Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,478)

Search Parameters:
Keywords = Industrial Internet of Things (IoT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2000 KB  
Review
Real-Time Digital Twins for Intelligent Fault Diagnosis and Condition-Based Monitoring of Electrical Machines
by Shahin Hedayati Kia, Larisa Dunai, José Alfonso Antonino-Daviu and Hubert Razik
Energies 2025, 18(17), 4637; https://doi.org/10.3390/en18174637 (registering DOI) - 31 Aug 2025
Abstract
This article presents an overview of selected research focusing on digital real-time simulation (DRTS) in the context of digital twin (DT) realization with the primary aim of enabling the intelligent fault diagnosis (FD) and condition-based monitoring (CBM) of electrical machines. The concept of [...] Read more.
This article presents an overview of selected research focusing on digital real-time simulation (DRTS) in the context of digital twin (DT) realization with the primary aim of enabling the intelligent fault diagnosis (FD) and condition-based monitoring (CBM) of electrical machines. The concept of standalone DTs in conventional multiphysics digital offline simulations (DoSs) is widely utilized during the conceptualization and development phases of electrical machine manufacturing and processing, particularly for virtual testing under both standard and extreme operating conditions, as well as for aging assessments and lifecycle analysis. Recent advancements in data communication and information technologies, including virtual reality, cloud computing, parallel processing, machine learning, big data, and the Internet of Things (IoT), have facilitated the creation of real-time DTs based on physics-based (PHYB), circuit-oriented lumped-parameter (COLP), and data-driven approaches, as well as physics-informed machine learning (PIML), which is a combination of these models. These models are distinguished by their ability to enable real-time bidirectional data exchange with physical electrical machines. This article proposes a predictive-level framework with a particular emphasis on real-time multiphysics modeling to enhance the efficiency of the FD and CBM of electrical machines, which play a crucial role in various industrial applications. Full article
29 pages, 1016 KB  
Article
Exploring an Effectively Established Green Building Evaluation System Through the Grey Clustering Model
by Chi Zhang, Wanqiang Dong, Wei Shen, Shenlong Gu, Yuancheng Liu and Yingze Liu
Buildings 2025, 15(17), 3095; https://doi.org/10.3390/buildings15173095 - 28 Aug 2025
Viewed by 99
Abstract
The current green building assessment system suffers from issues such as insufficient coverage of smart indicators, significant biases in subjective weighting, and weak dynamic adaptability, which restrict the scientific promotion of green buildings. This study focuses on the gaps in the quantitative assessment [...] Read more.
The current green building assessment system suffers from issues such as insufficient coverage of smart indicators, significant biases in subjective weighting, and weak dynamic adaptability, which restrict the scientific promotion of green buildings. This study focuses on the gaps in the quantitative assessment of smart technologies in China’s green building evaluation standards (such as the current Green Building Evaluation Standard). While domestic standards are relatively well-established in traditional dimensions like energy conservation and environmental protection, there are fragmentation issues in the assessment of smart technologies such as the Internet of Things (IoT) and BIM. Moreover, the coverage of smart indicators in non-civilian building fields is significantly lower than that of international systems such as LEED and BREEAM. This study determined the basic framework of the evaluation indicator system through the Delphi method. Drawing on international experience and contextualized within China’s (GB/T 50378-2019) standards, it systematically integrated secondary indicators including “smart security,” “smart energy,” “smart design,” and “smart services,” and constructed dual-drive evaluation dimensions of “greenization + smartization.” This elevated the proportion of the smartization dimension to 35%, filling the gap in domestic standards regarding the quantitative assessment of smart technologies. In terms of research methods, combined weighting using the Analytic Hierarchy Process (AHP) and entropy weight method was adopted to balance subjective and objective weights and reduce biases (the resource conservation dimension accounted for 39.14% of the combined weights, the highest proportion). By integrating the grey clustering model with the whitening weight function to handle fuzzy information, evaluations were categorized into four grey levels (D/C/B/A), enhancing the dynamic adaptability of the system. Case verification showed that Project A achieved a comprehensive evaluation score of 5.223, with a grade of B. Among its indicators, smart-related ones such as “smart energy” (37.17%) and “smart design” (37.93%) scored significantly higher than traditional indicators, verifying that the system successfully captured the project’s high performance in smart indicators. The research results indicate that the efficient utilization of resources is the core goal of green buildings. Especially under pressures of energy shortages and carbon emissions, energy conservation and resource recycling have become key priorities. The evaluation system constructed in this study can provide theoretical guidance and technical support for the promotion, industrial upgrading, and sustainable development of green buildings (including non-civilian buildings) under the dual-carbon goals. Its characteristic of “dynamic monitoring + smart integration” forms differentiated complementarity with international standards, making it more aligned with the needs of China’s intelligent transformation of buildings. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 4304 KB  
Article
Intelligent Early Warning System for Supplier Delays Using Dynamic IoT-Calibrated Probabilistic Modeling in Smart Engineer-to-Order Supply Chains
by Aicha Alaoua and Mohammed Karim
Appl. Syst. Innov. 2025, 8(5), 124; https://doi.org/10.3390/asi8050124 - 27 Aug 2025
Viewed by 254
Abstract
In increasingly complex Engineer-to-Order (EtO) supply chains, accurately predicting supplier delivery delays is essential for ensuring operational resilience. This study proposes an intelligent Internet of Things (IoT)-enhanced probabilistic framework for early warning and dynamic prediction of supplier lead times in smart manufacturing contexts. [...] Read more.
In increasingly complex Engineer-to-Order (EtO) supply chains, accurately predicting supplier delivery delays is essential for ensuring operational resilience. This study proposes an intelligent Internet of Things (IoT)-enhanced probabilistic framework for early warning and dynamic prediction of supplier lead times in smart manufacturing contexts. Within this framework, three novel Early Warning Systems (EWS) are introduced: the Baseline Probabilistic Alert System (BPAS) based on fixed thresholds, the Smart IoT-Calibrated Alert System (SIoT-CAS) leveraging IoT-driven calibration, and the Adaptive IoT-Driven Risk Alert System (AID-RAS) featuring real-time threshold adaptation. Supplier lead times are modeled using statistical distributions and dynamically adjusted with IoT data to capture evolving disruptions. A comprehensive Monte Carlo simulation was conducted across varying levels of lead time uncertainty (σ), alert sensitivity (Pthreshold), and delivery constraints (Lmax), generating over 1000 synthetic scenarios per configuration. The results highlight distinct trade-offs between predictive accuracy, sensitivity, and robustness: BPAS minimizes false alarms in stable environments, SIoT-CAS improves forecasting precision through IoT calibration, and AID-RAS maximizes detection capability and resilience under high-risk conditions. Overall, the findings advance theoretical understanding of adaptive, data-driven risk modeling in EtO supply chains and provide practical guidance for selecting appropriate EWS mechanisms based on operational priorities. Furthermore, they offer actionable insights for integrating predictive EWS into MES (Manufacturing Execution System) and digital control tower platforms, thereby contributing to both academic research and industrial best practices. Full article
Show Figures

