, J.L.; Sainani, K.L.; Chang, A.O.; Kim, J.H.; Diaz, R.; Golden, N.H.; Fredericson, M. Lower Trabecular Bone Score and Spine Bone Mineral Density Are Associated with Bone Stress Injuries and Triad Risk Factors in Collegiate Athletes. PM&R 2021, 13, 945–953. [Google Scholar] [CrossRef]
- Malczewska-Lenczowska, J.; Orysiak, J.; Szczepańska, B.; Turowski, D.; Burkhard-Jagodzińska, K.; Gajewski, J. Reticulocyte and Erythrocyte Hypochromia Markers in Detectionof Iron Deficiency in Adolescent Female Athletes. Biol. Sport 2017, 2, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Solberg, A.; Reikvam, H. Iron Status and Physical Performance in Athletes. Life 2023, 13, 2007. [Google Scholar] [CrossRef] [PubMed]
- Kęska, A.; Lutosławska, G.; Czajkowska, A.; Tkaczyk, J.; Mazurek, K.; Tomaszewski, P. The Influence of Thyroid Function and Bone Turnover on Lipoprotein Profile in Young Physically Active Men with Different Insulin Sensitivity. Biol. Sport 2014, 31, 133–137. [Google Scholar] [CrossRef]
- Bassett, J.H.D.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef]
- Chang, X.; Xu, S.; Zhang, H. Regulation of Bone Health through Physical Exercise: Mechanisms and Types. Front. Endocrinol. 2022, 13, 1029475. [Google Scholar] [CrossRef]
- Knechtle, B.; Jastrzębski, Z.; Hill, L.; Nikolaidis, P.T. Vitamin D and Stress Fractures in Sport: Preventive and Therapeutic Measures—A Narrative Review. Medicina 2021, 57, 223. [Google Scholar] [CrossRef]
- Espasa-Labrador, J.; Osborne, J.O.; Cebrián-Ponce, Á.; Puigarnau, S.; Planas, T.; Rosales, Q.; Irurtia, A.; Carrasco-Marginet, M. Calcaneal Bone Mineral Assessment in Elite Female Trail Runners. J. Clin. Densitom. 2025, 28, 101555. [Google Scholar] [CrossRef]
- McNulty, K.L.; Elliott-Sale, K.J.; Dolan, E.; Swinton, P.A.; Ansdell, P.; Goodall, S.; Thomas, K.; Hicks, K.M. The Effects of Menstrual Cycle Phase on Exercise Performance in Eumenorrheic Women: A Systematic Review and Meta-Analysis. Sports Med. 2020, 50, 1813–1827. [Google Scholar] [CrossRef]
- Elliott-Sale, K.J.; Minahan, C.L.; De Jonge, X.A.K.J.; Ackerman, K.E.; Sipilä, S.; Constantini, N.W.; Lebrun, C.M.; Hackney, A.C. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Med. 2021, 51, 843–861. [Google Scholar] [CrossRef] [PubMed]
- Noordhof, D.A.; Janse De Jonge, X.A.K.; Hackney, A.C.; De Koning, J.J.; Sandbakk, Ø. Sport-Science Research on Female Athletes: Dealing With the Paradox of Concurrent Increases in Quantity and Quality. Int. J. Sports Physiol. Perform. 2022, 17, 993–994. [Google Scholar] [CrossRef]
- Krueger, D.; Tanner, S.B.; Szalat, A.; Malabanan, A.; Prout, T.; Lau, A.; Rosen, H.N.; Shuhart, C. DXA Reporting Updates: 2023 Official Positions of the International Society for Clinical Densitometry. J. Clin. Densitom. 2024, 27, 101437. [Google Scholar] [CrossRef] [PubMed]
