Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review
Abstract
1. Introduction
2. Current Microwave Technology Applications
3. Research Status—Analysis of Publication Trends
4. Applications in Dynamic Conditions
5. Challenges and Limitations of Microwave Vital Sign Monitoring
6. Development Perspectives
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choo, Y.J.; Lee, G.W.; Moon, J.S.; Chang, M.C. Noncontact Sensors for Vital Signs Measurement: A Narrative Review. Med. Sci. Monit. 2024, 30, e944913. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choo, Y.J.; Moon, J.S.; Lee, G.W.; Park, W.T.; Won, H.; Chang, M.C. Application of noncontact sensors for cardiopulmonary physiology and body weight monitoring at home: A narrative review. Medicine 2024, 103, e39607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malafaia, D.; Oliveira, B.; Ferreira, P.; Varum, T.; Vieira, J.; Tomé, A. Cognitive bio-radar: The natural evolution of bio-signals measurement. J. Med. Syst. 2016, 40, 219. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Ren, W.; Wang, K.; Li, Z.; Wang, J.; Lu, G.; Qi, F. Microwave Heartprint: A novel non-contact human identification technology based on cardiac micro-motion detection using ultra wideband bio-radar. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 2024, 41, 272–280. (In Chinese) [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vatamanu, D.; Miclaus, S. A Computational Approach to Increasing the Antenna System’s Sensitivity in a Doppler Radar Designed to Detect Human Vital Signs in the UHF-SHF Frequency Ranges. Sensors 2025, 25, 3235. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Szczepaniak, Z.R.; Łuszczyk, M. Non-contact breath sensor based on a Doppler detector. WIT Trans. Model. Simul. 2011, 51, 453–460. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, F.; Lv, H.; Liang, F.; Wang, J. Bioradar Technology: Recent Research and Advancements. IEEE Microw. Mag. 2019, 20, 58–73. [Google Scholar] [CrossRef]
- Susek, W.; Stec, B. Through-the-wall detection of human activities using a noise radar with microwave quadrature correlator. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 759–764. [Google Scholar] [CrossRef]
- Cao, J.; Wen, L.; Dong, S.; Tang, M.; Guo, Y.; Shen, C.; Gu, C. Arrhythmia Classification Based on Distribution Encoding Network with Biomedical Radar. In Proceedings of the 2025 IEEE MTT-S International Microwave Workshop Series On Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Wuxi, China, 23–26 July 2025; pp. 1–3. [Google Scholar] [CrossRef]
- Liu, J.; Tong, F.; Gu, C. Non-Contact Vital Sign Detection With High Noise and Clutter Immunity Based on Coherent Low-IF CW Radar. IEEE J. Electromagn. RF Microw. Med. Biol. 2025, 9, 90–100. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, C.; Zhang, T.; Li, S.; Yuan, Y.; Wu, C.-T.M.; Chen, Y.; Petropulu, A. Simultaneous Monitoring of Multiple People’s Vital Sign Leveraging a Single Phased-MIMO Radar. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 6, 311–320. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Li, Z.; Qin, L. Deep learning in ECG diagnosis: A review. Knowl.-Based Syst. 2021, 227, 107187. [Google Scholar] [CrossRef]
- Staecker, P. Microwave industry outlook—Overview. IEEE Trans. Microw. Theory Tech. 2002, 50, 1034–1036. [Google Scholar] [CrossRef]
- Yao, J. Microwave Photonics. J. Light. Technol. 2009, 27, 314–335. [Google Scholar] [CrossRef]
- Borowska, M.; Jankowski, K.; Trzaskowski, M.; Wojtasiak, W.; Korpas, P.; Kozłowski, S.; Gryglewski, D. Nucleation and growth of zinc-templated mesoporous selenium nanoparticles and potential non-thermal effects during their microwave-assisted synthesis. Sci. Rep. 2024, 14, 31444. [Google Scholar] [CrossRef]
- Yatsuzuka, M.; Hashimoto, Y.; Ohta, I.; Kaneko, T.; Nobuhara, S. Generation Of High-frequency, High-power Microwave by the Virtual Cathode Oscillator. In Proceedings of the IEEE Conference Record—Abstracts. 1991 IEEE International Conference on Plasma Science, Williamsburg, VA, USA, 3–5 June 1991; pp. 132–133. [Google Scholar] [CrossRef]
