Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = IoT weather station

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4205 KB  
Article
Data Fusion Method for Multi-Sensor Internet of Things Systems Including Data Imputation
by Saugat Sharma, Grzegorz Chmaj and Henry Selvaraj
IoT 2026, 7(1), 11; https://doi.org/10.3390/iot7010011 - 26 Jan 2026
Viewed by 196
Abstract
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in [...] Read more.
In Internet of Things (IoT) systems, data collected by geographically distributed sensors is often incomplete due to device failures, harsh deployment conditions, energy constraints, and unreliable communication. Such data gaps can significantly degrade downstream data processing and decision-making, particularly when failures result in the loss of all locally redundant sensors. Conventional imputation approaches typically rely on historical trends or multi-sensor fusion within the same target environment; however, historical methods struggle to capture emerging patterns, while same-location fusion remains vulnerable to single-point failures when local redundancy is unavailable. This article proposes a correlation-aware, cross-location data fusion framework for data imputation in IoT networks that explicitly addresses single-point failure scenarios. Instead of relying on co-located sensors, the framework selectively fuses semantically similar features from independent and geographically distributed gateways using summary statistics-based and correlation screening to minimize communication overhead. The resulting fused dataset is then processed using a lightweight KNN with an Iterative PCA imputation method, which combines local neighborhood similarity with global covariance structure to generate synthetic data for missing values. The proposed framework is evaluated using real-world weather station data collected from eight geographically diverse locations across the United States. The experimental results show that the proposed approach achieves improved or comparable imputation accuracy relative to conventional same-location fusion methods when sufficient cross-location feature correlation exists and degrades gracefully when correlation is weak. By enabling data recovery without requiring redundant local sensors, the proposed approach provides a resource-efficient and failure-resilient solution for handling missing data in IoT systems. Full article
Show Figures

Figure 1

8 pages, 178 KB  
Proceeding Paper
FIWARE-Powered Smart Farming: Integrating Sensor Networks for Sustainable Soil Management
by Christos Hitiris, Cleopatra Gkola, Dimitrios J. Vergados, Vasiliki Karamerou and Angelos Michalas
Proceedings 2026, 134(1), 58; https://doi.org/10.3390/proceedings2026134058 - 21 Jan 2026
Viewed by 169
Abstract
Digital transformation in agriculture addresses key challenges such as climate change, water shortages, and sustainable production. Precision agriculture technologies rely on the Internet of Things (IoT) sensor networks, analytics, and automated systems to manage resources efficiently and increase productivity. Fragmented infrastructures and vendor-specific [...] Read more.
Digital transformation in agriculture addresses key challenges such as climate change, water shortages, and sustainable production. Precision agriculture technologies rely on the Internet of Things (IoT) sensor networks, analytics, and automated systems to manage resources efficiently and increase productivity. Fragmented infrastructures and vendor-specific platforms lead to unintegrated data silos that obstruct regional solutions. This paper will emphasize FIWARE, an open-source, standard-based platform that can be integrated with existing agricultural sensors in municipalities or regions. FIWARE takes all these disparate sensors (soil probes, weather stations, and irrigation meters) and integrates them into a single real-time information system, providing a set of decision support tools to the user to facilitate adaptive irrigation. Case studies show the benefits of FIWARE, including water savings, reduced runoff, better decision-making, and improved climate resilience. Full article
20 pages, 6622 KB  
Article
Sensor Fusion-Based Machine Learning Algorithms for Meteorological Conditions Nowcasting in Port Scenarios
by Marwan Haruna, Francesco Kotopulos De Angelis, Kaleb Gebremicheal Gebremeskel, Alexandr Tardo and Paolo Pagano
Sensors 2026, 26(2), 448; https://doi.org/10.3390/s26020448 - 9 Jan 2026
Cited by 1 | Viewed by 273
Abstract
Modern port operations face increasing challenges from rapidly changing weather and environmental conditions, requiring accurate short-term forecasting to support safe and efficient maritime activities. This study presents a sensor fusion-based machine learning framework for real-time multi-target nowcasting of wind gust speed, sustained wind [...] Read more.
Modern port operations face increasing challenges from rapidly changing weather and environmental conditions, requiring accurate short-term forecasting to support safe and efficient maritime activities. This study presents a sensor fusion-based machine learning framework for real-time multi-target nowcasting of wind gust speed, sustained wind speed, and wind direction using heterogeneous data collected at the Port of Livorno from February to November 2025. Using an IoT architecture compliant with the oneM2M standard and deployed at the Port of Livorno, CNIT integrated heterogeneous data from environmental sensors (meteorological stations, anemometers) and vessel-mounted LiDAR systems through feature-level fusion to enhance situational awareness, with gust speed treated as the primary safety-critical variable due to its substantial impact on berthing and crane operations. In addition, a comparative performance analysis of Random Forest, XGBoost, LSTM, Temporal Convolutional Network, Ensemble Neural Network, Transformer models, and a Kalman filter was performed. The results show that XGBoost consistently achieved the highest accuracy across all targets, with near-perfect performance in both single-split testing (R2 ≈ 0.999) and five-fold cross-validation (mean R2 = 0.9976). Ensemble models exhibited greater robustness than deep learning approaches. The proposed multi-target fusion framework demonstrates strong potential for real-time deployment in Maritime Autonomous Surface Ship (MASS) systems and port decision-support platforms, enabling safer manoeuvring and operational continuity under rapidly varying environmental conditions. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Sensor Systems)
Show Figures