- Morrison, S.A.; Petri, R.M.; Hunter, H.L.; Raju, D.; Gower, B. Comparison of the Lunar Prodigy and iDXA Dual-Energy X-ray Absorptiometers for Assessing Total and Regional Body Composition. J. Clin. Densitom. 2016, 19, 290–297. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics: A New View of Statistics. Sportscience 2002, 5, 1–7. [Google Scholar]
- Kratz, A.; Lewandrowski, K.B.; Siegel, A.J.; Chun, K.Y.; Flood, J.G.; Van Cott, E.M.; Lee-Lewandrowski, E. Effect of Marathon Running on Hematologic and Biochemical Laboratory Parameters, Including Cardiac Markers. Am. J. Clin. Pathol. 2002, 118, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Dolan, E.; Elliott-Sale, K.J.; Sale, C. Reduced Energy Availability: Implications for Bone Health in Physically Active Populations. Eur. J. Nutr. 2018, 57, 847–859. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Stefanakis, K.; Chou, S.H.; Valenzuela-Vallejo, L.; Dipla, K.; Boutari, C.; Ntoskas, K.; Tokmakidis, P.; Kokkinos, A.; Goulis, D.G.; et al. Relative Energy Deficiency in Sport (REDs): Endocrine Manifestations, Pathophysiology and Treatments. Endocr. Rev. 2024, 45, 676–708. [Google Scholar] [CrossRef]
- Skrzypiec-Spring, M.; Kuliczkowska-Płaksej, J.; Szeląg, A.; Bolanowski, M. Atypical Thyroid Tests in an Athlete Treated for Hypothyroidism as the First Symptom of Pituitary Dysfunction Due to Relative Energy Deficiency. Endocrinol. Diabetes Metab. Case Rep. 2024, 2024, e240066. [Google Scholar] [CrossRef]
- Austin, K.G.; Petak, S. Thyroid Therapy or Dysfunction in Athletes: Is It Time to Revisit the Clinical Practice Guidelines? Curr. Sports Med. Rep. 2019, 18, 474–476. [Google Scholar] [CrossRef]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine Kinase Monitoring in Sport Medicine. Br. Med. Bull. 2007, 81–82, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Silvennoinen, J.I.K.; Ihalainen, J.K.; Valtonen, M.; Mjøsund, K.; Sipilä, P.N. Association of LEAF-Q and EDE-QS Scores with Cholesterol Levels in Finnish Female Athletes. BMJ Open Sport Exerc. Med. 2024, 10, e002050. [Google Scholar] [CrossRef] [PubMed]
- Chamera, T.; Spieszny, M.; Klocek, T.; Kostrzewa-Nowak, D.; Nowak, R.; Lachowicz, M.; Buryta, R.; Cięszczyk, P. Could Biochemical Liver Profile Help to Assess Metabolic Response to Aerobic Effort in Athletes? J. Strength Cond. Res. 2014, 28, 2180–2186. [Google Scholar] [CrossRef]
- Orysiak, J.; Tripathi, J.K.; Brodaczewska, K.K.; Sharma, A.; Witek, K.; Sitkowski, D.; Malczewska-Lenczowska, J. The Impact of Physical Training on Neutrophil Extracellular Trapsin Young Male Athletes—A Pilot Study. Biol. Sport 2021, 38, 459–464. [Google Scholar] [CrossRef]
- Suzuki, K.; Totsuka, M.; Nakaji, S.; Yamada, M.; Kudoh, S.; Liu, Q.; Sugawara, K.; Yamaya, K.; Sato, K. Endurance Exercise Causes Interaction among Stress Hormones, Cytokines, Neutrophil Dynamics, and Muscle Damage. J. Appl. Physiol. 1999, 87, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Nieman, D.C.; Wentz, L.M. The Compelling Link between Physical Activity and the Body’s Defense System. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Walsh, N.P.; Gleeson, M.; Shephard, R.J.; Gleeson, M.; Woods, J.A.; Bishop, N.C.; Fleshner, M.; Green, C.; Pedersen, B.K.; Hoffman-Goetz, L.; et al. Position Statement. Part One: Immune Function and Exercise. Exerc. Immunol. Rev. 2011, 17, 6–63. [Google Scholar]