- Baharin, S.A.S.; Ahmad, M.R.; Al-Shaikhli, T.R.K.; Sabri, M.H.M.; Al-Kahtani, A.A.; Mohamad, S.A.; Cooray, V.; Sidik, M.A.B. Microwave and Very High Frequency Radiations of The First Narrow Initial Breakdown. In Proceedings of the 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA), Colombo, Sri Lanka, 20–26 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Shigihara, T.; Hikage, T.; Yamamoto, M.; Yoshizawa, K.; Sakamoto, K. A Study on Beam Narrowing and Gain Enhancement of Patch Array Antenna Using FSS. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 25–28 January 2021; pp. 811–812. [Google Scholar] [CrossRef]
- Dao, H.N.; Krairiksh, M. A Sum-Difference Pattern Reconfigurable Antenna for Narrow Down Beamwidth of the Subtracted Pattern. In Proceedings of the 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain, 9–13 September 2019; pp. 137–139. [Google Scholar] [CrossRef]
- Singh, H. A Review on High Frequency Communication. In Proceedings of the 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 7–9 October 2021; pp. 1722–1727. [Google Scholar] [CrossRef]
- Dey, S.; Asok, A.O. A Review on Microwave Imaging for Breast Cancer Detection. In Proceedings of the 2024 IEEE Wireless Antenna and Microwave Symposium (WAMS), Visakhapatnam, India, 29 February–3 March 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Hassan, A.M.; El-Shenawee, M. Review of Electromagnetic Techniques for Breast Cancer Detection. IEEE Rev. Biomed. Eng. 2011, 4, 103–118. [Google Scholar] [CrossRef]
- Gwarek, W.K.; Celuch-Marcysiak, M. A review of microwave power applications in industry and research. In Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications (IEEE Cat. No.04EX824), Warsaw, Poland, 17–19 May 2004; Volume 3, pp. 843–848. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, W.; Zhang, Y. Energy analysis of microwave heating process of corn straw particles in a microwave chamber. In Proceedings of the 2023 8th International Conference on Smart and Sustainable Technologies (SpliTech), Split/Bol, Croatia, 20–23 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, F.; Chen, Y. Microwave Photonic Joint Radar and Secure Communication via Radar Signal Masking. IEEE Microw. Wirel. Technol. Lett. 2025, 35, 1646–1649. [Google Scholar] [CrossRef]
- Yue, B.-L. The development trend and enlightenment of the digital microwave communication. ICMMT 2000. In Proceedings of the 2000 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings (Cat. No.00EX364), Beijing, China, 14–16 September 2000; pp. 243–246. [Google Scholar] [CrossRef]
- Tiuri, M. Microwave Sensor Applications in Industry. In Proceedings of the 1987 17th European Microwave Conference, Rome, Italy, 7–11 September 1987; pp. 25–32. [Google Scholar] [CrossRef]
- Henoch, B. Industrial applications of microwaves. In Proceedings of the 1982 12th European Microwave Conference, Helsinki, Finland, 13–17 September 1982; pp. 47–53. [Google Scholar] [CrossRef]
- Jia, L.; Wang, Y.; Song, Y.; Cui, W.; Chen, Z.; Wang, R.; Liu, Y.; Zhang, W.; Bao, M. The Detection Technology of High-Power Microwave: A Review. IEEE Trans. Instrum. Meas. 2024, 73, 1503620. [Google Scholar] [CrossRef]
- Christie, L. The Strategic Role of High-Power Microwave Directed Energy Weapons in Multi-Domain Operations. In Proceedings of the 2025 IEEE Wireless Antenna and Microwave Symposium (WAMS), Chennai, India, 5–8 June 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Gibalski, D.; Szczepaniak, Z.; Jarzemski, J.; Łuszczyk, M. A concept of application of dedicated spatially-distributed sources of electromagnetic interference. In Radioelectronic Systems Conference 2019; Matuszewski, J., Kaniewski, P.T., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume 11442. [Google Scholar] [CrossRef]
- Samoilova, T.; Ivanov, A.; Kozyrev, A.; Soldatenkov, O.; Zelner, M.; Bernacki, T.A.; Cervin-Lawry, A. Power Handling Capability of Ferroelectric Film Varactors and Tunable Microwave Devices. In Proceedings of the 2006 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 11–16 June 2006; pp. 1273–1276. [Google Scholar] [CrossRef]
- Tumarkin, A.; Razumov, S.; Gagarin, A.; Altynnikov, A.; Mikhailov, A.; Platonov, R.; Kotelnikov, I.; Kozyrev, A.; Butler, J.E. Ferroelectric Varactor on Diamond for Elevated Power Microwave Applications. IEEE Electron Device Lett. 2016, 37, 762–765. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Yan, S.; Zhou, Y.; Lin, Q. A Review of Electromagnetic and Microwave Applications Based on Recurrent Neural Networks. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar] [CrossRef]