Figure 1

27 pages, 12369 KB  
Article
Design and Validation of a Solar-Powered LoRa Weather Station for Environmental Monitoring and Agricultural Decision Support
by Uriel E. Alcalá-Rodríguez, Héctor A. Guerrero-Osuna, Fabián García-Vázquez, Jesús A. Nava-Pintor, Luis F. Luque-Vega, Emmanuel Lopez-Neri, Salvador Castro-Tapia, Luis O. Solís-Sánchez and Ma. del Rosario Martínez-Blanco
Technologies 2026, 14(1), 32; https://doi.org/10.3390/technologies14010032 - 5 Jan 2026
Viewed by 413
Abstract
Due to changing weather conditions, productivity needs to be enhanced and resources must be used more efficiently in agriculture. Precision agriculture relies on systems that can gather real-time environmental data to address these issues. However, the high cost of commercial weather stations often [...] Read more.
Due to changing weather conditions, productivity needs to be enhanced and resources must be used more efficiently in agriculture. Precision agriculture relies on systems that can gather real-time environmental data to address these issues. However, the high cost of commercial weather stations often limits their adoption in rural areas. This study introduces a low-cost weather station designed for precision agriculture applications. The system consists of three main modules. The first module is the weather station, which gathers data on temperature, relative humidity, barometric pressure, solar radiation, wind speed and direction, and precipitation. It then transmits this data via LoRa communication to the local console module. This console receives the data, displays it on a screen, and sends it through Wi-Fi to the cloud server module. The cloud server presents the information via an interactive interface and is responsible for storing, processing, and analyzing the data records collected. The system was installed in the municipality of Ojocaliente, Zacatecas, Mexico, where performance and validation tests were conducted over a one-month period using sensors and reference measurements to evaluate the accuracy and stability of the data. The results showed high operational reliability and a strong correlation between the recorded values and the reference data. This confirms that the proposed solution provides a scalable, low-cost, and reliable alternative for environmental monitoring in precision agriculture. Full article
Show Figures