- Pedlar, C.R.; Brugnara, C.; Bruinvels, G.; Burden, R. Iron Balance and Iron Supplementation for the Female Athlete: A Practical Approach. Eur. J. Sport Sci. 2018, 18, 295–305. [Google Scholar] [CrossRef]
- Clénin, G.; Cordes, M.; Huber, A.; Schumacher, Y.; Noack, P.; Scales, J.; Kriemler, S. Iron Deficiency in Sports—Definition, Influence on Performance and Therapy. Swiss Med. Wkly. 2015, 145, w14196. [Google Scholar] [CrossRef]
- Lippi, G.; Salvagno, G.L.; Danese, E.; Skafidas, S.; Tarperi, C.; Guidi, G.C.; Schena, F. Mean Platelet Volume (MPV) Predicts Middle Distance Running Performance. PLoS ONE 2014, 9, e112892. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Hu, F. Causal Relationship between Physical Activity and Platelet Traits: A Mendelian Randomization Study. Front. Physiol. 2024, 15, 1371638. [Google Scholar] [CrossRef]
- Heinonen, A.; Oja, P.; Kannus, P.; Sievanen, H.; Haapasalo, H.; Mänttäri, A.; Vuori, I. Bone Mineral Density in Female Athletes Representing Sports with Different Loading Characteristics of the Skeleton. Bone 1995, 17, 197–203. [Google Scholar] [CrossRef]
- Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The Interplay Between Bone and Glucose Metabolism. Front. Endocrinol. 2020, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Tartara, A.; Gasparri, C.; Perna, S.; Infantino, V.; Riva, A.; Petrangolini, G.; Peroni, G. An Update on Magnesium and Bone Health. Biometals 2021, 34, 715–736. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Reina, J.; García-Aznar, J.M.; Domínguez, J.; Doblaré, M. On the Role of Bone Damage in Calcium Homeostasis. J. Theor. Biol. 2008, 254, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Korniluk, A.; Koper-Lenkiewicz, O.M.; Kamińska, J.; Kemona, H.; Dymicka-Piekarska, V. Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions. Mediat. Inflamm. 2019, 2019, 9213074. [Google Scholar] [CrossRef]
- Alaunyte, I.; Stojceska, V.; Plunkett, A. Iron and the Female Athlete: A Review of Dietary Treatment Methods for Improving Iron Status and Exercise Performance. J. Int. Soc. Sports Nutr. 2015, 12, 88. [Google Scholar] [CrossRef] [PubMed]
| Mean ± SD (n = 35) | Range (Min–Max) | |
|---|---|---|
| Age (years) | 33.7 ± 7.5 | 20.8–48.8 |
| Stature (cm) | 162.7 ± 4.2 | 154.0–170.2 |
| Body mass (kg) | 52.7 ± 3.8 | 43.1–59.9 |
| BMI (kg/m2) | 19.9 ± 1.3 | 17.7–23.3 |
| Age of first menstruation (years) | 13.4 ± 2.0 | 9.0–20.0 |
| Competitive level (ITRAScore) | 656.9 ± 63.6 | 520.0–784.0 |
| Age starting sport practice | 25.2 ± 7.0 | 5.0–41.0 |
