You are currently on the new version of our website. Access the old version .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

9 January 2026

Efficient and Personalized Federated Learning for Human Activity Recognition on Resource-Constrained Devices

,
,
and
1
School of Computing, Ulster University, Belfast BT15 1ED, UK
2
School of Engineering, Ulster University, Belfast BT15 1ED, UK
*
Authors to whom correspondence should be addressed.
This article belongs to the Special Issue Innovative Applications of AI, Machine Learning, IoT, and Assistive Robots in Health Monitoring and Care

Abstract

Human Activity Recognition (HAR) using wearable sensors enables impactful applications in healthcare, fitness, and smart environments, but it also faces challenges related to data privacy, non-independent and identically distributed (non-IID) data, and limited computational resources on edge devices. This study proposes an efficient and personalized federated learning (PFL) framework for HAR that integrates federated training with model compression and per-client fine-tuning to address these challenges and support deployment on resource-constrained devices (RCDs). A convolutional neural network (CNN) is trained across multiple clients using FedAvg, followed by magnitude-based pruning and float16 quantization to reduce model size. While personalization and compression have previously been studied independently, their combined application for HAR remains underexplored in federated settings. Experimental results show that the global FedAvg model experiences performance degradation under non-IID conditions, which is further amplified after pruning, whereas per-client personalization substantially improves performance by adapting the model to individual user patterns. To ensure realistic evaluation, experiments are conducted using both random and temporal data splits, with the latter mitigating temporal leakage in time-series data. Personalization consistently improves performance under both settings, while quantization reduces the model footprint by approximately 50%, enabling deployment on wearable and IoT devices. Statistical analysis using paired significance tests confirms the robustness of the observed performance gains. Overall, this work demonstrates that combining lightweight model compression with personalization providing an effective and practical solution for federated HAR, balancing accuracy, efficiency, and deployment feasibility in real-world scenarios.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.