- Xu, E.; Yao, J. Frequency- and Notch-Depth-Tunable Single-Notch Microwave Photonic Filter. IEEE Photonics Technol. Lett. 2015, 27, 2063–2066. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, J. A silicon photonic integrated frequency-tunable microwave photonic bandpass filter. In Proceedings of the 2017 International Topical Meeting on Microwave Photonics (MWP), Beijing, China, 23–26 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, P.K.; Raghuwanshi, S.K.; Kumar, S. Microwave Photonic Filter for Fiber Optic Sensing Applications: A Review. IEEE Sens. Rev. 2025, 2, 537–554. [Google Scholar] [CrossRef]
- Ramkumar, S.; Rani, R.B. Review on Recent Trends in Reconfigurable Microwave Filters. In Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW), Tiruchirappalli, India, 22–24 May 2019; pp. 24–28. [Google Scholar] [CrossRef]
- Pan, S.; Yao, J. Instantaneous Microwave Frequency Measurement Using a Photonic Microwave Filter Pair. IEEE Photonics Technol. Lett. 2010, 22, 1437–1439. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Zeng, Q.; Tian, X.; Ho, J.S. Non-Contact Vital Sign Monitoring with a Metamaterial Surface. In Proceedings of the 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Suzhou, China, 16–18 May 2022; pp. 37–39. [Google Scholar] [CrossRef]
- Celik, N.; Gagarin, R.; Huang, G.C.; Iskander, M.F.; Berg, B.W. Microwave Stethoscope: Development and Benchmarking of a Vital Signs Sensor Using Computer-Controlled Phantoms and Human Studies. IEEE Trans. Biomed. Eng. 2014, 61, 2341–2349. [Google Scholar] [CrossRef]
- Elsheakh, D.N.; El-Hameed, A.S.A.; Elashry, G.M.; Fahmy, O.M.; Abdallah, E.A. Coupled and radiated microwave sensors for vital signs and lung water level monitoring. Measurement 2025, 240, 115535. [Google Scholar] [CrossRef]
- Abd El-Hameed, A.S.; Elsheakh, D.M.; Elashry, G.M.; Abdallah, E.A. A Comparative Study of Narrow/Ultra-Wideband Microwave Sensors for the Continuous Monitoring of Vital Signs and Lung Water Level. Sensors 2024, 24, 1658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bencivenga, C.; D’Alvia, L.; Cangemi, R.; Basili, S.; Del Prete, Z. Performance Validation of a Low-Cost Multisensor Device in the Healthy Aging Field. In Proceedings of the 2025 IEEE Medical Measurements & Applications (MeMeA), Chania, Greece, 28–30 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Antink, C.H.; Leonhardt, S.; Schulz, F.; Walter, M. MuSeSe—A multisensor armchair for unobtrusive vital sign estimation and motion artifact analysis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 857–860. [Google Scholar] [CrossRef]
- Grajales, L.; Nicolaescu, I.V. Wearable multisensor heart rate monitor. In Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks (BSN’06), Cambridge, MA, USA, 3–5 April 2006; pp. 4–157. [Google Scholar] [CrossRef]
- Dey, J.; Gaurav, A.; Tiwari, V.N. InstaBP: Cuff-less Blood Pressure Monitoring on Smartphone using Single PPG Sensor. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5002–5005. [Google Scholar] [CrossRef]
- Niknazar, M.; Rivet, B.; Jutten, C. Fetal ECG extraction from a single sensor by a non-parametric modeling. In Proceedings of the 2012 20th European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 27–31 August 2012; pp. 949–953. [Google Scholar]
- Ren, W.; Cao, J.; Yi, H.; Hou, K.; Hu, M.; Wang, J.; Qi, F. Noncontact Multipoint Vital Sign Monitoring with mmWave MIMO Radar. IEEE Trans. Microw. Theory Tech. 2025, 73, 4176–4190. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, Y.; Heo, R.; Park, H.K.; Cho, S.H.; Cho, S.H.; Lim, Y.H. Preclinical evaluation of noncontact vital signs monitoring using real-time IR-UWB radar and factors affecting its accuracy. Sci. Rep. 2021, 11, 23602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, K.; Srinivas, M.B.; Soumya, J.; Pandey, O.J.; Cenkeramaddi, L.R. Automatic Contact-Less Monitoring of Breathing Rate and Heart Rate Utilizing the Fusion of mmWave Radar and Camera Steering System. IEEE Sens. J. 2022, 22, 22179–22191. [Google Scholar] [CrossRef]
- Albrecht, N.C.; Weiland, J.P.; Langer, D.; Wenzel, M.; Koelpin, A. Characterization of the Influence of Clothing and Other Materials on Human Vital Sign Sensing using mmWave Radar. In Proceedings of the 2023 53rd European Microwave Conference (EuMC), Berlin, Germany, 19–21 September 2023; pp. 428–431. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, J.; Tang, J. A high precision vital signs detection method based on millimeter wave radar. Sci. Rep. 2024, 14, 25535. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Y.; Li, F.; Ding, G.; Fan, K.; Gao, Y. Detection of vital signs based on millimeter wave radar. Sci. Rep. 2025, 15, 28112. [Google Scholar] [CrossRef]