| Previous training background (years) | 7.91 ± 5.2 | 3.0–26.0 |
| Training volume (hours·week−1) | 12.9 ± 3.7 | 6.0–20.0 |
| Hematological Variables | Reference (Healthy Ranges) * | Mean ± SD | Range (Min–Max) | Abnormal Cases (n; %) | Abnormal Prevalence (>15%) | Out of Range (Lower or Higher) | |
|---|---|---|---|---|---|---|---|
| Biochemical profile | Urea (mg/dL) | 8.0–20.0 | 40.40 ± 10.49 | 21.0–65.0 | n = 35; 100% | * | Higher: n = 35; 100% |
| Creatinine (mg/dL) | 0.5–1.10 | 0.71 ± 0.10 | 0.5–0.9 | n = 0; 0% | -- | -- | |
| Glucose (mg/dL) | 70.0–99.0 | 78.43 ± 6.72 | 62.0–91.0 | n = 3; 8.6% | -- | -- | |
| Sodium (mEq/L) | 136.0–145.0 | 141.51 ± 1.58 | 138.0–144.0 | n = 0; 0% | -- | -- | |
| Potassium (mEq/L) | 3.5–5.0 | 4.48 ± 0.35 | 3.9–5.6 | n = 1; 2.9% | -- | -- | |
| Chloride (mEq/L) | 98.0–106.0 | 104.34 ± 1.89 | 101.0–109.0 | n = 4; 11.4% | -- | -- | |
| Magnesium (mg/dL) | 1.6–2.6 | 2.15 ± 0.15 | 1.8–2.5 | n = 0; 0% | -- | -- | |
| Calcium (mg/dL) | 8.6–10.2 | 9.64 ± 0.38 | 8.9–10.5 | n = 3; 8.6% | -- | -- | |
| Hormonal and endocrine profile (follicular phase) | Hydroxyvitam. D (ng/mL) | 30.0–60.0 | 26.33 ± 10.16 | 12.3–58.8 | n = 24; 68.6% | * | Lower: n = 24; 68.6% |
| FSH (mIU/mL) | 2.0–9.0 | 5.01 ± 2.87 | 0.2–9.7 | n = 7; 20.0% | * | Lower: n = 7; 20.0% | |
| LH (mIU/mL) | 1.0–12.0 | 4.81 ± 5.04 | 0.1–17.6 | n = 10; 28.6% | * | Lower: n = 10; 28.6% | |
| Beta-estradiol (pg/mL) | 10.0–180.0 | 99.31 ± 120.71 | 10.0–539.1 | n = 6; 17.1% | * | Higher: n = 6; 17.1% | |
| T3, total (ng/dL) | 80.0–180.0 | 77.7 ± 20.6 | 40.0–150.0 | n = 17; 48.6% | * | Lower: n = 17; 48.6% | |
| T4, total (µg/dL) | 5.0–12.0 | 6.23 ± 1.50 | 4.3–9.9 | n = 10; 28.6% | * | Lower: n = 10; 28.6% | |
| TSH (µIU/mL) | 0.5–4.0 | 1.76 ± 0.83 | 0.7–4.7 | n = 1; 2.9% | -- | -- | |
| Liver enzymes and metabolic profile | Cholesterol, total (mg/dL) | <200.0 | 193.77 ± 36.16 | 116.0–282.0 | n = 14; 40% | * | Higher: n = 14; 40.0% |
| AST (U/L) | 10.0–40.0 | 29.14 ± 8.40 | 18.0–48.0 | n = 3; 8.6% | -- | -- | |
| ALT (U/L) | 10.0–40.0 | 24.00 ± 8.44 | 11.0–43.0 | n = 2; 5.7% | -- | -- | |
| GGT (U/L) | 8.0–40.0 | 16.94 ± 6.13 | 8.0–31.0 | n = 0; 0% | -- | -- | |
| LDH (U/L) | 80.0–225.0 | 365.83 ± 77.46 | 158.0–546.0 | n = 34; 97.1% | * | Higher: n = 34; 97.1% | |
| Creatine Kinase (U/L) | 30.0–135.0 | 173.37 ± 80.31 | 70.0–381.0 | n = 21; 60.0% | * | Higher: n = 21; 60.0% | |
| Complete blood count and leukocyte profile | Leukocytes (103/µL) | 4.0–11.0 | 4.67 ± 0.87 | 3.1–6.5 | n = 6; 17.1% | * | Lower: n = 6; 17.1% |
| Lymphocytes (%) | 30.0–45.0 | 36.36 ± 7.74 | 23.2–50.3 | n = 11; 31.4% | * | Higher: n = 11; 31.4% | |
| Lymphocytes (103/µL) | 1.0–4.8. | 1.67 ± 0.39 | 1.1–2.7 | n = 0; 0% | -- | -- | |
| Neutrophils (%) | 50.0–70.0 | 54.84 ± 7.77 | 42.0–68.0 | n = 10; 28.6% | * | Lower: n = 10; 28.6% | |
| Band neutrophils (%) | 0.0–5.0 | 2.60 ± 0.74 | 1.5–4.4 | n = 0; 0% | -- | -- | |