Figure 1

32 pages, 3244 KB  
Article
Exploring Industry 4.0 Technologies Implementation to Enhance Circularity in Spanish Manufacturing Enterprises
by Juan-José Ortega-Gras, María-Victoria Bueno-Delgado, José-Francisco Puche-Forte, Josefina Garrido-Lova and Rafael Martínez-Fernández
Sustainability 2025, 17(17), 7648; https://doi.org/10.3390/su17177648 - 25 Aug 2025
Viewed by 589
Abstract
Industry 4.0 (I4.0) is reshaping manufacturing by integrating advanced digital technologies and is increasingly seen as an enabler of the circular economy (CE). However, most research treats digitalisation and circularity separately, with limited empirical insight regarding their combined implementation. This study investigates I4.0 [...] Read more.
Industry 4.0 (I4.0) is reshaping manufacturing by integrating advanced digital technologies and is increasingly seen as an enabler of the circular economy (CE). However, most research treats digitalisation and circularity separately, with limited empirical insight regarding their combined implementation. This study investigates I4.0 adoption to support sustainability and CE across industries, focusing on how enterprise size influences adoption patterns. Based on survey data from 69 enterprises, the research examines which technologies are applied, at what stages of the product life cycle, and what barriers and drivers influence uptake. Findings reveal a modest but growing adoption led by the Internet of Things (IoT), big data, and integrated systems. While larger firms implement more advanced tools (e.g., robotics and simulation), smaller enterprises favour accessible solutions (e.g., IoT and cloud computing). A positive link is observed between digital adoption and CE practices, though barriers remain significant. Five main categories of perceived obstacles are identified: political/institutional, financial, social/market-related, technological/infrastructural, and legal/regulatory. Attitudinal resistance, particularly in micro and small enterprises, emerges as an additional challenge. Based on these insights, and to support the twin transition, the paper proposes targeted policies, including expanded funding, streamlined procedures, enhanced training, and tools for circular performance monitoring. Full article
(This article belongs to the Special Issue Achieving Sustainability: Role of Technology and Innovation)
Show Figures

Figure 1

34 pages, 2219 KB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 - 24 Aug 2025
Viewed by 543
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

29 pages, 1620 KB  
Article
A Multi-Layer Quantum-Resilient IoT Security Architecture Integrating Uncertainty Reasoning, Relativistic Blockchain, and Decentralised Storage
by Gerardo Iovane
Appl. Sci. 2025, 15(16), 9218; https://doi.org/10.3390/app15169218 - 21 Aug 2025
Viewed by 366
Abstract
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, [...] Read more.
The rapid development of the Internet of Things (IoT) has enabled the implementation of interconnected intelligent systems in extremely dynamic contexts with limited resources. However, traditional paradigms, such as those using ECC-based heuristics and centralised decision-making frameworks, cannot be modernised to ensure resilience, scalability and security while taking quantum threats into account. In this case, we propose a modular architecture that integrates quantum-inspired cryptography (QI), epistemic uncertainty reasoning, the multiscale blockchain MuReQua, and the quantum-inspired decentralised storage engine (DeSSE) with fragmented entropy storage. Each component addresses specific cybersecurity weaknesses of IoT devices: quantum-resistant communication on epistemic agents that facilitate cognitive decision-making under uncertainty, lightweight adaptive consensus provided by MuReQua, and fragmented entropy storage provided by DeSSE. Tested through simulations and use case analyses in industrial, healthcare and automotive networks, the architecture shows exceptional latency, decision accuracy and fault tolerance compared to conventional solutions. Furthermore, its modular nature allows for incremental integration and domain-specific customisation. By adding reasoning, trust and quantum security, it is possible to design intelligent decentralised architectures for resilient IoT ecosystems, thereby strengthening system defences alongside architectures. In turn, this work offers a specific architectural response and a broader perspective on secure decentralised computing, even for the imminent advent of quantum computers. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 5372 KB  
Article
An IoT-Based System for Measuring Diurnal Gas Emissions of Laying Hens in Smart Poultry Farms
by Sejal Bhattad, Ahmed Abdelmoamen Ahmed, Ahmed A. A. Abdel-Wareth and Jayant Lohakare
AgriEngineering 2025, 7(8), 267; https://doi.org/10.3390/agriengineering7080267 - 21 Aug 2025
Viewed by 418
Abstract
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly [...] Read more.
It is critical to provide proper environmental conditions in poultry houses to maintain birds’ health, boost productivity, and improve the overall economic viability of the poultry industry. Among the myriad of environmental elements, indoor air quality has been a determining factor that directly affects poultry well-being. Elevated concentrations of harmful gases—in particular Carbon Dioxide (CO2), Methane (CH4), and Ammonia (NH3)—decomposition products of poultry litter, feed wastage, and biological processes have draconian effects on bird health, feed efficiency, the growth rate, reproduction efficiency, and mortality rate. Despite their importance, traditional air quality monitoring systems are often operated manually, labor intensive, and cannot detect sudden environmental changes due to the lack of real-time sensing. To overcome these limitations, this paper presents an interdisciplinary approach combining cloud computing, Artificial Intelligence (AI), and Internet of Things (IoT) technologies to measure real-time poultry gas concentrations. Real-time sensor feeds are transmitted to a cloud-based platform, which stores, displays, and processes the data. Furthermore, a machine learning (ML) model was trained using historical sensory data to predict the next-day gas emission levels. A web-based platform has been developed to enable convenient user interaction and display the gas sensory readings on an interactive dashboard. Also, the developed system triggers automatic alerts when gas levels cross safe environmental thresholds. Experimental results of CO2 concentrations showed a significant diurnal trend, peaking in the afternoon, followed by the evening, and reaching their lowest levels in the morning. In particular, CO2 concentrations peaked at approximately 570 ppm during the afternoon, a value that was significantly elevated (p < 0.001) compared to those recorded in the evening (~560 ppm) and morning (~555 ppm). This finding indicates a distinct diurnal pattern in CO2 accumulation, with peak concentrations occurring during the warmer afternoon hours. Full article
Show Figures

Figure 1

27 pages, 7467 KB  
Article
Bluetooth Protocol for Opportunistic Sensor Data Collection on IoT Telemetry Applications
by Pablo García-Rivada, Ángel Niebla-Montero, Paula Fraga-Lamas and Tiago M. Fernández-Caramés
Electronics 2025, 14(16), 3281; https://doi.org/10.3390/electronics14163281 - 18 Aug 2025
Viewed by 278
Abstract
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource [...] Read more.
With the exponential growth of Internet of Things (IoT) and wearable devices for home automation and industrial applications, vast volumes of data are continuously generated, requiring efficient data collection methods. IoT devices, being resource-constrained and typically battery-dependent, require lightweight protocols that optimize resource usage and energy consumption. Among such IoT devices, this article focuses on Bluetooth-based beacons due to their low latency and the advantage of not requiring pairing for communications. Specifically, to tackle the limitations of beacons in terms of bandwidth and transmission frequency, this article proposes a protocol that modifies beacon frames to include up to three parameters per frame and that allows for making use of configurable beaconing intervals based on the specific requirements of the communications scenario. Moreover, the use of the proposed protocol leads to increased data rates for beaconing transmissions, providing a low latency and a flexible configuration that permits adjusting different parameters. The proposed solution enables end-to-end interoperability in Opportunistic Edge Computing (OEC) networks by integrating a lightweight bridge module to transparently manage BLE advertisement segments. To demonstrate the performance of the devised opportunistic protocol, it is evaluated across multiple scenarios (i.e., in a short-distance reference scenario, inside a home with diverse obstacles, inside a building, outdoors and in an industrial scenario), showing its flexibility and ability to collect substantial data volumes from heterogeneous IoT devices. Full article
(This article belongs to the Special Issue Applications of Sensor Networks and Wireless Communications)
Show Figures

Figure 1

44 pages, 1541 KB  
Review
Unlocking the Commercialization of SAF Through Integration of Industry 4.0: A Technological Perspective
by Sajad Ebrahimi, Jing Chen, Raj Bridgelall, Joseph Szmerekovsky and Jaideep Motwani
Sustainability 2025, 17(16), 7325; https://doi.org/10.3390/su17167325 - 13 Aug 2025
Viewed by 1028
Abstract
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a [...] Read more.
Sustainable aviation fuel (SAF) has demonstrated significant potential to reduce carbon emissions in the aviation industry. Multiple national and international initiatives have been launched to accelerate SAF adoption, yet large-scale commercialization continues to face technological, operational, and regulatory barriers. Industry 4.0 provides a suite of advanced technologies that can address these challenges and improve SAF operations across the supply chain. This study conducts an integrative literature review to identify and synthesize research on the application of Industry 4.0 technologies in the production and distribution of SAF. The findings highlight that technologies such as artificial intelligence (AI), Internet of Things (IoT), blockchain, digital twins, and 3D printing can enhance feedstock logistics, optimize conversion pathways, improve certification and compliance processes, and strengthen overall supply chain transparency and resilience. By mapping these applications to the six key workstreams of the SAF Grand Challenge, this study presents a practical framework linking technological innovation to both strategic and operational aspects of SAF commercialization. Integrating Industry 4.0 solutions into SAF production and supply chains contributes to reducing life cycle greenhouse gas (GHG) emissions, strengthens low-carbon energy systems, and supports the United Nations Sustainable Development Goal 13 (SDG 13). The findings from this research offer practical guidance to policymakers, industry practitioners, investors, and technology developers seeking to accelerate the global shift toward carbon neutrality in aviation. Full article
Show Figures

Figure 1

27 pages, 3770 KB  
Article
Precision Time Interval Generator Based on CMOS Counters and Integration with IoT Timing Systems
by Nebojša Andrijević, Zoran Lovreković, Vladan Radivojević, Svetlana Živković Radeta and Hadžib Salkić
Electronics 2025, 14(16), 3201; https://doi.org/10.3390/electronics14163201 - 12 Aug 2025
Viewed by 585
Abstract
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor [...] Read more.
Precise time interval generation is a cornerstone of modern measurement, automation, and distributed control systems, particularly within Internet of Things (IoT) architectures. This paper presents the design, implementation, and evaluation of a low-cost and high-precision time interval generator based on Complementary Metal-Oxide Semiconductor (CMOS) logic counters (Integrated Circuit (IC) IC 7493 and IC 4017) and inverter-based crystal oscillators (IC 74LS04). The proposed system enables frequency division from 1 MHz down to 1 Hz through a cascade of binary and Johnson counters, enhanced with digitally controlled multiplexers for output signal selection. Unlike conventional timing systems relying on expensive Field-Programmable Gate Array (FPGA) or Global Navigation Satellite System (GNSS)-based synchronization, this approach offers a robust, locally controlled reference clock suitable for IoT nodes without network access. The hardware is integrated with Arduino and ESP32 microcontrollers via General-Purpose Input/Output (GPIO) level interfacing, supporting real-time timestamping, deterministic task execution, and microsecond-level synchronization. The system was validated through Python-based simulations incorporating Gaussian jitter models, as well as real-time experimental measurements using Arduino’s micros() function. Results demonstrated stable pulse generation with timing deviations consistently below ±3 µs across various frequency modes. A comparative analysis confirms the advantages of this CMOS-based timing solution over Real-Time Clock (RTC), Network Time Protocol (NTP), and Global Positioning System (GPS)-based methods in terms of local autonomy, cost, and integration simplicity. This work provides a practical and scalable time reference architecture for educational, industrial, and distributed applications, establishing a new bridge between classical digital circuit design and modern Internet of Things (IoT) timing requirements. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

22 pages, 1614 KB  
Proceeding Paper
Integrated Blockchain, IoT, and Green Hydrogen Approach for Sustainable and Connected Supply Chain—Application Case in Morocco
by Abdellah Tetouani, Achraf Taouil, Naoufal Rouky and Mouhsene Fri
Eng. Proc. 2025, 97(1), 55; https://doi.org/10.3390/engproc2025097055 - 11 Aug 2025
Viewed by 451
Abstract
The global energy transition and digitalization are reshaping traditional production and consumption paradigms. Green hydrogen is emerging as a key element for decarbonizing sectors like industry and transportation, offering a viable alternative to fossil fuels and a pathway toward mitigating climate change. However, [...] Read more.
The global energy transition and digitalization are reshaping traditional production and consumption paradigms. Green hydrogen is emerging as a key element for decarbonizing sectors like industry and transportation, offering a viable alternative to fossil fuels and a pathway toward mitigating climate change. However, implementing green hydrogen supply chains presents challenges related to traceability, operational efficiency, and process certification. This paper explores how blockchain and the Internet of Things can address these challenges and transform the green hydrogen supply chain. Using Morocco as a case study—a country with abundant renewable resources and a strategic focus on green hydrogen—this article proposes innovative technological solutions to support a sustainable energy transition and contribute to a more secure and energy-efficient future. We analyze the current state of research on blockchain, IoT, and green hydrogen, identify key areas for advancement, and present a proposed framework for integrating these technologies. Full article
Show Figures

Figure 1

22 pages, 706 KB  
Article
Technological Innovation and the Role of Smart Surveys in the Industrial Context
by Massimiliano Giacalone, Chiara Marciano, Claudia Pipino, Gianfranco Piscopo and Stefano Marra
Appl. Sci. 2025, 15(16), 8832; https://doi.org/10.3390/app15168832 - 11 Aug 2025
Viewed by 345
Abstract
Technological innovation has significantly transformed the field of statistics, not only in data analysis but also in data collection. Traditional methods based on direct observation have evolved into hybrid approaches that combine passively collected data (e.g., from GPS or accelerometers) with active user [...] Read more.
Technological innovation has significantly transformed the field of statistics, not only in data analysis but also in data collection. Traditional methods based on direct observation have evolved into hybrid approaches that combine passively collected data (e.g., from GPS or accelerometers) with active user input through digital interfaces. This evolution has led to Smart Surveys—next-generation tools that leverage smart devices, such as smartphones and wearables, to collect data actively (via questionnaires or images) and passively (via embedded sensors). Smart Surveys offer strategic value in industrial contexts by enabling real-time data collection on worker behavior, environments, and operational conditions. However, the heterogeneity of such data poses challenges in management, integration, and quality assurance. This study proposes a modular system architecture incorporating gamification elements to enhance user participation, particularly among hard-to-reach worker segments, such as mobile or shift workers. By leveraging motivational strategies and interactive feedback mechanisms, the system seeks to foster greater engagement while addressing critical data security and privacy concerns within industrial Internet of Things (IoT) environments. Full article
(This article belongs to the Special Issue Applications of Industrial Internet of Things (IIoT) Platforms)
Show Figures

Figure 1

31 pages, 5529 KB  
Review
Advancement in Functionalized Electrospun Nanofiber-Based Gas Sensors: A Review
by Yanjie Wang, Zhiqiang Lan, Jie Wang, Kun Zhu, Jian He, Xiujian Chou and Yong Zhou
Sensors 2025, 25(16), 4896; https://doi.org/10.3390/s25164896 - 8 Aug 2025
Viewed by 413
Abstract
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, [...] Read more.
In recent years, electrospinning technology has sparked a revolution in the nanoengineering of gas-sensing materials. Nanofibers based on metal oxide semiconductors, carbon materials, or conductive polymers prepared by the electrospinning process have exhibited inspiring properties, including a large specific surface area, porous structure, and nice stability, with bright application prospects in advanced gas sensors. Meanwhile, the increasingly expanding applications of gas sensors, such as the Internet of Things (IoT), the food industry, disease diagnosis, etc., have raised higher sensor performance requirements. To further enhance the gas-sensing performance of nanofibers, the scheme of functionalized nanofiber strategies, either in electrospinning or post-treatment, has been proposed and verified. This review systematically summarized the nanostructures, gas-sensing properties, and functional mechanisms of modified nanofibers. Additionally, the perspectives and challenges regarding electrospun nanofibers for gas sensing were discussed. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Graphical abstract

25 pages, 663 KB  
Systematic Review
IoT Devices and Their Impact on Learning: A Systematic Review of Technological and Educational Affordances
by Dimitris Tsipianitis, Anastasia Misirli, Konstantinos Lavidas and Vassilis Komis
IoT 2025, 6(3), 45; https://doi.org/10.3390/iot6030045 - 7 Aug 2025
Viewed by 847
Abstract
A principal factor of the fourth Industrial Revolution is the Internet of Things (IoT), a network of “smart” objects that communicate by exchanging helpful information about themselves and their environment. Our research aims to address the gaps in the existing literature regarding the [...] Read more.
A principal factor of the fourth Industrial Revolution is the Internet of Things (IoT), a network of “smart” objects that communicate by exchanging helpful information about themselves and their environment. Our research aims to address the gaps in the existing literature regarding the educational and technological affordances of IoT applications in learning environments in secondary education. Our systematic review using the PRISMA method allowed us to extract 25 empirical studies from the last 10 years. We present the categorization of educational and technological affordances, as well as the devices used in these environments. Moreover, our findings indicate widespread adoption of organized educational activities and design-based learning, often incorporating tangible interfaces, smart objects, and IoT applications, which enhance student engagement and interaction. Additionally, we identify the impact of IoT-based learning on knowledge building, autonomous learning, student attitude, and motivation. The results suggest that the IoT can facilitate personalized and experiential learning, fostering a more immersive and adaptive educational experience. Based on these findings, we discuss key recommendations for educators, policymakers, and researchers, while also addressing this study’s limitations and potential directions for future research. Full article
Show Figures

Figure 1

36 pages, 5003 KB  
Article
Towards Smart Wildfire Prevention: Development of a LoRa-Based IoT Node for Environmental Hazard Detection
by Luis Miguel Pires, Vitor Fialho, Tiago Pécurto and André Madeira
Designs 2025, 9(4), 91; https://doi.org/10.3390/designs9040091 - 5 Aug 2025
Viewed by 549
Abstract
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet [...] Read more.
The increase in the number of wildfires in recent years in different parts of the world has caused growing concern among the population, since the consequences of these fires go beyond the destruction of the ecosystem. With the growing relevance of the Internet of Things (IoT) industry, developing solutions for the early detection of fires is of critical importance. This paper proposes a low-cost network based on Long-Range (LoRa) technology to autonomously assess the level of fire risk and the presence of a fire in rural areas. The system consists of several LoRa nodes with sensors to measure environmental variables such as temperature, humidity, carbon monoxide, air quality, and wind speed. The data collected is sent to a central gateway, where it is stored, processed, and later sent to a website for graphical visualization of the results. In this paper, a survey of the requirements of the devices and sensors that compose the system was made. After this survey, a market study of the available sensors was carried out, ending with a comparison between the sensors to determine which ones met the objectives. Using the chosen sensors, a study was made of possible power solutions for this prototype, considering the expected conditions of use. The system was tested in a real environment, and the results demonstrate that it is possible to cover a circular area with a radius of 2 km using a single gateway. Our system is prepared to trigger fire hazard alarms when, for example, the signals for relative humidity, ambient temperature, and wind speed are below or equal to 30%, above or equal to 30 °C, and above or equal to 30 m/s, respectively (commonly known as the 30-30-30 rule). Full article
Show Figures

Figure 1

Back to TopTop