- Eder, Y.; Eldar, Y.C. Sparsity-Based Multi-Person Non-Contact Vital Signs Monitoring via FMCW Radar. IEEE J. Biomed. Health Inform. 2023, 27, 2806–2817. [Google Scholar] [CrossRef] [PubMed]
- Al-Nabulsi, J.; Haddad, J. A Low-Cost Non-Contact Patient Vital Signs Monitoring Device. In Proceedings of the 2024 Second Jordanian International Biomedical Engineering Conference (JIBEC), Amman, Jordan, 27–28 November 2024; pp. 6–10. [Google Scholar] [CrossRef]
- Ahadi, M.; Miled, A.; Dugas, M.-A.; Messaddeq, Y. Vital Signs Monitoring in Various Conditions Using the Single Antenna Bio-Sensing Method. In Proceedings of the 2025 23rd IEEE Interregional NEWCAS Conference (NEWCAS), Paris, France, 22–25 June 2025; pp. 153–157. [Google Scholar] [CrossRef]
- Anishchenko, L. Challenges and Potential Solutions of Psychophysiological State Monitoring with Bioradar Technology. Diagnostics 2018, 8, 73. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Y.; Lauteslager, T.; Lande, T.S.; Constandinou, T.G. UWB Radar for Non-contact Heart Rate Variability Monitoring and Mental State Classification. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 6578–6582. [Google Scholar] [CrossRef]
- Huang, M.-C.; Liu, J.J.; Xu, W.; Gu, C.; Li, C.; Sarrafzadeh, M. A Self-Calibrating Radar Sensor System for Measuring Vital Signs. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 352–363. [Google Scholar] [CrossRef]
- Singh, A.; Mitra, D.; Mandal, B.; Basuchowdhuri, P.; Augustine, R. A review of electromagnetic sensing for healthcare applications. AEU-Int. J. Electron. Commun. 2023, 171, 154873. [Google Scholar] [CrossRef]
- Fang, Z.; Gao, F.; Jin, H.; Liu, S.; Wang, W.; Zhang, R.; Zheng, Z.; Xiao, X.; Tang, K.; Lou, L.; et al. A Review of Emerging Electromagnetic-Acoustic Sensing Techniques for Healthcare Monitoring. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 1075–1094. [Google Scholar] [CrossRef]
- Batavani, N.; Yousefi, M.R. Classification of Congestive Heart Failure Disease, Arrhythmias, And Normal Heart Rhythms Using Deep Learning. In Proceedings of the 2024 11th International Symposium on Telecommunications (IST), Tehran, Islamic Republic of Iran, 9–10 October 2024; pp. 357–361. [Google Scholar] [CrossRef]
- Krivenko, S.S.; Krivenko, S.A.; Linskiy, I.V.; Posokhov, M.F.; Kryvenko, L.S. Automatic recognition of congestive heart failure signs in heart rate variability data. In Proceedings of the 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Abbosh, A.M.; Rezaeieh, S.A.; Bialkowski, K. Microwave techniques as diagnostic tool for congestive heart failure. In Proceedings of the 2014 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio2014), London, UK, 8–10 December 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Pairoch, S.; Pavitpok, S.; Wanluk, N.; Phasukkit, P. AI-Enhanced Driver Fatigue Detection Through Multi-Parameter Analysis: Integration of Radar-Based Heart Rate Monitoring and Deep Learning Techniques. In Proceedings of the 2025 17th Biomedical Engineering International Conference (BMEiCON), Chiang Mai, Thailand, 15–18 July 2025; pp. 1–4. [Google Scholar] [CrossRef]
- Różanowski, K.; Lewandowski, J.; Sondej, T.; Łuszczyk, M.; Szczepaniak, Z. Multisensor System for Monitoring Human Psychophysiologic State in Extreme Conditions with the Use of Microwave Sensor. In Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems, MIXDES 2012, Warsaw, Poland, 24–26 May 2012. [Google Scholar]
- Piotrowski, Z.; Szypulska, M. Classification of falling asleep states using HRV analysis. Biocybern. Biomed. Eng. 2017, 37, 290–301. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, C.; Lee, B. Tracking driver’s heart rate by continuous-wave Doppler radar. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2016, 2016, 5417–5420. [Google Scholar] [CrossRef] [PubMed]