| Neutrophils (103/µL) | 2.0–8.25 | 0.31 ± 0.47 | 0.1–1.0 | n = 35; 100% | * | Lower: n = 35; 100% | |
| Eosinophils (%) | 0.0–3.0 | 2.04 ± 1.50 | 0.4–8.1 | n = 5; 14.3% | -- | -- | |
| Basophils (%) | 0.0–1.0 | 0.67 ± 0.27 | 0.2–1.2 | n = 5; 14.3% | -- | -- | |
| Monocytes (%) | 0.0–6.0 | 5.78 ± 1.27 | 3.9–9.2 | n = 13; 37.1% | * | Higher: n = 13; 37.1% | |
| Hematological profile and Iron metabolism | Erythrocyte count (106/µL) | 4.2–5.9 | 4.48 ± 0.33 | 3.7–5.0 | n = 5; 14.3% | -- | -- |
| Hemoglobin (g/dL) | 12.0–16.0 | 13.40 ± 0.84 | 11.9–15.3 | n = 1; 2.9% | -- | -- | |
| Hematocrit (%) | 37.0–47.0 | 39.88 ± 2.10 | 35.8–45.6 | n = 3; 8.6% | -- | -- | |
| Mean corp. volume (fL) | 80.0–98.0 | 89.31 ± 4.43 | 78.1–99.9 | n = 2; 5.8% | -- | -- | |
| Mean corp. hemogl. (pg) | 28.0–32.0 | 30.00 ± 1.62 | 25.6–33.2 | n = 5; 14.3% | -- | -- | |
| Mean corp. hem co. (g/dL) | 33.0–36.0 | 34.43 ± 0.93 | 32.3–36.5 | n = 4; 11.4% | -- | -- | |
| Red cell distrib. width (%) | 9.0–14.5 | 13.23 ± 0.72 | 12.1–15.0 | n = 2; 5.7% | -- | -- | |
| Serum Iron (µg/dL) | 50.0–150.0 | 95.63 ± 37.48 | 33.0–160.0 | n = 6; 17.2% | * | Lower: n = 6; 17.2% | |
| Ferritin (ng/mL) | 24.0–307.0 | 28.00 ± 15.16 | 11.0–78.0 | n = 17; 48.6% | * | Lower: n = 17; 48.6% | |
| Transferrin (mg/dL) | 200.0–400.0 | 290.57 ± 40.39 | 234.0–433.0 | n = 1; 2.9% | -- | -- | |
| Transferrin satur. (%) | 20.0–50.0 | 26.15 ± 9.99 | 7.1–44.6 | n = 10; 28.6% | * | Lower: n = 10; 28.6% | |
| Erytr. sedim. rate (mm/h) | 0.0–20.0 | 10.00 ± 7.44 | 1.0–27.0 | n = 3; 8.6% | -- | -- | |
| Platelet count and indices | Platelet count (103/µL) | 150.0–450.0 | 217.37 ± 53.19 | 137.0–405.0 | n = 2; 5.7% | -- | -- |
| Mean platelet vol. (fL) | 7.0–9.0 | 10.14 ± 0.94 | 8.9–12.7 | n = 33; 94.3% | * | Higher: n = 33; 94.3% |
| DXA Indicators | Mean ± SD | Range (Min–Max) | |
|---|---|---|---|
| Body mass (kg) | Whole-body | 53.0 ± 3.6 | 43.6–60.5 |
| Upper limbs | 5.2 ± 0.5 | 4.3–6.3 | |
| Trunk | 24.9 ± 1.8 | 20.5–29.2 | |
| Lower limbs | 18.8 ± 1.7 | 14.5–22.0 | |
| Lean body mass (kg) | Whole-body | 41.2 ± 3.1 | 36.8–49.8 |
| Upper limbs | 3.9 ± 0.5 | 3.1–5.3 | |
| Trunk | 20.8 ± 1.8 | 18.3–26.1 | |
| Lower limbs | 13.6 ± 1.2 | 11.9–16.4 | |
| Fat mass (%) | Whole-body | 18.9 ± 3.4 | 11.7–24.9 |
| Upper limbs | 21.7 ± 5.5 | 12.2–32.0 | |
| Trunk | 14.3 ± 3.9 | 8.3–23.9 | |
| Lower limbs | 23.9 ± 3.9 | 13.8–29.9 | |
| Visceral adipose tissue (cm2) | VAT | 3.0 ± 3.9 | 0.1–14.0 |
| Bone mineral content (g) | Whole-body | 2206.286 ± 246.702 | 1840.000 ± 2838.000 |
| Upper limbs | 272.743 ± 32.740 | 209.000 ± 341.000 | |
| Trunk | 593.200 ± 96.582 | 443.000 ± 842.000 | |
| Lower limbs | 831.029 ± 82.016 | 702.000 ± 1054.000 | |
| Lumbar Spine (L1–L4) | 56.031 ± 10.045 | 35.700 ± 81.980 | |
| Femoral neck | 4.503 ± 0.580 | 3.460 ± 6.000 | |
| Femoral total | 29.521 ± 4.111 | 23.300 ± 38.710 | |
| Bone mineral density (g/cm2) | Whole-body | 1.096 ± 0.094 | 0.950 ± 1.381 |