Figure 1

23 pages, 4508 KB  
Article
Deep Neural Network with Attention and Station Embeddings for Robust Spatio-Temporal Multisensor Temperature Forecasting
by Khaled Abdalgader, Muhammad Mbarak and Mohd Alam
AgriEngineering 2025, 7(12), 399; https://doi.org/10.3390/agriengineering7120399 - 1 Dec 2025
Viewed by 502
Abstract
Accurate microclimate forecasting is essential for optimizing agricultural decision-making and resource management within Internet of Things (IoT)-enabled farming systems. This study proposes an Attention-Enhanced Dual-Branch Spatio-Temporal Deep Neural Network with Station Embeddings model designed for robust spatio-temporal multisensor temperature forecasting across heterogeneous environmental [...] Read more.
Accurate microclimate forecasting is essential for optimizing agricultural decision-making and resource management within Internet of Things (IoT)-enabled farming systems. This study proposes an Attention-Enhanced Dual-Branch Spatio-Temporal Deep Neural Network with Station Embeddings model designed for robust spatio-temporal multisensor temperature forecasting across heterogeneous environmental stations. The model integrates multisensor data parameters within a sliding-window temporal framework to capture both short-term fluctuations and long-term dependencies. Comprehensive experiments were conducted using data from two meteorological stations to evaluate model accuracy, generalization, and robustness against sensor noise. Results show that the proposed model outperforms both classical and persistence-based baselines, achieving an average RMSE of 1.65 °C and R2 of 0.94 on test datasets. Feature correlation and importance analyses confirmed that the model learns physically meaningful relationships—particularly the influence of soil temperature and humidity on air temperature dynamics—while residual and convergence analyses verified its stability and unbiased learning behavior. Beyond algorithmic validation, this study highlights how the proposed model can be integrated into precision-agriculture systems for adaptive irrigation control, crop-growth forecasting, and microclimate-based disease-risk assessment. The model provides a scalable foundation for real-time IoT deployment on edge devices, enabling continuous environmental monitoring and intelligent actuation. These results demonstrate that data-driven deep learning models can bridge algorithmic forecasting and operational decision-making, contributing to sustainable and efficient agricultural management. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Figure 1

24 pages, 15101 KB  
Article
Quantitative Evaluation of Road Heating Systems Using Freezing Intensity (FI) and Cold Intensity (CI): A Case Study in Daejeon, South Korea
by Tae Kyung Kwon, Young-Shin Lim and Tae Hyoung Kim
Appl. Sci. 2025, 15(22), 11872; https://doi.org/10.3390/app152211872 - 7 Nov 2025
Viewed by 714
Abstract
Winter road icing poses significant safety risks, particularly on steep urban slopes with vulnerable populations. While thermal-comfort indices such as UTCI, PMV, and PET have been used for summer conditions, this study focuses on operational indices that quantify road-icing risk. This study introduces [...] Read more.
Winter road icing poses significant safety risks, particularly on steep urban slopes with vulnerable populations. While thermal-comfort indices such as UTCI, PMV, and PET have been used for summer conditions, this study focuses on operational indices that quantify road-icing risk. This study introduces and empirically validates two novel indices—Freezing Intensity (FI) and Cold Intensity (CI)—designed to quantify the likelihood and severity of road icing. A case study was conducted on Namgyeong-maeul Road in Daedeok-gu, Daejeon, South Korea, where IoT-based environmental monitoring, including automated weather stations, thermal cameras, and drone imaging, was deployed from December 2024 to January 2025. Results demonstrate that road heating systems (RHS) effectively increased surface temperatures by an average of 4.1 °C compared to non-heated segments, with maximum differences exceeding 12.5 °C. The FI of non-heated slopes reached critical levels above 2400, whereas heated roads reduced FI to near zero. Similarly, CI values dropped from hazardous levels (~12) to below 6 in heated zones, reducing icing severity by more than 50%. These findings confirm that FI and CI can serve as robust metrics for operational assessment of RHS performance, complementing traditional heat-related indices. By integrating FI and CI into monitoring and design, policymakers and engineers can establish data-driven activation thresholds, optimize energy efficiency, and ensure safer winter mobility for vulnerable groups. This research provides a structured operational framework for winter road icing quantification, advancing climate adaptation strategies equivalent in rigor to summer climate indices. Compared with temperature-only monitoring, FI and CI improved operational responsiveness and reduced residual icing duration by ≈50%. Full article
Show Figures

