Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies
Abstract
1. Introduction
2. Challenges and Current Approaches in Managing P. aeruginosa Infections
3. Resistance Mechanisms
3.1. Intrinsic Resistance
3.2. Adaptive Resistance
3.3. Acquired Resistance
4. Virulence Factors
5. Novel Treatment Strategies
5.1. Quorum-Sensing Inhibitors as a Non-Antibiotic Treatment Option
5.2. Iron Chelators
5.3. Inhibition of Lectins in P. aeruginosa
5.4. Inhibition of Efflux Pumps in P. aeruginosa
5.5. Traditional, Natural and Phytochemical Medications Against P. aeruginosa
5.5.1. Glycyrrhiza glabra (Licorice root)
5.5.2. Ayurvedic Medicine and Herbal Formulations
5.5.3. Oils and Leaf Extracts
5.5.4. Phytochemical–Antibiotic Combinations
5.6. Immunization Against P. aeruginosa Using Novel Vaccines
5.7. Nanoparticles (NPs) Against P. aeruginosa
5.8. Bacteriophage Therapy
5.9. Antimicrobial Peptides as Antimicrobial Agents
5.10. Development of New Antibiotic Formulations Against P. aeruginosa
5.11. Probiotics
5.12. Lactoferrin and Hypothiocyanite Combination Therapy
5.13. Electrochemical Scaffolds
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CF | Cystic fibrosis |
| COPD | Chronic obstructive pulmonary disease |
| DTR | Difficult-to-treat resistant |
| IDSA | The Infectious Diseases Society of America |
| ESCMID | European Society of Clinical Microbiology and Infectious Diseases |
| HGT | Horizontal gene transfer |
| LPS | Lipopolysaccharides |
| MRPA | Multidrug-resistant P. aeruginosa |
| QSI | Quorum sensing inhibitors |
| Quorum quenching | |
| EPI | Efflux pump inhibitors |
| PAβN | Phenylarginine-β-naphthylamide |
| RND | Resistance-Nodulation-Division |
| APDI | Antimicrobial photodynamic inactivation |
| MB | Methylene blue |
| ROS | Reactive oxygen species |
| MIC | Minimum inhibitory concentration |
| OMP | Outer membrane protein |
| NP | Nanoparticle |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| AMP | Antimicrobial peptide |
| OSCN | Hypothiocyanite |
| CFTR | Cystic fibrosis transmembrane conductance regulator |
| EMA | European Medicines Agency |
| FDA | U.S. Food and Drug Administration |
| HOCl | Hypochlorous acid |
References
- Fernández-Barat, L.; Ferrer, M.; De Rosa, F.; Gabarrús, A.; Esperatti, M.; Terraneo, S.; Rinaudo, M.; Li Bassi, G.; Torres, A. Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J. Infect. 2017, 74, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Dalhoff, A. Pseudomonas aeruginosa as a pathogen in opportunistic infections. Infection 1987, 15, S60–S63. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.G.; Pandey, S. Pseudomonas aeruginosa. In StatPearl; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Sanya, D.R.A.; Onésime, D.; Vizzarro, G.; Jacquier, N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol. 2023, 23, 86. [Google Scholar] [CrossRef]
- Kreger, A.S. Pathogenesis of Pseudomonas aeruginosa ocular diseases. Clin. Infect. Dis. 1983, 5, S931–S935. [Google Scholar] [CrossRef]
- Botelho, J.; Grosso, F.; Peixe, L. Antibiotic resistance in Pseudomonas aeruginosa–Mechanisms, epidemiology and evolution. Drug Resist. Updat. 2019, 44, 100640. [Google Scholar] [CrossRef]
- Eklöf, J.; Sørensen, R.; Ingebrigtsen, T.S.; Sivapalan, P.; Achir, I.; Boel, J.B.; Bangsborg, J.; Ostergaard, C.; Dessau, R.B.; Jensen, U.S.; et al. Pseudomonas aeruginosa and risk of death and exacerbations in patients with chronic obstructive pulmonary disease: An observational cohort study of 22,053 patients. Clin. Microbiol. Infect. 2020, 26, 227–234. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Barth, A.L.; Fernandes, J.F.; Didonet Moro, A.L.; Saraiva Gonçalves, A.L.; Goldani, L.Z. Reappraisal of Pseudomonas aeruginosa hospital-acquired pneumonia mortality in the era of metallo-β-lactamase-mediated multidrug resistance: A prospective observational study. Crit. Care 2006, 10, R114. [Google Scholar] [CrossRef]
- Langendonk, R.F.; Neill, D.R.; Fothergill, J.L. The building blocks of antimicrobial resistance in Pseudomonas aeruginosa: Implications for current resistance-breaking therapies. Front. Cell. Infect. Microbiol. 2021, 11, 665759. [Google Scholar] [CrossRef]
- Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med. 2006, 119, S3–S10. [Google Scholar] [CrossRef]
- Elfadadny, A.; Ragab, R.F.; AlHarbi, M.; Badshah, F.; Ibáñez-Arancibia, E.; Farag, A.; Hendawy, A.O.; De los-Rios-Escalante, P.R.; Aboubakr, M.; Zakai, S.A.; et al. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024, 15, 1374466. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N.; Ciofu, O.; Bjarnsholt, T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Futur. Microbiol. 2010, 5, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, A. Pseudomonas aeruginosa—Pathogenesis and Pathogenic Mechanisms. Int. J. Biol. 2015, 7, 44–67. [Google Scholar] [CrossRef]
- Jennings, L.K.; Dreifus, J.E.; Reichhardt, C.; Storek, K.M.; Secor, P.R.; Wozniak, D.J.; Hisert, K.B.; Parsek, M.R. Pseudomonas aeruginosa aggregates in cystic fibrosis sputum produce exopolysaccharides that likely impede current therapies. Cell Rep. 2021, 34, 108782. [Google Scholar] [CrossRef]
- Liu, H.; Prentice, E.L.; Webber, M.A. Mechanisms of antimicrobial resistance in biofilms. NPJ Antimicrob. Resist. 2024, 2, 27. [Google Scholar] [CrossRef]
- Kelly, J.B.; Nolan, A.C.; Zeden, M.S. How can we escape the ESKAPEs: Antimicrobial resistance mechanisms and what lies ahead? PLoS Pathog. 2024, 20, e1012270. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Silva, V.; Araújo, S.; Caniça, M.; Pereira, J.E.; Igrejas, G.; Poeta, P. Caught in the ESKAPE: Wildlife as key players in the ecology of resistant pathogens in a One Health context. Diversity 2025, 17, 220. [Google Scholar] [CrossRef]
- Litwin, A.; Rojek, S.; Goździk, W.; Duszyńska, W. Pseudomonas aeruginosa device-associated—Healthcare-associated infections and its multidrug resistance at intensive care unit of University Hospital: Polish, 8.5-year, prospective, single-centre study. BMC Infect. Dis. 2021, 21, 180. [Google Scholar] [CrossRef]
- Mehta, H.H.; Prater, A.G.; Beabout, K.; Elworth, R.A.L.; Karavis, M.; Gibbons, H.S.; Shamoo, Y. The essential role of hypermutation in rapid adaptation to antibiotic stress. Antimicrob. Agents Chemother. 2019, 63, e00744-19. [Google Scholar] [CrossRef]