- Kanakapura Sriranga, A.; Lu, Q.; Birrell, S. Enhancing Heart Rate Detection in Vehicular Settings Using FMCW Radar and SCR-Guided Signal Processing. Sensors 2025, 25, 5885. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brandstetter, J.; Knoch, E.M.; Gauterin, F. Heart Rate Estimation Using FMCW Radar: A Two-Stage Method Evaluated for In-Vehicle Applications. Biomimetics 2025, 10, 630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parralejo, F.; Paredes, J.A.; Álvarez, F.J.; Rajab, K.Z.; Dogu, E. Challenges Behind Heart Rate Extraction Using mmWave Radar Due to External Factors. In Proceedings of the 2025 IEEE Medical Measurements & Applications (MeMeA), Chania, Greece, 28–30 May 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Turgul, V.; Kale, I. Simulating the Effects of Skin Thickness and Fingerprints to Highlight Problems with Non-Invasive RF Blood Glucose Sensing from Fingertips. IEEE Sens. J. 2017, 17, 7553–7560. [Google Scholar] [CrossRef]
- Turgul, V.; Kale, I. RF/Microwave Non-invasive Blood Glucose Monitoring: An Overview of the Limitations, Challenges & State-of-the-Art. In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Dima, R.; Costanzo, S.; Solimene, R. Dielectric Models of Blood-Glucose Solutions: A Systematic Literature Review. IEEE Access 2024, 12, 163056–163077. [Google Scholar] [CrossRef]
- Szypulska, M.; Piotrowski, Z. Prediction of fatigue and sleep onset using HRV analysis. In Proceedings of the 19th International Conference Mixed Design of Integrated Circuits and Systems—MIXDES 2012, Warsaw, Poland, 24–26 May 2012; pp. 543–546. [Google Scholar]
- Shinar, Z.; Baharav, A.; Akselrod, S. Changes in autonomic nervous system activity and in electro-cortical activity during sleep onset. In Proceedings of the Computers in Cardiology, 2003, Thessaloniki, Greece, 21–24 September 2003; pp. 303–306. [Google Scholar] [CrossRef]
- Park, J.; Ham, J.-W.; Park, S.; Kim, D.-H.; Park, S.-J.; Kang, H.; Park, S.-O. Polyphase-Basis Discrete Cosine Transform for Real-Time Measurement of Heart Rate with CW Doppler Radar. IEEE Trans. Microw. Theory Tech. 2018, 66, 1644–1659. [Google Scholar] [CrossRef]
- Dong, S.; Lu, J.; Li, Y.; Ji, C.; Yuan, C.; Zhao, D.; Wang, M.; Chen, J.; Gu, C.; Mao, J.-F. Accurate Fast Heartrate Detection Based on Fourier Bessel Series Expansion During Radar-based Sleep Monitoring. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium—IMS 2023, San Diego, CA, USA, 11–16 June 2023; pp. 1196–1199. [Google Scholar] [CrossRef]
- Dong, S.; Li, Y.; Lu, J.; Zhang, Z.; Gu, C.; Mao, J. Accurate Detection of Doppler Cardiograms with a Parameterized Respiratory Filter Technique Using a K-Band Radar Sensor. IEEE Trans. Microw. Theory Tech. 2023, 71, 71–82. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, Y.; Ma, C.; Zhu, C.; Gu, Z.; Lv, Q.; Zhang, B.; Li, C.; Ran, L. Doppler Cardiogram: A Remote Detection of Human Heart Activities. IEEE Trans. Microw. Theory Tech. 2020, 68, 1132–1141. [Google Scholar] [CrossRef]
- Cho, K.J.; Asada, H.H. Wireless, battery-less stethoscope for wearable health monitoring. In Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), Philadelphia, PA, USA, 21 April 2002; pp. 187–188. [Google Scholar] [CrossRef]
- Park, C.S.; Kim, H.; Lee, K.; Keum, D.S.; Jang, D.P.; Kim, J.J. A 145.2dB-DR Baseline-Tracking Impedance Plethysmogram IC for Neckband-Based Blood Pressure and Cardiovascular Monitoring. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Nagae, D.; Mase, A. Measurement of vital signal by microwave reflectometry and application to stress evaluation. In Proceedings of the 2009 Asia Pacific Microwave Conference, Singapore, 7–10 December 2009; pp. 477–480. [Google Scholar] [CrossRef]
- Tateishi, N.; Mase, A.; Bruskin, L.; Kogi, Y.; Ito, N.; Shirakata, T.; Yoshida, S. Microwave Measurement of Heart Beat and Analysis Using Wavelet Transform. In Proceedings of the 2007 Asia-Pacific Microwave Conference, Bangkok, Thailand, 11–14 December 2007; pp. 2151–2153. [Google Scholar] [CrossRef]
- Lubecke, O.B.; Ong, P.-W.; Lubecke, V.M. 10 GHz Doppler radar sensing of respiration and heart movement. In Proceedings of the IEEE 28th Annual Northeast Bioengineering Conference (IEEE Cat. No.02CH37342), Philadelphia, PA, USA, 21 April 2002; pp. 55–56. [Google Scholar] [CrossRef]
- Chen, K.-M.; Misra, D.; Wang, H.; Chuang, H.-R.; Postow, E. An X-Band Microwave Life-Detection System. IEEE Trans. Biomed. Eng. 1986, BME-33, 697–701. [Google Scholar] [CrossRef]
- Lin, J.C.; Kiernicki, J.; Kiernicki, M.; Wollschlaeger, P.B. Microwave Apexcardiography. IEEE Trans. Microw. Theory Tech. 1979, 27, 618–620. [Google Scholar] [CrossRef]