Figure 1

15 pages, 2491 KB  
Article
Federated Learning for Soil Moisture Prediction: Benchmarking Lightweight CNNs and Robustness in Distributed Agricultural IoT Networks
by Salma Zakzouk and Lobna A. Said
Mach. Learn. Knowl. Extr. 2025, 7(4), 132; https://doi.org/10.3390/make7040132 - 31 Oct 2025
Cited by 1 | Viewed by 1009
Abstract
Federated learning (FL) provides a privacy-preserving approach for training machine learning models across distributed datasets; however, its deployment in environmental monitoring remains underexplored. This paper uses the WHIN dataset, comprising 144 weather stations across Indiana, to establish a benchmark for FL in soil [...] Read more.
Federated learning (FL) provides a privacy-preserving approach for training machine learning models across distributed datasets; however, its deployment in environmental monitoring remains underexplored. This paper uses the WHIN dataset, comprising 144 weather stations across Indiana, to establish a benchmark for FL in soil moisture prediction. The work presents three primary contributions: the design of lightweight CNNs optimized for edge deployment, a comprehensive robustness assessment of FL under non-IID and adversarial conditions, and the development of a large-scale, reproducible agricultural FL benchmark using the WHIN network. The paper designs and evaluates lightweight (∼0.8 k parameters) and heavy (∼9.4 k parameters) convolutional neural networks (CNNs) under both centralized and federated settings, supported by ablation studies on feature importance and model architecture. Results show that lightweight CNNs achieve near-heavy CNN performance (MAE = 7.8 cbar vs. 7.6 cbar) while reducing computation and communication overhead. Beyond accuracy, this work systematically benchmarks robustness under adversarial and non-IID conditions, providing new insights for deploying federated models in agricultural IoT. Full article
Show Figures

Graphical abstract

21 pages, 812 KB  
Systematic Review
The Potential of Low-Cost IoT-Enabled Agrometeorological Stations: A Systematic Review
by Christa M. Al Kalaany, Hilda N. Kimaita, Ahmed A. Abdelmoneim, Roula Khadra, Bilal Derardja and Giovana Dragonetti
Sensors 2025, 25(19), 6020; https://doi.org/10.3390/s25196020 - 1 Oct 2025
Cited by 1 | Viewed by 2180
Abstract
The integration of Internet of Things (IoT) technologies in agriculture has facilitated real-time environmental monitoring, with low-cost IoT-enabled agrometeorological stations emerging as a valuable tool for climate-smart farming. This systematic review examines low-cost IoT-based weather stations by analyzing their hardware and software components [...] Read more.
The integration of Internet of Things (IoT) technologies in agriculture has facilitated real-time environmental monitoring, with low-cost IoT-enabled agrometeorological stations emerging as a valuable tool for climate-smart farming. This systematic review examines low-cost IoT-based weather stations by analyzing their hardware and software components and assessing their potential in comparison to conventional weather stations. It emphasizes their contribution to improving climate resilience, facilitating data-driven decision-making, and expanding access to weather data in resource-constrained environments. The analysis revealed widespread adoption of ESP32 microcontrollers, favored for its affordability and modularity, as well as increasing use of communication protocols like LoRa and Wi-Fi due to their balance of range, power efficiency, and scalability. Sensor integration largely focused on core parameters such as air temperature, relative humidity, soil moisture, and rainfall supporting climate-smart irrigation, disease risk modeling, and microclimate management. Studies highlighted the importance of usability and adaptability through modular hardware and open-source platforms. Additionally, scalability was demonstrated through community-level and multi-station deployments. Despite their promise, challenges persist regarding sensor calibration, data interoperability, and long-term field validation. Future research should explore the integration of edge computing, adaptive analytics, and standardization protocols to further enhance the reliability and functionality of IoT-enabled agrometeorological systems. Full article
Show Figures

Figure 1

27 pages, 3200 KB  
Article
IoT-Enhanced Multi-Base Station Networks for Real-Time UAV Surveillance and Tracking
by Zhihua Chen, Tao Zhang and Tao Hong
Drones 2025, 9(8), 558; https://doi.org/10.3390/drones9080558 - 8 Aug 2025
Viewed by 2315
Abstract
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a [...] Read more.
The proliferation of small, agile unmanned aerial vehicles (UAVs) has exposed the limits of single-sensor surveillance in cluttered airspace. We propose an Internet of Things-enabled integrated sensing and communication (IoT-ISAC) framework that converts cellular base stations into cooperative, edge-intelligent sensing nodes. Within a four-layer design—terminal, edge, IoT platform, and cloud—stations exchange raw echoes and low-level features in real time, while adaptive beam registration and cross-correlation timing mitigate spatial and temporal misalignments. A hybrid processing pipeline first produces coarse data-level estimates and then applies symbol-level refinements, sustaining rapid response without sacrificing precision. Simulation evaluations using multi-band ISAC waveforms confirm high detection reliability, sub-frame latency, and energy-aware operation in dense urban clutter, adverse weather, and multi-target scenarios. Preliminary hardware tests validate the feasibility of the proposed signal processing approach. Simulation analysis demonstrates detection accuracy of 85–90% under optimal conditions with processing latency of 15–25 ms and potential energy efficiency improvement of 10–20% through cooperative operation, pending real-world validation. By extending coverage, suppressing blind zones, and supporting dynamic surveillance of fast-moving UAVs, the proposed system provides a scalable path toward smart city air safety networks, cooperative autonomous navigation aids, and other remote-sensing applications that require agile, coordinated situational awareness. Full article
(This article belongs to the Section Drone Communications)
Show Figures