- Verdial, C.; Serrano, I.; Tavares, L.; Gil, S.; Oliveira, M. Mechanisms of antibiotic and biocide resistance that contribute to Pseudomonas aeruginosa persistence in the hospital environment. Biomedicines 2023, 11, 1221. [Google Scholar] [CrossRef]
- Cabot, G.; Zamorano, L.; Moyà, B.; Juan, C.; Navas, A.; Blázquez, J.; Oliver, A. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob. Agents Chemother. 2016, 60, 1767–1778. [Google Scholar] [CrossRef]
- Schwartz, B.; Klamer, K.; Zimmerman, J.; Kale-Pradhan, P.B.; Bhargava, A. Multidrug resistant Pseudomonas aeruginosa in clinical settings: A review of resistance mechanisms and treatment strategies. Pathogens 2024, 13, 975. [Google Scholar] [CrossRef]
- Ahmadi, M.H.; Fagheei Aghmiyuni, Z.; Bakhti, S. Worldwide threatening prevalence of carbapenem-resistant Pseudomonas aeruginosa. Epidemiol. Infect. 2025, 153, e114. [Google Scholar] [CrossRef]
- Soltani, B.; Ahmadrajabi, R.; Kalantar-Neyestanaki, D. Critical resistance to carbapenem and aminoglycosides in Pseudomonas aeruginosa: Spread of blaNDM/16S methylase armA harboring isolates with intrinsic resistance mechanisms in Kerman, Iran. BMC Infect. Dis. 2024, 24, 1188. [Google Scholar] [CrossRef]
- Glen, K.A.; Lamont, I.L. β-lactam resistance in Pseudomonas aeruginosa: Current status, future prospects. Pathogens 2021, 10, 1638. [Google Scholar] [CrossRef]
- Berrazeg, M.; Jeannot, K.; Ntsogo Enguéné, V.Y.; Broutin, I.; Loeffert, S.; Fournier, D.; Plesiat, P. Mutations in β-lactamase AmpC increase resistance of Pseudomonas aeruginosa isolates to antipseudomonal cephalosporins. Antimicrob. Agents Chemother. 2015, 59, 6248–6255. [Google Scholar] [CrossRef]
- Shah, S.; Kline, E.G.; Haidar, G.; Squires, K.M.; Pogue, J.M.; McCreary, E.K.; Ludwing, J.; Clarke, L.G.; Stellfox, M.; Van Tyne, D.; et al. Rates of resistance to ceftazidime-avibactam and ceftolozane-tazobactam among patients treated for multidrug-resistant Pseudomonas aeruginosa bacteremia or pneumonia. Clin. Infect. Dis. 2025, 80, 24–28. [Google Scholar] [CrossRef]
- Murata, M.; Kosai, K.; Mitsumoto-Kaseida, F.; Kaku, N.; Hasegawa, H.; Izumikawa, K.; Mukae, H.; Yanagihara, K. Antimicrobial susceptibility and resistance mechanisms to antipseudomonal β-lactams in Pseudomonas aeruginosa isolates from blood. Microbiol. Spectr. 2025, 13, e0279024. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Lodise, T.P. New perspectives on antimicrobial agents: Imipenem-relebactam. Antimicrob. Agents Chemother. 2022, 66, e0025622. [Google Scholar] [CrossRef]
- González-Pinto, L.; Alonso-García, I.; Blanco-Martín, T.; Camacho-Zamora, P.; Fraile-Ribot, P.A.; Outeda-García, M.; Lasarte-Monterrubio, C.; Guijarro-Sanchez, P.; Maceiras, R.; Moya, B.; et al. Impact of chromosomally encoded resistance mechanisms and transferable β-lactamases on the activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2024, 79, 2591–2597. [Google Scholar] [CrossRef]
- Karruli, A.; Catalini, C.; D’Amore, C.; Foglia, F.; Mari, F.; Harxhi, A.; Galdiero, M.; Durante-Mangoni, E. Evidence-based treatment of Pseudomonas aeruginosa infections: A critical reappraisal. Antibiotics 2023, 12, 399. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 guidance on the treatment of antimicrobial-resistant gram-negative infections. Clin. Infect. Dis. 2024, ciad403. [Google Scholar] [CrossRef]
- Kimbrough, J.H.; Karr, M.H.; Nguyen, S.T.; DeJonge, B.L.M.; Longshaw, C.; Takemura, M.; Yamano, Y.; Castanheira, M.; Mendes, R.E. Activity of cefiderocol against Pseudomonas aeruginosa from the USA and Europe (2020–2023) with difficult-to-treat resistance phenotype, including those nonsusceptible to recently developed β-lactam/β-lactamase inhibitor combinations: Results from the SENTRY antimicrobial surveillance program. Microbiol. Spectr. 2025, 13, e0207925. [Google Scholar] [CrossRef]
- Yoshimura, F.; Nikaido, H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J. Bacteriol. 1982, 152, 636–642. [Google Scholar] [CrossRef]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef]
- Wu, W.; Huang, J.; Xu, Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb. Biotechnol. 2024, 17, e14487. [Google Scholar] [CrossRef]
- Xavier, D.E.; Picão, R.C.; Girardello, R.; Fehlberg, L.C.C.; Gales, A.C. Efflux pumps expression and its association with porin down-regulation and β-lactamase production among Pseudomonas aeruginosa causing bloodstream infections in Brazil. BMC Microbiol. 2010, 10, 217. [Google Scholar] [CrossRef]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef]
- De Kievit, T.R.; Parkins, M.D.; Gillis, R.J.; Srikumar, R.; Ceri, H.; Poole, K.; Iglewski, B.H.; Stoery, D.G. Multidrug efflux pumps: Expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2001, 45, 1761–1770. [Google Scholar] [CrossRef]
- Naas, T.; Nordmann, P. OXA-type β-lactamases. Curr. Pharm. Des. 1999, 5, 865–879. [Google Scholar] [CrossRef]
- Hu, M.; Chua, S.L. Antibiotic-Resistant Pseudomonas aeruginosa: Current Challenges and Emerging Alternative Therapies. Microorganisms 2025, 13, 913. [Google Scholar] [CrossRef]
- Schaible, B.; Taylor, C.T.; Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 2012, 56, 2114–2118. [Google Scholar] [CrossRef]
- Nguyen, D.; Joshi-Datar, A.; Lepine, F.; Bauerle, E.; Olakanmi, O.; Beer, K.; McKay, G.; Siehnel, R.; Schafhauser, J.; Wang, Y.; et al. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334, 982–986. [Google Scholar] [CrossRef]
- Ciofu, O.; Tolker-Nielsen, T. Tolerance and resistance of Pseudomonas aeruginosa biofilms to antimicrobial agents—How P. aeruginosa can escape antibiotics. Front. Microbiol. 2019, 10, 913. [Google Scholar] [CrossRef]
- Hocquet, D.; Vogne, C.; El Garch, F.; Vejux, A.; Gotoh, N.; Lee, A.; Lomovskaya, O.; Plesiat, P. MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 2003, 47, 1371–1375. [Google Scholar] [CrossRef]
- Olsen, I. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 877–886. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics 2021, 10, 3. [Google Scholar] [CrossRef]
- Burmeister, A.R. Horizontal gene transfer. Evol. Med. Public Health 2015, 1, 193–194. [Google Scholar] [CrossRef]
- Glen, K.A.; Lamont, I.L. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance. Microbiol. Spectr. 2024, 12, e0069424. [Google Scholar] [CrossRef] [PubMed]