- Benchimol, A.; Dimond, E.G. The apex cardiogram in ischaemic heart disease. Br. Heart J. 1962, 24, 581–594. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.; Guan, R.; Li, L.; Yang, R.; Yue, Y.; Lim, E.G. radarODE: An ODE-Embedded Deep Learning Model for Contactless ECG Reconstruction from Millimeter-Wave Radar. IEEE Trans. Mob. Comput. 2025, 24, 9806–9821. [Google Scholar] [CrossRef]
- Bao, S.-D.; Zhang, Y.-T.; Shen, L.-F. Physiological Signal Based Entity Authentication for Body Area Sensor Networks and Mobile Healthcare Systems. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 2455–2458. [Google Scholar] [CrossRef]
- Repcik, T.; Polakova, V.; Waloszek, V.; Nohel, M.; Smital, L.; Martin, V.; Kolar, R. Biometric Authentication Using the Unique Characteristics of the ECG Signal. In Proceedings of the 2020 Computing in Cardiology, Rimini, Italy, 13–16 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- McDuff, D. Using Non-Contact Imaging Photoplethysmography to Recover Diurnal Patterns in Heart Rate. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 6830–6833. [Google Scholar] [CrossRef]
- Chen, L.; Gribok, A.; Reisner, A.T.; Reifman, J. Exploiting the existence of temporal heart-rate patterns for the detection of trauma-induced hemorrhage. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2865–2868. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, T.; Luan, T.H.; Lyu, M.; Li, Y. HeartPrint: Exploring a Heartbeat-Based Multiuser Authentication with Single mmWave Radar. IEEE Internet Things J. 2022, 9, 25324–25336. [Google Scholar] [CrossRef]
- Zahedi, A.; Liyanapathirana, R.; Thiyagarajan, K. Biodegradable and Renewable Antennas for Green IoT Sensors: A Review. IEEE Access 2024, 12, 189749–189775. [Google Scholar] [CrossRef]
- Wagih, M.; Balocchi, L.; Benassi, F.; Carvalho, N.B.; Chiao, J.-C.; Correia, R.; Costanzo, A.; Cui, Y.; Georgiadou, D.; Gouveia, C.; et al. Microwave-Enabled Wearables: Underpinning Technologies, Integration Platforms, and Next-Generation Roadmap. IEEE J. Microw. 2023, 3, 193–226. [Google Scholar] [CrossRef]
- U, S.; Sp, S.; J, K.; M, P. Design and Development of a Flexible Antenna for 5G Wearable Devices. In Proceedings of the 2025 3rd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA), Namakkal, India, 29–30 April 2025; pp. 1–5. [Google Scholar] [CrossRef]
- Briasoulis, A.; Bampatsias, D.; Papamichail, A.; Kuno, T.; Skoularigis, J.; Xanthopoulos, A.; Triposkiadis, F. Invasive and Non-Invasive Diagnostic Pathways in the Diagnosis of Cardiac Amyloidosis. J. Cardiovasc. Dev. Dis. 2023, 10, 256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaddam, S.; Samaddar, P.; Gopalakrishnan, K.; Damani, D.; Shivaram, S.; Dey, S.; Mitra, D.; Roy, S.; Arunachalam, S.P. Towards Real-Time Monitoring of Thermal Ablation Lesions in Liver Using Microwave Imaging. In Proceedings of the 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 23–28 July 2023; pp. 1109–1110. [Google Scholar] [CrossRef]
- Basari; Pratama, A.S.; Aisyah, S.H.; Zulkifli, F.Y.; Rahardjo, E.T. Evaluation on microwave imaging system by using ultrawideband antenna. In Proceedings of the 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, Taiwan, 21–23 September 2015; pp. 131–132. [Google Scholar] [CrossRef]
- Pratama, A.S.; Basari; Lubis, M.F.S.; Zulkifli, F.Y.; Rahardjo, E.T. A UWB antenna for microwave brain imaging. In Proceedings of the 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), Bali, Indonesia, 30 June–3 July 2015; pp. 326–327. [Google Scholar] [CrossRef]
- Lin, J.C. Applying telecommunication technology to health-care delivery. IEEE Eng. Med. Biol. Mag. 1999, 18, 28–31. [Google Scholar] [CrossRef]
- Bashshur, R.L.; Reardon, T.G.; Shannon, G.W. Telemedicine: A new health care delivery system. Annu. Rev. Public. Health 2000, 21, 613–637. [Google Scholar] [CrossRef] [PubMed]
- Fidrich, M.; Gyimothy, T.; Borbas, J.; Stubnya, G. Structured telemedicine: Economic aspects. In Proceedings of the 2017 IEEE 30th Neumann Colloquium (NC), Budapest, Hungary, 24–25 November 2017; pp. 000099–000104. [Google Scholar] [CrossRef]
- Schepps, J.; Rosen, A. Microwave industry outlook—Wireless communications in healthcare. IEEE Trans. Microw. Theory Tech. 2002, 50, 1044–1045. [Google Scholar] [CrossRef]
- Rezaeieh, S.A.; Abbosh, A.M. Wideband and Unidirectional Folded Antenna for Heart Failure Detection System. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 844–847. [Google Scholar] [CrossRef]
- M., M.A.-A.; Alathbah, M.; Taher, F.; Sree, M.F.A.; Alghamdi, T.; Elshatlawy, S.Y. Advancements in Microwave Technology for Congestive Heart Failure Diagnosis. In Proceedings of the 2024 International Telecommunications Conference (ITC-Egypt), Cairo, Egypt, 22–25 July 2024; pp. 774–780. [Google Scholar] [CrossRef]
- Allam, A.M.M.A.; Ghanem, M.; Fawzy, D.E.; Raafat, M.A.; Abbas, M.A.; Sree, M.F.A.; El-Din, M. Design and Implementation of Smart Watch Textile Antenna for Wi-Fi Bio Medical Applications in Millimetric Wave Band. In Proceedings of the 2023 10th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkiye, 8–10 May 2023; pp. 268–272. [Google Scholar] [CrossRef]
- Xu, D.; Yu, W.; Deng, C.; He, Z.S. Non-Contact Detection of Vital Signs Based on Improved Adaptive EEMD Algorithm (July 2022). Sensors 2022, 22, 6423. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thi Phuoc Van, N.; Tang, L.; Demir, V.; Hasan, S.F.; Duc Minh, N.; Mukhopadhyay, S. Review-Microwave Radar Sensing Systems for Search and Rescue Purposes. Sensors 2019, 19, 2879. [Google Scholar] [CrossRef]
- Chen, K.M.; Huang, Y.; Zhang, J.; Norman, A. Microwave life-detection systems for searching human subjects under earthquake rubble or behind barrier. IEEE Trans. Biomed. Eng. 2000, 47, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, L.; Zeng, Z.; Liu, F. Advanced Signal Processing for Vital Sign Extraction with Applications in UWB Radar Detection of Trapped Victims in Complex Environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 783–791. [Google Scholar] [CrossRef]
- Gu, C. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review. Sensors 2016, 16, 1169. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pramanik, S.K.; Islam, S.M.M. Through the wall human heart beat detection using single channel CW radar. Front. Physiol. 2024, 15, 1344221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Putra, D.; Fahruzi, I. Design and Implementation Internet of Medical Things for Heart Rate Monitoring System using Arduino and GSM Network. In Proceedings of the 2021 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarangin, Indonesia, 18–19 September 2021; pp. 48–53. [Google Scholar] [CrossRef]
- Tshali, D.; Sumbwanyambe, M.; Hlalelef, T.S. Towards a GSM enabled remote monitoring medical system. In Proceedings of the 2018 3rd Biennial South African Biomedical Engineering Conference (SAIBMEC), Stellenbosch, South Africa, 4–6 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Surducan, V.; Surducan, E. Low-Cost Microwave Power Generator for Scientific and Medical Use [Application Notes]. IEEE Microw. Mag. 2013, 14, 124–130. [Google Scholar] [CrossRef]
- Ellison, B.; Gibson, C.; Grant, N.; Hyland, G.; Magee, J.; Pooley, D.; Stewart, B. An investigation into the non-thermal biological effects and medical applications of microwave radiation. In Proceedings of the 1999 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Rio de Janeiro, Brazil, 9–12 August 1999; Volume 1, pp. 57–62. [Google Scholar] [CrossRef]

| Microwave Technique | Typical Frequency/Configuration | Main Measured Parameters | Main Advantages | Main Limitations and Challenges |
|---|---|---|---|---|
| CW Doppler radar (including DCG and HRV) | Narrowband CW radar, typically 10–24 GHz, single or few antennas | Heart rate, Doppler cardiogram, respiration, HRV | Simple and low-cost hardware; high sensitivity to sub-millimeter chest motion; real-time operation | Susceptible to body motion and clutter; limited range and angular resolution; usually single-subject; requires careful calibration and phase unwrapping |
| FMCW/mmWave radar (incl. MIMO systems) | FMCW radar in the 60–81 GHz band, often MIMO arrays | Range-resolved heart and respiration rate, multi-person vital signs | Provides distance and angle information; supports simultaneous monitoring of several people; high spatial resolution | Higher hardware complexity and cost; demanding DSP and calibration; performance affected by clothing, orientation, and multipath |
| IR-UWB radar | Impulse-radio UWB, e.g., 6.5–8 GHz wideband pulses | Respiration rate, heart rate, HRV | High temporal resolution; good robustness to multipath; safe low-power operation | Large occupied bandwidth and regulatory constraints; moderate HR accuracy compared to ECG; requires sophisticated signal processing and denoising |
| Microwave reflectometry | Wideband reflectometer with quadrature phase detection | Heart rate, respiration, HRV, stress indicators | Fully contactless; extracts both amplitude and phase; relatively simple antenna configuration; suitable for long-term monitoring | Limited to short ranges near the chest; sensitive to posture and anatomical variability; needs advanced algorithms to separate overlapping cardiac and respiratory components |
| Microwave imaging systems (cardiac/pulmonary) | Arrays of UWB antennas around thorax, tomography, or radar imaging | Distribution of tissue permittivity, fluid accumulation (e.g., CHF, lung water) | Non-ionizing alternative to X-ray/CT; can visualize structural and functional changes; potential for early detection of disease | Complex multi-antenna hardware; computationally intensive reconstruction; sensitivity to modeling errors and patient motion; clinical validation still limited |
| Long-range life-detection X-band radar | CW or pulsed radar, 8–10 GHz, often with high-gain antennas | Presence of life, respiration, and coarse heart motion at tens of meters | Operation through debris and non-metallic walls; large detection range; useful in search-and-rescue scenarios | Limited physiological detail; prone to false alarms from moving clutter; bulky hardware and power requirements; not suited to everyday personal monitoring |
| Electromagnetic–acoustic (EMA) sensing | Hybrid EM and acoustic/thermoacoustic sensors, chip-scale radars | Combined mechanical, thermal, and bioelectrical activity | Simultaneous access to complementary modalities (radar + ultrasound/thermoacoustics); high information content; promising for home and telemedicine monitoring | Technology is still in the research stage; complex sensor design and signal fusion; calibration and safety aspects need further study before large-scale clinical deployment |
| Wearable/textile microwave sensors | Integrated narrowband or UWB antennas on flexible substrates (cotton, denim, textiles) | Heart rate, respiration, lung water level, sometimes ECG-like signals | Comfortable, unobtrusive, suitable for continuous monitoring; can be integrated into clothing; low power; compatible with IoT wearables | Performance depends on textile properties, body fit, and movement; SAR and safety constraints; fabrication variability; long-term durability and washing resistance must be addressed |
| Design Aspect | Static/Sitting Scenarios | Dynamic/Mobile Scenarios |
|---|---|---|
| Primary Challenge | Low Signal-to-Noise Ratio (SNR); detecting weak micro-vibrations. | Low Signal-to-Interference Ratio (SIR); suppressing strong motion artifacts. |
| Receiver Dynamic Range | Standard; clutter is mostly static and can be filtered. | High Dynamic Range (HDR); required to prevent saturation from fluctuating clutter. |
| Antenna Configuration | High-gain, narrow-beam antennas (fixed focus). | Wide-beam or Adaptive MIMO Beamforming (spatial tracking). |
| Preferred Frequency | mmWave (e.g., 60–80 GHz) for maximum sensitivity to displacement. | Lower Microwave (e.g., 2.4–10 GHz) to minimize phase wrapping errors during large movements. |
| Signal Processing | Basic Spectral Analysis (FFT, Peak Detection). | Multi-stage: Blind Source Separation (BSS), Adaptive Filtering (LMS/RLS), Kalman Tracking. |
| Motion Compensation | Not required (subject is still). | Critical; often requires Sensor Fusion (Radar + IMU/Camera). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ostrysz, M.; Szczepaniak, Z.; Sondej, T. Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review. Sensors 2026, 26, 359. https://doi.org/10.3390/s26020359
Ostrysz M, Szczepaniak Z, Sondej T. Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review. Sensors. 2026; 26(2):359. https://doi.org/10.3390/s26020359
Chicago/Turabian StyleOstrysz, Marek, Zenon Szczepaniak, and Tadeusz Sondej. 2026. "Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review" Sensors 26, no. 2: 359. https://doi.org/10.3390/s26020359
APA StyleOstrysz, M., Szczepaniak, Z., & Sondej, T. (2026). Non-Contact Measurement of Human Vital Signs in Dynamic Conditions Using Microwave Techniques: A Review. Sensors, 26(2), 359. https://doi.org/10.3390/s26020359