Figure 1

15 pages, 1742 KB  
Article
An Arduino-Based, Portable Weather Monitoring System, Remotely Usable Through the Mobile Telephony Network
by Ioannis Michailidis, Petros Mountzouris, Panagiotis Triantis, Gerasimos Pagiatakis, Andreas Papadakis and Leonidas Dritsas
Electronics 2025, 14(12), 2330; https://doi.org/10.3390/electronics14122330 - 6 Jun 2025
Cited by 3 | Viewed by 3280
Abstract
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are [...] Read more.
The article describes an Arduino-based, portable, remotely usable weather monitoring station capable of measuring temperature, relative humidity, pressure, and carbon monoxide (CO) concentration and transmitting the collected data to the Cloud through the mobile telephony network. The main modules of the station are as follows: a DHT11 sensor for temperature and relative humidity sensing, a BMP180 sensor for pressure monitoring (with temperature compensation), a MQ7 sensor for the monitoring of the CO concentration, an Arduino Uno board, a GSM SIM900 module, and a buzzer, which is activated when the temperature exceeds 35 °C. The station operates as follows: the Arduino Uno board gathers the data collected by the sensors and, by means of the GSM SIM900 module, it transmits the data to the Cloud by using the mobile telephony network as well as the ThingSpeak software which is an open-code IoT application that, among others, enables saving and recovering of sensing and monitoring data. The main novelty of this work is the combined use of the GSM network and the Cloud which enhances the portability and usability of the proposed system and enables remote collection of data in a straightforward way. Additional merits of the system are the easiness and the low cost of its development (owing to the easily available, low-cost hardware combined with an open-code software) as well as its modularity and scalability which allows its customization depending on specific application it is intended for. The system could be used for real-time, remote monitoring of essential environmental parameters in spaces such as farms, warehouses, rooms etc. Full article
Show Figures

Figure 1

20 pages, 19291 KB  
Article
New Model for Weather Stations Integrated to Intelligent Meteorological Forecasts in Brasilia
by Thomas Alexandre da Silva, Andre L. M. Serrano, Erick R. C. Figueiredo, Geraldo P. Rocha Filho, Fábio L. L. de Mendonça, Rodolfo I. Meneguette and Vinícius P. Gonçalves
Sensors 2025, 25(11), 3432; https://doi.org/10.3390/s25113432 - 29 May 2025
Cited by 1 | Viewed by 2931
Abstract
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It [...] Read more.
This paper presents a new model for low-cost solar-powered Automatic Weather Stations based on the ESP-32 microcontroller, modern sensors, and intelligent forecasts for Brasilia. The proposed system relies on compact, multifunctional sensors and features an open-source firmware project and open-circuit board design. It includes a BME688, AS7331, VEML7700, AS3935 for thermo-hygro-barometry (plus air quality), ultraviolet irradiance, luximetry, and fulminology, besides having a rainfall gauge and an anemometer. Powered by photovoltaic panels and batteries, it operates uninterruptedly under variable weather conditions, with data collected being sent via WiFi to a Web API that adapts the MZDN-HF (Meteorological Zone Delimited Neural Network–Hourly Forecaster) model compilation for Brasilia to produce accurate 24 h multivariate forecasts, which were evaluated through MAE, RMSE, and R2 metrics. Installed at the University of Brasilia, it demonstrates robust hardware performance and strong correlation with INMET’s A001 data, suitable for climate monitoring, precision agriculture, and environmental research. Full article
Show Figures