- Thacharodi, A.; Lamont, I.L. Aminoglycoside-Modifying Enzymes Are Sufficient to Make Pseudomonas aeruginosa Clinically Resistant to Key Antibiotics. Antibiotics 2022, 11, 884. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Zhang, L.; Huang, Y.; Qing, Y.; Cao, K.; Tian, G.B.; Huang, X. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect. Genet. Evol. 2014, 21, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Miranda, S.W.; Asfahl, K.L.; Dandekar, A.A.; Greenberg, E.P. Pseudomonas aeruginosa quorum sensing. Adv. Exp. Med. Biol. 2022, 1386, 95–115. [Google Scholar] [CrossRef]
- Wagner, V.E.; Iglewski, B.H. Quorum sensing and regulation of Pseudomonas aeruginosa infections. In Bacterial Cell-to-Cell Communication: Role in Virulence and Pathogenesis; Demuth, D.R., Lamont, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 1–22. [Google Scholar] [CrossRef]
- Augustyniak, D.; Olszak, T.; Drulis-Kawa, Z. Outer membrane vesicles (OMVs) of Pseudomonas aeruginosa provide passive resistance but not sensitization to LPS-specific phages. Viruses 2022, 14, 121. [Google Scholar] [CrossRef]
- Bauman, S.J.; Kuehn, M.J. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells. BMC Microbiol. 2009, 9, 26. [Google Scholar] [CrossRef]
- Veetilvalappil, V.V.; Manuel, A.; Aranjani, J.M.; Tawale, R.; Koteshwara, A. Pathogenic arsenal of Pseudomonas aeruginosa: An update on virulence factors. Futur. Microbiol. 2022, 17, 465–481. [Google Scholar] [CrossRef]
- Turkina, M.V.; Vikström, E. Bacteria-host crosstalk: Sensing of the quorum in the context of Pseudomonas aeruginosa infections. J. Innate Immun. 2019, 11, 263–279. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhou, D.; Zheng, S.; Li, S.; Hou, Q.; Li, G.; Han, H. A comprehensive review of the pathogenic mechanisms of Pseudomonas aeruginosa: Synergistic effects of virulence factors, quorum sensing, and biofilm formation. Front. Microbiol. 2025, 16, 1619626. [Google Scholar] [CrossRef]
- Wei, Q.; Ma, L.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2013, 14, 20983–21005. [Google Scholar] [CrossRef]
- Aminov, R. History of antimicrobial drug discovery: Major classes and health impact. Biochem. Pharmacol. 2017, 133, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Kunz Coyne, A.J.; El Ghali, A.; Holger, D.; Rebold, N.; Rybak, M.J. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect. Dis. Ther. 2022, 11, 661–682. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 2015, 6, 26–41. [Google Scholar] [CrossRef] [PubMed]
- García-Contreras, R. Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections? Front. Microbiol. 2016, 7, 1454. [Google Scholar] [CrossRef]
- Köhler, T.; Perron, G.G.; Buckling, A.; van Delden, C. Quorum Sensing Inhibition Selects for Virulence and Cooperation in Pseudomonas aeruginosa. PLoS Pathog. 2010, 6, e1000883. [Google Scholar] [CrossRef]
- Ahmed, S.A.K.S.; Rudden, M.; Smyth, T.J.; Dooley, J.S.G.; Marchant, R.; Banat, I.M. Natural quorum sensing inhibitors effectively downregulate gene expression of Pseudomonas aeruginosa virulence factors. Appl. Microbiol. Biotechnol. 2019, 103, 3521–3535. [Google Scholar] [CrossRef]
- Manefield, M.; de Nys, R.; Naresh, K.; Roger, R.; Givskov, M.; Steinberg, P.; Kjelleberg, S. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 1999, 145, 283–291. [Google Scholar] [CrossRef]
- Kandasamy, S.; Khan, W.; Evans, F.; Critchley, A.T.; Prithiviraj, B. Tasco®: A product of Ascophyllum nodosum enhances immune response of Caenorhabditis elegans against Pseudomonas aeruginosa infection. Mar. Drugs 2012, 10, 84–105. [Google Scholar] [CrossRef]
- Krishnan, T.; Yin, W.-F.; Chan, K.-G. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa PAO1 by Ayurveda spice clove (Syzygium aromaticum) bud extract. Sensors 2012, 12, 4016–4030. [Google Scholar] [CrossRef]
- Sarabhai, S.; Sharma, P.; Capalash, N. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS ONE 2013, 8, e53441. [Google Scholar] [CrossRef]
- Haris, Z.; Ahmad, I. Evaluation of antioxidant-rich bioactive plant extracts with special reference to Moringa oleifera Lam. for their interference to bacterial quorum sensing and biofilm. Phytomedicine Plus 2024, 4, 100511. [Google Scholar] [CrossRef]
- Adonizio, A.; Kong, K.F.; Mathee, K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother. 2008, 52, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Gill, E.E.; Franco, O.L.; Hancock, R.E.W. Antibiotic adjuvants: Diverse strategies for controlling drug-resistant pathogens. Chem. Biol. Drug Des. 2015, 85, 56–78. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Song, Z.; Hentzer, M.; Andersen, J.B.; Molin, S.; Givskov, M.; Høiby, N. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. J. Antimicrob. Chemother. 2004, 53, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Lee, S.-H.; Byun, Y.; Park, H.-D. 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci. Rep. 2015, 5, 8656. [Google Scholar] [CrossRef]
- Jakobsen, T.H.; Warming, A.N.; Vejborg, R.M.; Moscoso, J.A.; Stegger, M.; Lorenzen, F.; Rybtke, M.; Andersen, J.B.; Petersen, R.; Andersen, P.S.; et al. A broad range quorum sensing inhibitor working through sRNA inhibition. Sci. Rep. 2017, 7, 9857. [Google Scholar] [CrossRef]
- Deng, Y.; Boon, C.; Chen, S.; Lim, A.; Zhang, L.-H. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS. BMC Microbiol. 2013, 13, 231. [Google Scholar] [CrossRef]
- Vadakkan, K.; Ngangbam, A.K.; Sathishkumar, K.; Rumjit, N.P.; Cheruvathur, M.K. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int. J. Biol. Macromol. 2024, 254, 127861. [Google Scholar] [CrossRef]
- Brackman, G.; Cos, P.; Maes, L.; Nelis, H.J.; Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 2011, 55, 2655–2661. [Google Scholar] [CrossRef]
- Naga, N.G.; Shaaban, M.I.; El-Metwally, M.M. An insight on the powerful of bacterial quorum sensing inhibition. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 2071–2081. [Google Scholar] [CrossRef]
- Alum, E.U.; Gulumbe, B.H.; Izah, S.C.; Uti, D.E.; Aja, P.M.; Igwenyi, I.O.; Offor, C.E. Natural product-based inhibitors of quorum sensing: A novel approach to combat antibiotic resistance. Biochem. Biophys. Rep. 2025, 43, 102111. [Google Scholar] [CrossRef]
- Touati, A.; Ibrahim, N.A.; Tighilt, L.; Idres, T. Anti-QS strategies against Pseudomonas aeruginosa infections. Microorganisms 2025, 13, 1838. [Google Scholar] [CrossRef]