| Upper limbs | 0.643 ± 0.055 | 0.542 ± 0.764 | |
| Trunk | 0.870 ± 0.098 | 0.715 ± 1.155 | |
| Lower limbs | 1.198 ± 0.089 | 1.032 ± 1.408 | |
| Lumbar Spine (L1–L4) | 1.051 ± 0.164 | 0.798 ± 1.583 | |
| Femoral neck | 0.965 ± 0.123 | 0.726 ± 1.252 | |
| Femoral total | 1.004 ± 0.130 | 0.755 ± 1.291 |
| Normal Values (≥−1.0 SD) | Osteopenia Risk (−1.0 to −2.5 SD) | Osteoporosis Risk (≤−2.5 SD) | ||
|---|---|---|---|---|
| BMD: T-score | Lumbar spine (L1–L4) | n = 14; 40.0% | n = 17; 48.6% | n = 4; 11.4% |
| Femoral neck | n = 29; 82.9% | n = 6; 17.1% | n = 0; 0% | |
| Femoral total | n = 27; 77.1% | n = 8; 22.9% | n = 0; 0% | |
| Whole-body | n = 33; 94.3% | n = 2; 5.7% | n = 0; 0% | |
| Normal Values (>−2.0) | Risk of Low BMD (≤−2.0) | |||
| BMD: Z-score | Lumbar spine (L1–L4) | n = 29; 82.9% | n = 6; 17.1% | -- |
| Femoral neck | n = 35; 100% | n = 0; 0% | -- | |
| Femoral total | n = 35; 100% | n = 0; 0% | -- | |
| Whole-body | n = 35; 100% | n = 0; 0% | -- |
| Lumbar Spine (L1–L4) | Femoral Neck | Trunk | Whole-Body | |||||
|---|---|---|---|---|---|---|---|---|
| BMC | BMD * | BMC | BMD | BMC | BMD | BMC | BMD | |
| r (p) | r (p) | r (p) | r (p) | r (p) | r (p) | r (p) | r (p) | |
| Urea (mg/dL) | -- | -- | 0.36 (0.03) | -- | -- | -- | -- | -- |
| Glucose (mg/dL) | -- | -- | −0.38 (0.03) | −0.37 (0.03) | -- | -- | -- | -- |
| Magnesium (mmol/L) * | −0.56 (<0.01) | −0.57 (<0.01) | -- | −0.42 (0.01) | −0.50 (<0.01) | −0.46 (0.01) | −0.46 (0.01) | −0.44 (0.01) |
| Calcium (mg/dL) | −0.40 (0.02) | -- | -- | -- | -- | −0.37 (0.03) | −0.36 (0.03) | −0.34 (0.05) |
| T3 (ng/mL) * | 0.40 (0.02) | 0.51 (<0.01) | -- | -- | 0.44 (0.01) | 0.39 (0.03) | -- | -- |
| Mean platelet volume (fL) * | -- | -- | -- | 0.37 (0.03) | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Carrasco-Marginet, M.; Puigarnau, S.; Espasa-Labrador, J.; Cebrián-Ponce, Á.; Gravina-Cognetti, F.; Piñol-Granadino, N.; Irurtia, A. Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners. Healthcare 2026, 14, 200. https://doi.org/10.3390/healthcare14020200
Carrasco-Marginet M, Puigarnau S, Espasa-Labrador J, Cebrián-Ponce Á, Gravina-Cognetti F, Piñol-Granadino N, Irurtia A. Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners. Healthcare. 2026; 14(2):200. https://doi.org/10.3390/healthcare14020200
Chicago/Turabian StyleCarrasco-Marginet, Marta, Silvia Puigarnau, Javier Espasa-Labrador, Álex Cebrián-Ponce, Fabrizio Gravina-Cognetti, Nil Piñol-Granadino, and Alfredo Irurtia. 2026. "Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners" Healthcare 14, no. 2: 200. https://doi.org/10.3390/healthcare14020200
APA StyleCarrasco-Marginet, M., Puigarnau, S., Espasa-Labrador, J., Cebrián-Ponce, Á., Gravina-Cognetti, F., Piñol-Granadino, N., & Irurtia, A. (2026). Relationships Between Hematological Variables and Bone Metabolism in Elite Female Trail Runners. Healthcare, 14(2), 200. https://doi.org/10.3390/healthcare14020200