Figure 1

38 pages, 11794 KB  
Article
Comparing Monitoring Networks to Assess Urban Heat Islands in Smart Cities
by Marta Lucas Bonilla, Ignacio Tadeo Albalá Pedrera, Pablo Bustos García de Castro, Alexander Martín-Garín and Beatriz Montalbán Pozas
Appl. Sci. 2025, 15(11), 6100; https://doi.org/10.3390/app15116100 - 28 May 2025
Cited by 2 | Viewed by 2056
Abstract
The increasing frequency and intensity of heat waves, combined with urban heat islands (UHIs), pose significant public health challenges. Implementing low-cost, real-time monitoring networks with distributed stations within the smart city framework faces obstacles in transforming urban spaces. Accurate data are essential for [...] Read more.
The increasing frequency and intensity of heat waves, combined with urban heat islands (UHIs), pose significant public health challenges. Implementing low-cost, real-time monitoring networks with distributed stations within the smart city framework faces obstacles in transforming urban spaces. Accurate data are essential for assessing these effects. This paper compares different network types in a medium-sized city in western Spain and their implications for UHI identification quality. The study first presents a purpose-built monitoring network using Open-Source platforms, IoT technology, and LoRaWAN communications, adhering to World Meteorological Organization guidelines. Additionally, it evaluates two citizen weather observer networks (CWONs): one from a commercial smart device company and another from a global community connecting environmental sensor data. The findings highlight several advantages of bespoke monitoring networks over CWON, including enhanced data accessibility and greater flexibility to meet specific requirements, facilitating adaptability and scalability for future upgrades. However, specialization is crucial for effective deployment and maintenance. Conversely, CWONs face limitations in network uniformity, data shadow zones, and insufficient knowledge of real sensor situations or component characteristics. Furthermore, CWONs exhibit some data inconsistencies in probability distribution and scatter plots during extreme heat periods, as well as improbable UHI temperature values. Full article
(This article belongs to the Special Issue Smart City and Informatization, 2nd Edition)
Show Figures

Figure 1

16 pages, 10369 KB  
Article
A Portable Non-Motorized Smart IoT Weather Station Platform for Urban Thermal Comfort Studies
by Raju Sethupatu Bala, Salaheddin Hosseinzadeh, Farhad Sadeghineko, Craig Scott Thomson and Rohinton Emmanuel
Future Internet 2025, 17(5), 222; https://doi.org/10.3390/fi17050222 - 15 May 2025
Cited by 1 | Viewed by 1743
Abstract
Smart cities are widely regarded as a promising solution to urbanization challenges; however, environmental aspects such as outdoor thermal comfort and urban heat island are often less addressed than social and economic dimensions of sustainability. To address this gap, we developed and evaluated [...] Read more.
Smart cities are widely regarded as a promising solution to urbanization challenges; however, environmental aspects such as outdoor thermal comfort and urban heat island are often less addressed than social and economic dimensions of sustainability. To address this gap, we developed and evaluated an affordable, scalable, and cost-effective weather station platform, consisting of a centralized server and portable edge devices to facilitate urban heat island and outdoor thermal comfort studies. This edge device is designed in accordance with the ISO 7726 (1998) standards and further enhanced with a positioning system. The device can regularly log parameters such as air temperature, relative humidity, globe temperature, wind speed, and geographical coordinates. Strategic selection of components allowed for a low-cost device that can perform data manipulation, pre-processing, store the data, and exchange data with a centralized server via the internet. The centralized server facilitates scalability, processing, storage, and live monitoring of data acquisition processes. The edge devices’ electrical and shielding design was evaluated against a commercial weather station, showing Mean Absolute Error and Root Mean Square Error values of 0.1 and 0.33, respectively, for air temperature. Further, empirical test campaigns were conducted under two scenarios: “stop-and-go” and “on-the-move”. These tests provided an insight into transition and response times required for urban heat island and thermal comfort studies, and evaluated the platform’s overall performance, validating it for nuanced human-scale thermal comfort, urban heat island, and bio-meteorological studies. Full article
(This article belongs to the Special Issue Joint Design and Integration in Smart IoT Systems)
Show Figures