- Vishwakarma, B.; Gupta, S.; Pandey, S.; Jha, P.; Alam, S. Modulating bacterial communication via quorum sensing inhibitors: A review of therapeutic potential. Int. J. Innov. Res. Technol. 2025, 12, 1753–1760. [Google Scholar] [CrossRef]
- Shao, D.-H.; Yao, Y.-F.; Wang, D.-N. Ferroptosis and iron-based therapies in Pseudomonas aeruginosa infections: From pathogenesis to treatment. Virulence 2025, 16, 2553787. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Jiménez, A.; Marcos-Torres, F.J.; Llamas, M.A. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microb. Biotechnol. 2023, 16, 1475–1491. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.K.; Parsek, M.R.; Greenberg, E.P.; Welsh, M.J. A component of innate immunity prevents bacterial biofilm development. Nature 2002, 417, 552–555. [Google Scholar] [CrossRef] [PubMed]
- O’May, C.Y.; Sanderson, K.; Roddam, L.F.; Kirov, S.M.; Reid, D.W. Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions. J. Med. Microbiol. 2009, 58, 765–773. [Google Scholar] [CrossRef]
- Vinuesa, V.; McConnell, M.J. Recent advances in iron chelation and gallium-based therapies for antibiotic resistant bacterial infections. Int. J. Mol. Sci. 2021, 22, 2876. [Google Scholar] [CrossRef]
- Kaneko, Y.; Thoendel, M.; Olakanmi, O.; Britigan, B.E.; Singh, P.K. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J. Clin. Investig. 2007, 117, 877–888. [Google Scholar] [CrossRef]
- Banin, E.; Brady, K.M.; Greenberg, E.P. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl. Environ. Microbiol. 2006, 72, 2064–2069. [Google Scholar] [CrossRef]
- Houshmandyar, S.; Eggleston, I.M.; Bolhuis, A. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. Biometals 2021, 34, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Moreau-Marquis, S.; O’Toole, G.A.; Stanton, B.A. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am. J. Respir. Cell Mol. Biol. 2009, 41, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Mettrick, K.; Hassan, K.; Lamont, I.; Reid, D. The iron-chelator, N,N’-bis (2-hydroxybenzyl) ethylenediamine-N,N’-diacetic acid is an effective colistin adjunct against clinical strains of biofilm-dwelling Pseudomonas aeruginosa. Antibiotics 2020, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Post, S.J.; Shapiro, J.A.; Wuest, W.M. Connecting iron acquisition and biofilm formation in the ESKAPE pathogens as a strategy for combatting antibiotic resistance. Med. Chem. Commun. 2019, 10, 505–512. [Google Scholar] [CrossRef]
- Musk, D.J.; Banko, D.A.; Hergenrother, P.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol. 2005, 12, 789–796. [Google Scholar] [CrossRef]
- Wagner, S.; Hauck, D.; Hoffmann, M.; Sommer, R.; Joachim, I.; Müller, R.; Imberty, A.; Varrot, A.; Titz, A. Covalent lectin inhibition and application in bacterial biofilm imaging. Angew. Chem. Int. Ed. 2017, 56, 16559–16564. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Lewis, A.L.; Kohler, J.J.; Aebi, M. Microbial Lectins: Hemagglutinins, Adhesins, and Toxins; Varki, A., Cummings, R.D., Esko, J.D., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; Volume 37. [Google Scholar]
- Wojtczak, K.; Byrne, J.P. Structural considerations for building synthetic glycoconjugates as inhibitors for Pseudomonas aeruginosa lectins. ChemMedChem 2022, 17, e202200081. [Google Scholar] [CrossRef]
- Chemani, C.; Imberty, A.; de Bentzmann, S.; Pierre, M.; Wimmerová, M.; Guery, B.P.; Faure, K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009, 77, 2065–2075. [Google Scholar] [CrossRef]
- Hauber, H.-P.; Schulz, M.; Pforte, A.; Mack, D.; Zabel, P.; Schumacher, U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 2008, 5, 371–376. [Google Scholar] [CrossRef]
- Kadam, R.U.; Bergmann, M.; Hurley, M.; Garg, D.; Cacciarini, M.; Swiderska, M.A.; Nativi, C.; Sattler, M.; Smyth, A.R.; Williams, P.; et al. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. 2011, 50, 10631–10635. [Google Scholar] [CrossRef]
- Metelkina, O.; Konstantinović, J.; Klein, A.; Shafiei, R.; Fares, M.; Alhayek, A.; Yahiaoui, S.; Elgaher, W.A.M.; Haupenthal, J.; Titz, A.; et al. Dual inhibitors of Pseudomonas aeruginosa virulence factors LecA and LasB. Chem. Sci. 2024, 15, 13333–13342. [Google Scholar] [CrossRef] [PubMed]
- Leusmann, S.; Ménová, P.; Shanin, E.; Titz, A.; Rademacher, C. Glycomimetics for the inhibition and modulation of lectins. Chem. Soc. Rev. 2023, 52, 3663–3740. [Google Scholar] [CrossRef] [PubMed]
- Grishin, A.V.; Krivozubov, M.S.; Karyagina, A.S.; Gintsburg, A.L. Pseudomonas aeruginosa lectins as targets for novel antibacterials. Acta Naturae 2015, 7, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, X.; Sun, L.; Mi, K.; Wang, R.; Gong, F.; Huang, L. Bacterial efflux pump inhibitors reduce antibiotic resistance. Pharmaceutics 2024, 16, 170. [Google Scholar] [CrossRef]
- Rampioni, G.; Pillai, C.R.; Longo, F.; Bondì, R.; Baldelli, V.; Messina, M.; Imperi, F.; Visca, P.; Leoni, L. Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence. Sci. Rep. 2017, 7, 11392. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Molin, S. Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa growth and biofilm formation. Antimicrob. Agents Chemother. 2010, 54, 3960–3963. [Google Scholar] [CrossRef]
- He, L.; Yang, S.; Xuan, W.; Zhen, X.; Qi, Q.; Qi, Y.; Li, Q.; Du, M.; Hamblin, M.R.; Huang, L. Phenylalanine-Arginine-β-Naphthylamide enhances the photobactericidal effect of methylene blue on Pseudomonas aeruginosa. Photobiomodulation Photomed. Laser Surg. 2023, 41, 569–575. [Google Scholar] [CrossRef]
- Rineh, A.; Dolla, N.K.; Ball, A.R.; Magana, M.; Bremner, J.B.; Hamblin, M.R.; Tegos, G.P.; Kelso, M.J. Attaching the NorA efflux pump inhibitor INF55 to methylene blue enhances antimicrobial photodynamic inactivation of methicillin-resistant Staphylococcus aureus in vitro and in vivo. ACS Infect. Dis. 2017, 3, 756–766. [Google Scholar] [CrossRef]
- Shleeva, M.O.; Demina, G.R.; Savitsky, A.P. A systematic overview of strategies for photosensitizer and light delivery in antibacterial photodynamic therapy for lung infections. Adv. Drug Deliv. Rev. 2024, 215, 115472. [Google Scholar] [CrossRef]
- de Melo Guedes, G.M.; Pereira, V.C.; Freitas, A.S.; Honório de Souza, P.R.; Chacon Parra, A.L.; Brasil, J.A.; Guedes de Melo, R.F.; de Sousa, P.C.P.; de Aguiar Cordeiro, R.A.; Rocha, M.F.G.; et al. Repurposing approved drugs as potential efflux pump inhibitors in multidrug-resistant Pseudomonas aeruginosa. Future Microbiol. 2024, 19, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Alav, I.; Sutton, J.M.; Rahman, K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018, 73, 2003–2020. [Google Scholar] [CrossRef] [PubMed]
- Rouvier, F.; Brunel, J.-M.; Pagès, J.-M.; Vergalli, J. Efflux-mediated resistance in Enterobacteriaceae: Recent advances and ongoing challenges to inhibit bacterial efflux pumps. Antibiotics 2025, 14, 778. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.T.; Sharma, V.; Khan, S.S.; Rasool, S. Prevention and potential remedies for antibiotic resistance: Current research and future prospects. Front. Microbiol. 2024, 15, 1455759. [Google Scholar] [CrossRef]
- Abusaiba, T.H.H.; Hussein, A.A.; Almahbob, T.F. Inhibiting efflux pumps and resistance mechanisms: A mini review. Qeios 2023, JHP92F. [Google Scholar] [CrossRef]
- Chakotiya, A.S.; Chawla, R.; Thakur, P.; Tanwar, A.; Narula, A.; Grover, S.S.; Goel, R.; Arora, R.; Sharma, R.K.; Singh, B. In vitro bactericidal activity of promising nutraceuticals for targeting multidrug resistant Pseudomonas aeruginosa. Nutrition 2016, 32, 890–897. [Google Scholar] [CrossRef]
- Semenescu, I.; Avram, S.; Similie, D.; Minda, D.; Diaconeasa, Z.; Muntean, D.; Lazar, A.E.; Gurgus, D.; Danciu, C. Phytochemical, antioxidant, antimicrobial and safety profile of Glycyrrhiza glabra L. extract obtained from Romania. Plants 2024, 13, 3265. [Google Scholar] [CrossRef]
- Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity. Microb. Pathog. 2016, 98, 98–105. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Tambekar, D.H.; Dahikar, S.B. Antibacterial activity of some Indian Ayurvedic preparations against enteric bacterial pathogens. J. Adv. Pharm. Technol. Res. 2011, 2, 24–29. [Google Scholar] [CrossRef]
- Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 2010, 6, 556–568. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, R.; Pei, F.; Liang, B.-B. Antibacterial activity of allicin alone and in combination with β-lactams against Staphylococcus spp. and Pseudomonas aeruginosa. J. Antibiot. 2007, 60, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.; Madhusoodhanan, V.; Bandgar, A.; Kaushik, K.S. From Treatise to Test: Evaluating Traditional Remedies for Anti-Biofilm Potential. Front. Pharmacol. 2020, 11, 566334. [Google Scholar] [CrossRef]
- Adwan, G.; Abu-Shanab, B.; Adwan, K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug-resistant Pseudomonas aeruginosa strains. Asian Pac. J. Trop. Med. 2010, 3, 266–269. [Google Scholar] [CrossRef]
- Ganesh, P.S.; Rai, V.R. Attenuation of quorum-sensing-dependent virulence factors and biofilm formation by medicinal plants against antibiotic resistant Pseudomonas aeruginosa. J. Tradit. Complement. Med. 2017, 8, 170–177. [Google Scholar] [CrossRef]
- Dharmaratne, M.P.J.; Manoraj, A.; Thevanesam, V.; Ekanayake, A.; Kumar, N.S.; Liyanapathirana, V.; Abeyratne, E.; Bandara, B.M.R. Terminalia bellirica fruit extracts: In-vitro antibacterial activity against selected multidrug-resistant bacteria, radical scavenging activity and cytotoxicity study on BHK-21 cells. BMC Complement. Altern. Med. 2018, 18, 325. [Google Scholar] [CrossRef]
- Vinayaka, K.S. Phytochemical profiling and microbial targeting of medicinal plants in the development of alternative antimicrobial therapies. Plant Sci. Rev. 2024, 5, 7–13. [Google Scholar] [CrossRef]
- Grimwood, K.; Kyd, J.M.; Owen, S.J.; Massa, H.M.; Cripps, A.W. Vaccination against respiratory Pseudomonas aeruginosa infection. Hum. Vaccin. Immunother. 2015, 11, 14–20. [Google Scholar] [CrossRef]
- Killough, M.; Rodgers, A.M.; Ingram, R.J. Pseudomonas aeruginosa: Recent advances in vaccine development. Vaccines 2022, 10, 1100. [Google Scholar] [CrossRef]
- Merakou, C.; Schaefers, M.M.; Priebe, G.P. Progress toward the elusive Pseudomonas aeruginosa vaccine. Surg. Infect. 2018, 19, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.M.; McLachlan, J.B.; Morici, L.A. Immunological considerations in the development of Pseudomonas aeruginosa vaccines. Hum. Vaccin. Immunother. 2020, 16, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Santamarina-Fernández, R.; Fuentes-Valverde, V.; Silva-Rodríguez, A.; García, P.; Moscoso, M.; Bou, G. Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations. Int. J. Mol. Sci. 2025, 26, 2012. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.A.; Seixas, A.M.M.; Marques, J.M.M.; Leitão, J.H. Immunization and immunotherapy approaches against Pseudomonas aeruginosa and Burkholderia cepacia complex infections. Vaccines 2021, 9, 670. [Google Scholar] [CrossRef]
- Behrouz, B.; Hashemi, F.B.; Fatemi, M.J.; Naghavi, S.; Irajian, G.; Halabian, R.; Imani Fooladi, A.A. Immunization with bivalent flagellin protects mice against fatal Pseudomonas aeruginosa pneumonia. J. Immunol. Res. 2017, 2017, 5689709. [Google Scholar] [CrossRef]
- Farjah, A.; Owlia, P.; Siadat, S.D.; Mousavi, S.F.; Shafiee Ardestani, M.; Khorsand Mohammadpour, H. Immunological evaluation of an alginate-based conjugate as a vaccine candidate against Pseudomonas aeruginosa. APMIS 2015, 123, 175–183. [Google Scholar] [CrossRef]
- Elbehiry, A.; Abalkhail, A. Antimicrobial nanoparticles against superbugs: Mechanistic insights, biomedical applications, and translational frontiers. Pharmaceuticals 2025, 18, 1195. [Google Scholar] [CrossRef]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef]
- Mouzakis, A.; Panagopoulos, P.; Papazoglou, D.; Petrakis, V. A comprehensive review of nanoparticles in the fight against antimicrobial resistance. Pathogens 2025, 14, 1090. [Google Scholar] [CrossRef]
- Mondal, S.K.; Chakraborty, S.; Manna, S.; Mandal, S.M. Antimicrobial nanoparticles: Current landscape and future challenges. RSC Pharm. 2024, 1, 388–402. [Google Scholar] [CrossRef]
- Bankier, C.; Matharu, R.K.; Cheong, Y.K.; Ren, G.G.; Cloutman-Green, E.; Ciric, L. Synergistic antibacterial effects of metallic nanoparticle combinations. Sci. Rep. 2019, 9, 16074. [Google Scholar] [CrossRef]
- Konkuri, M.; Kharrazi, S.; Erfani, Y.; Haghighat, S. Antibacterial and antibiofilm effect of zinc oxide nanoparticles on Pseudomonas aeruginosa variants isolated from young patients with cystic fibrosis. Microb. Pathog. 2024, 195, 106854. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Bukhari, S.N.A.; Hussain, M.A.; Ejaz, H.; Munir, M.U.; Amjad, M.W. Nanoparticles incorporated hydrogels for delivery of antimicrobial agents: Developments and trends. RSC Adv. 2024, 14, 13535–13564. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.B.; Khodavandi, A.; Alizadeh, F.; Bahador, N. Antibacterial and anti-biofilm activities of microbial synthesized silver and magnetic iron oxide nanoparticles against Pseudomonas aeruginosa. IEEE Trans. Nanobiosci. 2023, 22, 956–966. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wang, X.; Chen, P.; Zhong, Q.; Gong, J. Antimicrobial mechanisms of metal-based nanomaterials. Int. J. Nanomed. 2025, 20, 12879–12887. [Google Scholar] [CrossRef]
- Vassallo, A.; Silletti, M.F.; Faraone, I.; Milella, L. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. J. Nanomater. 2020, 2020, 6905631. [Google Scholar] [CrossRef]
- Caciandone, M.; Niculescu, A.-G.; Grumezescu, V.; Bîrcă, A.C.; Ghica, I.C.; Vasile, B.Ș.; Oprea, O.; Nica, I.C.; Stan, M.S.; Holban, A.M. Magnetite nanoparticles functionalized with therapeutic agents for enhanced ENT antimicrobial properties. Antibiotics 2022, 11, 623. [Google Scholar] [CrossRef]
- Costa, B.A.; Abuçafy, M.P.; Barbosa, T.W.L.; da Silva, B.L.; Fulindi, R.B.; Isquibola, G.; da Costa, P.I.; Chiavacci, L.A. ZnO@ZIF-8 nanoparticles as nanocarrier of ciprofloxacin for antimicrobial activity. Pharmaceutics 2023, 15, 259. [Google Scholar] [CrossRef]
- Desai, A.; Ghosh, S.; Sankaranarayanan, S.; Bhatia, D.; Yadav, A.K. A one health nanotechnology approach to address antimicrobial resistance: State-of-the-art and strategic outlook. Mater. Adv. 2025, 6, 6612–6647. [Google Scholar] [CrossRef]
- Mercan, D.-A.; Niculescu, A.-G.; Grumezescu, A.M. Nanoparticles for Antimicrobial Agents Delivery—An Up-to-Date Review. Int. J. Mol. Sci. 2022, 23, 13862. [Google Scholar] [CrossRef]
- Bernal-Mercado, A.T.; Juarez, J.; Valdez, M.A.; Ayala-Zavala, J.F.; Del-Toro-Sánchez, C.L.; Encinas-Basurto, D. Hydrophobic chitosan nanoparticles loaded with carvacrol against Pseudomonas aeruginosa biofilms. Molecules 2022, 27, 699. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Vico, M.; Ubago-Rodríguez, A.; Zapata-Giraldo, J.F.; Botero, L.E.; Sierra-Sánchez, Á.; Montero-Vilchez, T. Antibiotic nanoparticles-loaded wound dressings against Pseudomonas aeruginosa’s skin infection: A systematic review. Int. J. Nanomed. 2024, 19, 7895–7926. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T.; García, P.; Mullany, P.; Aminov, R. Editorial: Phage Therapy: Past, Present and Future. Front. Microbiol. 2017, 8, 981. [Google Scholar] [CrossRef]
- Holger, D.J.; El Ghali, A.; Bhutani, N.; Lev, K.L.; Stamper, K.; Kebriaei, R.; Kunz Coyne, A.J.; Morrisette, T.; Shah, R.; Alexander, J.; et al. Phage-antibiotic combinations against multidrug-resistant Pseudomonas aeruginosa in in vitro static and dynamic biofilm models. Antimicrob. Agents Chemother. 2023, 67, 11. [Google Scholar] [CrossRef]
- Akturk, E.; Pinto, G.; Ostyn, L.; Crabbé, A.; Melo, L.D.R.; Azeredo, J.; Coenye, T. Combination of phages and antibiotics with enhanced killing efficacy against dual-species bacterial communities in a three-dimensional lung epithelial model. Biofilm 2025, 9, 100245. [Google Scholar] [CrossRef]
- Hraiech, S.; Brégeon, F.; Rolain, J.-M. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: Rationale and current status. Drug Des. Dev. Ther. 2015, 9, 3653–3663. [Google Scholar] [CrossRef]
- Heo, Y.-J.; Lee, Y.-R.; Jung, H.-H.; Lee, J.; Ko, G.; Cho, Y.-H. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob. Agents Chemother. 2009, 53, 2469–2474. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmed, M.Z.; Rafique, S.; Almasoudi, S.E.; Shah, M.; Jalil, N.A.C.; Ojha, S.C. Recent approaches for downplaying antibiotic resistance: Molecular mechanisms. BioMed Res. Int. 2023, 2023, 5250040. [Google Scholar] [CrossRef]
- Debarbieux, L.; Leduc, D.; Maura, D.; Morello, E.; Criscuolo, A.; Grossi, O. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J. Infect. Dis. 2010, 201, 1096–1104. [Google Scholar] [CrossRef]
- Forti, F.; Roach, D.R.; Cafora, M.; Pasini, M.E.; Horner, D.S.; Fiscarelli, E.V.; Rossitto, M.; Cariani, L.; Briani, F.; Debarbieux, L.; et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob. Agents Chemother. 2018, 62, e02573-17. [Google Scholar] [CrossRef]
- Jault, P.; Leclerc, T.; Jennes, S.; Pirnay, J.-P.; Que, Y.-A.; Resch, G.; Rousseau, A.F.; Ravat, F.; Carsin, H.; Le Floch, R.; et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019, 19, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Sawa, T.; Moriyama, K.; Kinoshita, M. Current status of bacteriophage therapy for severe bacterial infections. J. Intensiv. Care 2024, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Cady, K.C.; Bondy-Denomy, J.; Heussler, G.E.; Davidson, A.R.; O’Toole, G.A. The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 2012, 194, 5728–5738. [Google Scholar] [CrossRef] [PubMed]
- Pawluk, A.; Staals, R.H.J.; Taylor, C.; Watson, B.N.J.; Saha, S.; Fineran, P.C.; Maxwell, K.L.; Davidson, A.R. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 2016, 1, 16085. [Google Scholar] [CrossRef]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current challenges and future opportunities of phage therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef]
- Dini, I.; De Biasi, M.G.; Mancusi, A. An overview of the potentialities of antimicrobial peptides derived from natural sources. Antibiotics 2022, 11, 1483. [Google Scholar] [CrossRef]
- Zhong, C.; He, Y.; Zou, J.; Gao, L.; Wang, J.; Zhu, J.; Xue, W.; Gou, S.; Zhang, Y.; Liu, H.; et al. An antimicrobial peptide as a potential therapy for bacterial pneumonia that alleviates antimicrobial resistance. Nat. Commun. 2025, 16, 10488. [Google Scholar] [CrossRef]
- Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules 2020, 10, 652. [Google Scholar] [CrossRef]
- Zhang, Q.-Y.; Yan, Z.-B.; Meng, Y.-M.; Hong, X.-Y.; Shao, G.; Ma, J.-J. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Ramazi, S.; Mohammadi, N.; Allahverdi, A.; Khalili, E.; Abdolmaleki, P. A review on antimicrobial peptides databases and the computational tools. Database J. Biol. Databases Curation 2022, 2022, baac011. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, J.; Yu, X.; Cao, R.; Hong, M.; Xu, Z. Antimicrobial peptides fight against Pseudomonas aeruginosa at a sub-inhibitory concentration via anti-QS pathway. Bioorganic Chem. 2023, 141, 106922. [Google Scholar] [CrossRef] [PubMed]
- Ridyard, K.E.; Elsawy, M.; Mattrasingh, D.; Klein, D.; Strehmel, J.; Beaulieu, C. Synergy between human peptide LL-37 and polymyxin B against planktonic and biofilm cells of Escherichia coli and Pseudomonas aeruginosa. Antibiotics 2023, 12, 389. [Google Scholar] [CrossRef]
- Han, W.; Wei, Z.; Camesano, T.A. New antimicrobial peptide-antibiotic combination strategy for Pseudomonas aeruginosa inactivation. Biointerphases 2022, 17, 041002. [Google Scholar] [CrossRef]
- Hirt, H.; Gorr, S.U. Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2013, 57, 4903–4910. [Google Scholar] [CrossRef]
- Zheng, Z.; Tharmalingam, N.; Liu, Q.; Jayamani, E.; Kim, W.; Fuchs, B.B.; Vilcinskas, A.; Mylonakis, E. Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e00686-17. [Google Scholar] [CrossRef]
- Zheng, S.; Tu, Y.; Li, B.; Qu, G.; Li, A.; Peng, X. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges. J. Transl. Med. 2025, 23, 292. [Google Scholar] [CrossRef]
- Traczewski, M.M.; Brown, S.D. In vitro activity of doripenem against Pseudomonas aeruginosa and Burkholderia cepacia isolates from both cystic fibrosis and non-cystic fibrosis patients. Antimicrob. Agents Chemother. 2006, 50, 819–821. [Google Scholar] [CrossRef]
- Chastre, J.; Wunderink, R.; Prokocimer, P.; Lee, M.; Kaniga, K.; Friedland, I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: A multicenter, randomized study. Crit. Care Med. 2008, 36, 1089–1096. [Google Scholar] [CrossRef]
- Cox, G.; Ejim, L.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis. 2018, 4, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawson, C.D.; Zelenitsky, S.; Findlay, B.; Schweizer, F.; Adam, H. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev. Anti-infective Ther. 2012, 6, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Delafloxacin: A review in acute bacterial skin and skin structure infections. Drugs 2020, 80, 1247–1258. [Google Scholar] [CrossRef]
- Craddock, V.D.; Steere, E.L.; Harman, H.; Britt, N.S. Activity of delafloxacin and comparator fluoroquinolones against multidrug-resistant Pseudomonas aeruginosa in an in vitro cystic fibrosis sputum model. Antibiotics 2023, 12, 1078. [Google Scholar] [CrossRef]
- Moya, B.; Barcelo, I.M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K.M. WCK 5107 (zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-lactam enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrob. Agents Chemother. 2017, 61, e02529-16. [Google Scholar] [CrossRef]
- Kechagia, M.; Basoulis, D.; Konstantopoulou, S.; Dimitriadi, D.; Gyftopoulou, K.; Skarmoutsou, N. Health benefits of probiotics: A review. ISRN Nutr. 2013, 2013, 481651. [Google Scholar] [CrossRef]
- Huang, F.C.; Huang, S.C. The Hazards of Probiotics on Gut-Derived Pseudomonas aeruginosa Sepsis in Mice Undergoing Chemotherapy. Biomedicines 2024, 12, 253. [Google Scholar] [CrossRef]
- Paterniti, I.; Scuderi, S.A.; Cambria, L.; Nostro, A.; Esposito, E.; Marino, A. Protective Effect of Probiotics against Pseudomonas aeruginosa Infection of Human Corneal Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 1770. [Google Scholar] [CrossRef]
- Moskwa, P.; Lorentzen, D.; Excoffon, K.J.; Zabner, J.; McCray, P.B., Jr.; Nauseef, W.M.; Dupuy, C.; Banfi, B. A novel host defense system of airways is defective in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2007, 175, 174–183. [Google Scholar] [CrossRef]
- Alaxia SAS. Orphan designation EU/3/09/654: Hypothiocyanite/Lactoferrin for the treatment of cystic fibrosis. EMA Hum. Med. Orphan Des. 2009, EMA/COMP/392984/2009. [Google Scholar]
- Moreau-Marquis, S.; Coutermarsh, B.; Stanton, B.A. Combination of hypothiocyanite and lactoferrin (ALX-109) enhances the ability of tobramycin and aztreonam to eliminate Pseudomonas aeruginosa biofilms growing on cystic fibrosis airway epithelial cells. J. Antimicrob. Chemother. 2015, 70, 160–166. [Google Scholar] [CrossRef]
- Raval, Y.S.; Mohamed, A.; Song, J.; Greenwood-Quaintance, K.E.; Beyenal, H.; Patel, R. Hydrogen peroxide-generating electrochemical scaffold activity against trispecies biofilms. Antimicrob. Agents Chemother. 2020, 64, e02332-19. [Google Scholar] [CrossRef]
- Sultana, S.T.; Call, D.R.; Beyenal, H. Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. npj Biofilms Microbiomes 2016, 2, 2. [Google Scholar] [CrossRef]
- Fleming, D.; Bozyel, I.; Ozdemir, D.; Otero, J.A.; Karau, M.J.; Anoy, M.M.I.; Koscianski, C.; Schuetz, A.N.; Greenwood-Quaintance, K.E.; Mandrekar, J.N.; et al. HOCl-producing electrochemical bandage for treating Pseudomonas aeruginosa-infected murine wounds. Antimicrob. Agents Chemother. 2024, 68, e01216-23. [Google Scholar] [CrossRef]
- Fleming, D.; Bozyel, I.; Koscianski, C.A.; Ozdemir, D.; Karau, M.J.; Cuello, L.; Anoy, M.M.I.; Gelston, S.; Schuetz, A.N.; Greenwood-Quaintance, K.E.; et al. HOCl-producing electrochemical bandage is active in murine polymicrobial wound infection. Microbiol. Spectr. 2024, 12, e00626-24. [Google Scholar] [CrossRef]
| Therapeutic Strategy/Agent | Mechanisms Targeted | Evidence Level | Key Limitation | References |
|---|---|---|---|---|
| Quorum-sensing inhibitors (QSIs) and quorum quenching (QQ) | QS receptor binding, signal molecule production, bacterial communication; biofilm regulation; virulence factor expression | In vitro and some in vivo studies | Poor delivery and bioavailability; difficulty achieving therapeutic concentrations at infection sites; potential effects on human cells and disruption of normal microbiota; risk of development of QSI-resistant pathogens over time; need for optimized formulations and precise delivery strategies | [3,10,18,55,56,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85] |
| Iron chelators | Siderophore binding; Fe3+ mimicry; inhibition of pyoverdine/pyochelin production; iron sequestration; disruption of bacterial metabolism and biofilm formation. | In vitro and in vivo | Cytotoxicity, systemic adverse effects; strain-dependent antimicrobial activity; poor stability, limited tissue penetration, rapid inactivation in vivo; compensatory bacterial responses; reduced effectiveness in biofilms and polymicrobial environments; need for optimized formulations, targeted delivery and robust in vivo validation | [86,87,88,89,90,91,92,93,94,95,96,97] |
| Lectin inhibitors (e.g., β-phenylgalactosyl peptide dendrimers) | Inhibits adhesion to abiotic surfaces and epithelial cells; interferes with lectin-mediated biofilm formation; reduces host inflammatory response | in vitro cell line studies | Design complexity and large multivalent structures leading to unfavorable pharmacokinetics; potential off-target effects and unknown medical concerns; difficult and costly synthesis; lack of robust in vivo and clinical data on safety and efficacy; strain-dependent efficacy | [98,99,100,101,102,103,104,105,106,107] |
| Efflux pump inhibitors | RND family efflux pumps (MexAB-OprM, MexXY-OprM) | In vitro | Loss of efficacy in complex biological systems; large chemically complex structures leading to poor pharmacokinetics, low solubility, limited tissue penetration; toxicity and off-target effects; regulatory hurdles and high development costs; resistance evolution | [108,109,110,111,112,113,114,115,116,117,118] |
| Traditional, natural and phytochemical medications against P. aeruginosa | Cell membrane disruption | In vitro | Safety concerns with high doses pr prolonged use; lack of robust human clinical data; variability in plant sources and preparation methods, causing inconsistent efficacy; complex mixtures complicating dose optimization and safety assessment; limited in vivo and toxicological data; poor bioavailability | [119,120,121,122,123,124,125,126,127,128,129,130,131] |
| Preventive immunization targeting antigens | Bacterial antigens inducing adaptive immune response | In vivo | Limited understanding of human immune responses; dependence on murine models for data; need for multifaceted immune activation; translation to clinical vaccination trials remains uncertain. | [132,133,134,135,136,137,138,139] |
| Nanoparticles | Membrane penetration, ROS induction, enzymatic inhibition, DNA/RNA interaction, protein synthesis inhibition, drug delivery to biofilm cells, virulence suppression (pyocyanin, motility, EPS) | In vitro, early preclinical, and some animal studies | Potential toxicity, organ-system effects unknown, controlled release challenges, regulatory hurdles | [140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155] |
| Bacteriophage therapy | Bacterial lysis, biofilm penetration, quorum sensing interference, alginate degradation, virulence factor suppression, host-specific targeting | In vitro, in vivo; murine models; some preclinical personalized phage cocktails | Safety concerns (phage clearance, impurities, production issues), poor stability, limited mechanistic understanding of phage-host interactions; bacterial resistance to phages; immune system neutralization of phages; need for extensive clinical trials | [156,157,158,159,160,161,162,163,164,165,166,167,168,169] |
| Antimicrobial peptides (AMPs) | Membrane disruption via pore formation, outer membrane destabilization, biofilm inhibition, quorum sensing suppression, enhanced antibiotic uptake, virulence factor suppression | In vitro, in vivo | Hemolytic activity, proteolytic degradation, salt/serum/pH sensitivity, high production cost, limited clinical data, potential rapid degradation, stability/toxicity concerns. | [170,171,172,173,174,175,176,177,178,179,180,181] |
| Novel antibiotics | Cell wall synthesis inhibition, protein synthesis inhibition, DNA replication inhibition, LPS transport inhibition, β-lactamase inhibition, broad-spectrum antimicrobial activity | In vitro, in vivo; | Most are modifications of existing drug classes, limited activity against metallo-β-lactamase producers, some carbapenems ineffective against P. aeruginosa, potential nephrotoxicity, ototoxicity, resistance development, limited long-term effectiveness. | [182,183,184,185,186,187,188,189] |
| Oral probiotics | Modulation of mucosal immunity; inhibition of pathogen adhesion, growth, cytotoxicity and biofilm formation | Limited preclinical data; no robust evidence for clinical benefit | Potential harm in immunocompromised host; strain-specific effects; risk of systemic infection; interaction with antibiotics | [190,191,192] |
| Lactoferrin and hypothiocyanite combination therapy | Restore innate airway antimicrobial defense, inhibit new biofilm formation, enhance antibiotic efficacy | Preclinical and ex vivo studies; EMA/FDA orphan drug status | Limited activity against mature biofilm; need for co-administration with antibiotics; undefined optimal dosing; potential bacterial regrowth after treatment; unclear impact on airway microbiota; limited clinical evidence and lack of trials | [193,194,195] |
| Electrochemical scaffolds | Generates reactive oxygen species (ROS) such as H2O2 and HOCl; increases biofilm cell membrane permeability; eradicates persister cells; enhances antibiotic susceptibility. | Preclinical, in vivo murine wound infection models | Limited predictive value of preclinical models; lack of comprehensive in vivo studies; physical barriers in real wounds; undefined safety thresholds, regulatory and standardization challenges, translational hurdles common to anti-biofilm therapies | [196,197,198,199] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Krūmiņa, A.; Zeltiņa, I.; Simsone, P.; Eulitz, E.; Reinis, A.; Vīksna, L. Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies. Medicina 2026, 62, 163. https://doi.org/10.3390/medicina62010163
Krūmiņa A, Zeltiņa I, Simsone P, Eulitz E, Reinis A, Vīksna L. Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies. Medicina. 2026; 62(1):163. https://doi.org/10.3390/medicina62010163
Chicago/Turabian StyleKrūmiņa, Angelika, Indra Zeltiņa, Paula Simsone, Emile Eulitz, Aigars Reinis, and Ludmila Vīksna. 2026. "Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies" Medicina 62, no. 1: 163. https://doi.org/10.3390/medicina62010163
APA StyleKrūmiņa, A., Zeltiņa, I., Simsone, P., Eulitz, E., Reinis, A., & Vīksna, L. (2026). Mechanisms of Pseudomonas aeruginosa Resilience Against Antibiotic Treatment and Outlooks of Emerging Treatment Strategies. Medicina, 62(1), 163. https://doi.org/10.3390/medicina62010163