Figure 1

20 pages, 3288 KB  
Article
Task Scheduling Algorithm for Power Minimization in Low-Cost Disaster Monitoring System: A Heuristic Approach
by Chanankorn Jandaeng , Jongsuk Kongsen , Peeravit Koad, May Thu and Sirirat Somchuea
J. Sens. Actuator Netw. 2024, 13(5), 59; https://doi.org/10.3390/jsan13050059 - 24 Sep 2024
Cited by 2 | Viewed by 2288
Abstract
This study investigates the optimization of a low-cost IoT-based weather station designed for disaster monitoring, focusing on minimizing power consumption. The system architecture includes application, middleware, communication, and sensor layers, with solar power as the primary energy source. A novel task scheduling algorithm [...] Read more.
This study investigates the optimization of a low-cost IoT-based weather station designed for disaster monitoring, focusing on minimizing power consumption. The system architecture includes application, middleware, communication, and sensor layers, with solar power as the primary energy source. A novel task scheduling algorithm was developed to reduce power usage by efficiently managing the sensing and data transmission periods. Experiments compared the energy consumption of polling and deep sleep techniques, revealing that deep sleep is more energy-efficient (4.73% at 15 s time intervals and 16.45% at 150 s time intervals). Current consumption was analyzed across different test scenarios, confirming that efficient task scheduling significantly reduces power consumption. The energy consumption models were developed to quantify power usage during the sensing and transmission phases. This study concludes that the proposed system, utilizing affordable hardware and solar power, is an effective and sustainable solution for disaster monitoring. Despite using non-low-power devices, the results demonstrate the importance of adaptive task scheduling in extending the operational life of IoT devices. Future work will focus on implementing dynamic scheduling and low-power routing algorithms to enhance system functionality in resource-constrained environments. Full article
Show Figures

Figure 1

24 pages, 3759 KB  
Article
Artificial Intelligence-Empowered Doppler Weather Profile for Low-Earth-Orbit Satellites
by Ekta Sharma, Ravinesh C. Deo, Christopher P. Davey and Brad D. Carter
Sensors 2024, 24(16), 5271; https://doi.org/10.3390/s24165271 - 14 Aug 2024
Cited by 3 | Viewed by 2572
Abstract
Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of [...] Read more.
Low-Earth-orbit (LEO) satellites are widely acknowledged as a promising infrastructure solution for global Internet of Things (IoT) services. However, the Doppler effect presents a significant challenge in the context of long-range (LoRa) modulation uplink connectivity. This study comprehensively examines the operational efficiency of LEO satellites concerning the Doppler weather effect, with state-of-the-art artificial intelligence techniques. Two LEO satellite constellations—Globalstar and the International Space Station (ISS)—were detected and tracked using ground radars in Perth and Brisbane, Australia, for 24 h starting 1 January 2024. The study involves modelling the constellation, calculating latency, and frequency offset and designing a hybrid Iterative Input Selection–Long Short-Term Memory Network (IIS-LSTM) integrated model to predict the Doppler weather profile for LEO satellites. The IIS algorithm selects relevant input variables for the model, while the LSTM algorithm learns and predicts patterns. This model is compared with Convolutional Neural Network and Extreme Gradient Boosting (XGBoost) models. The results show that the packet delivery rate is above 91% for the sensitive spread factor 12 with a bandwidth of 11.5 MHz for Globalstar and 145.8 MHz for ISS NAUKA. The carrier frequency for ISS orbiting at 402.3 km is 631 MHz and 500 MHz for Globalstar at 1414 km altitude, aiding in combating packet losses. The ISS-LSTM model achieved an accuracy of 97.51% and a loss of 1.17% with signal-to-noise ratios (SNRs) ranging from 0–30 dB. The XGB model has the fastest testing time, attaining ≈0.0997 s for higher SNRs and an accuracy of 87%. However, in lower SNR, it proves to be computationally expensive. IIS-LSTM attains a better computation time for lower SNRs at ≈0.4651 s, followed by XGB at ≈0.5990 and CNN at ≈0.6120 s. The study calls for further research on LoRa Doppler analysis, considering atmospheric attenuation, and relevant space parameters for future work. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop