Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (687)

Search Parameters:
Keywords = ICP-MS method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 340 KB  
Article
Ultra-Sensitive Analysis of Organophosphorus Compounds by Comparative GC-FPD and GC-ICP-MS: Implications for Chemical Warfare Agent Detection
by Michał Wiktorko, Piotr Kot, Anna Puchała, Patrycja Bryczek-Wróbel, Klaudia Izabela Rzadkowska and Barbara Wiaderek
Molecules 2025, 30(20), 4086; https://doi.org/10.3390/molecules30204086 - 14 Oct 2025
Abstract
Organophosphorus chemical warfare agents such as sarin (GB), soman (GD), and cyclosarin (GF) rank among the most toxic substances known, making trace-level detection critical for public and military safety. In this study, we compared the sensitivity of two analytical techniques for determining these [...] Read more.
Organophosphorus chemical warfare agents such as sarin (GB), soman (GD), and cyclosarin (GF) rank among the most toxic substances known, making trace-level detection critical for public and military safety. In this study, we compared the sensitivity of two analytical techniques for determining these nerve agents: gas chromatography with flame-photometric detection (GC-FPD) and gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Diluted samples of sarin, soman, and cyclosarin were prepared under controlled laboratory conditions and then analyzed by both methods. Limits of detection, calibration linearity, and selectivity of the two approaches were evaluated. It was shown that GC-ICP-MS enabled detection of sarin, soman, and cyclosarin at ≈0.12–0.14 ng/mL (LOD), whereas GC-FPD achieved LODs of ≈0.36–0.43 ng/mL. The obtained results confirm that GC-ICP-MS exhibits significantly higher sensitivity than GC-FPD in the analysis of the chemical warfare agents under study. This advantage indicates strong application potential of GC-ICP-MS as a technique for ultra-sensitive detection of trace amounts of chemical warfare agents (CWAs) in environmental samples and in confirmatory testing for compliance with the CWC, while simultaneously employing GC-FPD for rapid preliminary monitoring. Full article
Show Figures

Figure 1

14 pages, 1280 KB  
Article
Synthesis and Characterization of Silica Obtained by Combined Acid–Alkali Treatment of Serpentinite
by Abdrazakh Auyeshov, Kazhmukhan Arynov, Chaizada Yeskibayeva, Aitkul Ibrayeva and Elmira Dzholdasova
Molecules 2025, 30(20), 4076; https://doi.org/10.3390/molecules30204076 - 14 Oct 2025
Viewed by 59
Abstract
Serpentinite rocks and their processing waste represent a valuable source of magnesium and silicon; however, their complex composition complicates the efficient recovery of individual components. This study investigates the combined acid–alkali processing of serpentinite waste from the Zhitikara deposit (Kazakhstan). In the acid [...] Read more.
Serpentinite rocks and their processing waste represent a valuable source of magnesium and silicon; however, their complex composition complicates the efficient recovery of individual components. This study investigates the combined acid–alkali processing of serpentinite waste from the Zhitikara deposit (Kazakhstan). In the acid leaching stage, sulfuric acid enables magnesium extraction, while subsequent treatment with sodium hydroxide (NaOH) facilitates the selective recovery of silica gel formed during acid attack. At the final neutralization step, amorphous silica is precipitated with a yield exceeding 60% of its initial content. The obtained silica was characterized using FTIR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS, Thermo iCAP-Q), and nitrogen adsorption measurements via the BET method. It was established that the synthesized silica gel, according to the IUPAC classification, belongs to mesoporous materials, possesses a well-developed specific surface area (400 m2·g−1), and is suitable for adsorption and catalytic applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 1026 KB  
Article
Multi-Criteria Evaluation of Bioavailable Trace Elements in Fine and Coarse Particulate Matter: Implications for Sustainable Air-Quality Management and Health Risk Assessment
by Elwira Zajusz-Zubek and Zygmunt Korban
Sustainability 2025, 17(20), 9045; https://doi.org/10.3390/su17209045 (registering DOI) - 13 Oct 2025
Viewed by 105
Abstract
Bioavailable fractions of particulate-bound trace elements are key determinants of inhalation toxicity, yet air-quality assessments typically rely on total metal concentrations, which may underestimate health risks. This study integrates the exchangeable (F1) and reducible (F2) fractions of trace elements in fine (PM2.5 [...] Read more.
Bioavailable fractions of particulate-bound trace elements are key determinants of inhalation toxicity, yet air-quality assessments typically rely on total metal concentrations, which may underestimate health risks. This study integrates the exchangeable (F1) and reducible (F2) fractions of trace elements in fine (PM2.5) and coarse (PM10) particulate matter with multi-criteria decision-making (TOPSIS) and similarity-based classification (Czekanowski’s method). Archival weekly-integrated samples from the summer season were collected at eight industrially influenced sites in southern Poland. Sequential extraction (F1–F2) and ICP-MS were applied to quantify concentrations of cadmium, cobalt, chromium, nickel, and lead in PM2.5 and PM10. Aggregated hazard values were then derived with TOPSIS, and site similarity was explored using Czekanowski’s reordered distance matrices. Regulatory targets for cadmium and nickel, and the limit for lead in PM10 were not exceeded, but F1/F2 profiles revealed pronounced site-to-site differences in potential mobility that were not evident from total concentrations. Rankings were consistent across size fractions, with site P1 exhibiting the lowest hazard indices and P8 the highest, while mid-rank sites formed reproducible similarity clusters. The proposed chemical-fractionation and multivariate framework provides a reproducible screening tool for multi-element exposure, complementing compliance checks and supporting prioritisation of sites for targeted investigation and environmental management. In the sustainability context, bioavailability-based indicators strengthen air-quality assessment by linking monitoring data with health-relevant and cost-effective management strategies, supporting efficient resource allocation and reducing exposure in vulnerable populations. Full article
Show Figures

Figure 1

13 pages, 2455 KB  
Article
Spatial Distribution of Uranium and Thorium in the Soils of North Macedonia
by Trajče Stafilov and Robert Šajn
Minerals 2025, 15(10), 1063; https://doi.org/10.3390/min15101063 - 9 Oct 2025
Viewed by 279
Abstract
The aim of the study was to determine the spatial distribution and assess uranium and thorium contamination in the soils of North Macedonia. Topsoil samples (0–30 cm) were collected from 995 locations across the country on a 5 × 5 km grid. The [...] Read more.
The aim of the study was to determine the spatial distribution and assess uranium and thorium contamination in the soils of North Macedonia. Topsoil samples (0–30 cm) were collected from 995 locations across the country on a 5 × 5 km grid. The soil samples were analysed by inductively coupled plasma–mass spectrometry (ICP-MS) using the total digestion method. The distribution of uranium and thorium in the soils is discussed according to the country’s 8 statistical regions, 15 major geological formations and 13 pedological units. The average uranium content is 2.1 mg/kg, ranging from <0.1 to 13 mg/kg (median 2.0 mg/kg), while the average thorium content is 9.3 mg/kg, ranging from 0.20 to 92 mg/kg (median 9.5 mg/kg). The spatial distribution patterns of U and Th in the soils of North Macedonia are very similar and are determined by geology (parent material and mineralisation). High uranium (2.9–13 mg/kg) and thorium (42–92 mg/kg) contents were found mainly in soils in the areas of Neogene and Palaeozoic igneous rocks and Neogene clastites (Pelagonian, East Macedonian zone), as well as in the Kratovo-Zletovo Massif in the north-eastern part of the country and in the Kožuf Mountains in the central and southern parts, where Neogene igneous rocks predominate. According to the pedological units, the hydromorphic soils (mean content of 2.9 mg/kg U and 12 mg/kg Th) in the valleys of the country’s main rivers, which predominate in the western part, were the richest for these elements. Full article
Show Figures

Figure 1

29 pages, 1446 KB  
Article
Advanced Multimodeling for Isotopic and Elemental Content of Fruit Juices
by Ioana Feher, Adriana Dehelean, Romulus Puscas, Dana Alina Magdas, Viorel Tamas and Gabriela Cristea
Beverages 2025, 11(5), 145; https://doi.org/10.3390/beverages11050145 - 9 Oct 2025
Viewed by 272
Abstract
The aim of the present study was to test the prediction ability of three different supervised chemometric algorithms, such as linear discriminant analysis (LDA), k-nearest Neighbor (k-NN) and artificial neural networks (ANNs), for fruit juice classification and differentiation, based on isotopic and multielemental [...] Read more.
The aim of the present study was to test the prediction ability of three different supervised chemometric algorithms, such as linear discriminant analysis (LDA), k-nearest Neighbor (k-NN) and artificial neural networks (ANNs), for fruit juice classification and differentiation, based on isotopic and multielemental content. To accomplish this, a large experimental dataset was analyzed using inductively coupled plasma mass spectrometry (ICP-MS) together with isotope ratio mass spectrometry (IRMS), and a low data fusion approach was applied. Three classifications were tested, namely the following: (i) fruit differentiation of different juice types; (ii) apple and orange juice differentiation; and (iii) distinguishing between processed versus directly pressed apple juices. The results demonstrated that ANNs can offer the most accurate results, compared with LDA and k-NN, for all three cases of classification, highlighting once again the advantages of deep learning models for modeling complex data. The work revealed the higher potential of advanced chemometric methods for accurate classification of fruit juices, compared with traditional approaches. This approach could represent a realistic tool for ensuring the juice’s quality and safety, along with complying with regulations and combating fraud. Full article
Show Figures

Graphical abstract

9 pages, 704 KB  
Article
Effect of Mid-Frequency and Inductively Coupled Plasma on the Properties of Molybdenum Nitride Thin Films
by Sung-Yong Chun
Coatings 2025, 15(10), 1155; https://doi.org/10.3390/coatings15101155 - 3 Oct 2025
Viewed by 277
Abstract
This study focuses on the characterization of MoN thin films deposited by the direct current magnetron sputtering (dcMS), mid-frequency magnetron sputtering (mfMS), and inductively coupled plasma magnetron sputtering (ICPMS) methods. Two mixed metallic phases, namely, α-Mo and γ-Mo2N, were detected from [...] Read more.
This study focuses on the characterization of MoN thin films deposited by the direct current magnetron sputtering (dcMS), mid-frequency magnetron sputtering (mfMS), and inductively coupled plasma magnetron sputtering (ICPMS) methods. Two mixed metallic phases, namely, α-Mo and γ-Mo2N, were detected from the film obtained using the dcMS, whereas only single γ-Mo2N phase was detected from the films obtained using the mfMS and ICPMS. Furthermore, the residual stress of the deposited thin films was strongly dependent on the sputtering process. As the mfMS and ICPMS deposition process were introduced, the film morphology changed from a porous columnar to a dense structure with finer grains than film deposited using dcMS. The surface roughness and crystal grain size of coated films were investigated by atomic force microscopy and X-ray diffraction analysis methods. Furthermore, the variation in hardness and electrical resistivity of the MoN thin films deposited by three plasma-enhanced magnetron sputtering was explained on the basis of microstructure and residual stress of the thin films. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

12 pages, 283 KB  
Article
Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women
by Jacqueline Soto-Sánchez, Héctor Hernández-Mendoza, Gilberto Garza-Treviño, Lorena García-Morales, Bertha Irene Juárez Flores, Andrea Arreguín-Coronado, Luis Cesar Vázquez-Vázquez and María Judith Rios-Lugo
Healthcare 2025, 13(19), 2511; https://doi.org/10.3390/healthcare13192511 - 2 Oct 2025
Viewed by 362
Abstract
Background: Insulin resistance (IR) is common in overweight or obese individuals. Dysregulation of trace elements such as cobalt (Co) and manganese (Mn) has been associated with obesity and IR markers in individuals with diabetes. However, their role in non-diabetic states is less understood. [...] Read more.
Background: Insulin resistance (IR) is common in overweight or obese individuals. Dysregulation of trace elements such as cobalt (Co) and manganese (Mn) has been associated with obesity and IR markers in individuals with diabetes. However, their role in non-diabetic states is less understood. Objective: This study aimed to analyze the association between serum Co and Mn levels and IR in overweight and obese women without diabetes. Methods: A total of 112 overweight or obese women were evaluated for their anthropometric, metabolic, and biochemical characteristics. To estimate IR, the homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), triglyceride–glucose index (TyG), and triglyceride–glucose–body mass index (TyG-BMI) were calculated. Serum Co and Mn concentrations were quantified by inductively coupled plasma mass spectrometry (ICP-MS). Results: Our results show that 77% of participants exhibited central fat accumulation and a high prevalence of IR. Fasting insulin (FINS), HOMA-IR, and TyG-BMI were significantly higher in obese women, while adiponectin (Adpn) was lower. Moreover, Co was inversely associated with FINS (p = 0.003) and HOMA-IR (p = 0.011), and positively associated with QUICKI (p = 0.011) in obese women. In contrast, serum Mn levels showed negative correlations with fasting glucose (FG) (p = 0.021) and the TyG index (p = 0.048) in overweight women. Conclusions: Co serum levels were positively associated with FG and QUICKI and negatively associated with FINS and HOMA-IR in the obese group. Mn showed negative associations with FG and the TyG index, suggesting that these trace elements may play a role in the IR in people with obesity. Full article
(This article belongs to the Special Issue Obesity and Metabolic Abnormalities)
11 pages, 739 KB  
Brief Report
Amyotrophic Lateral Sclerosis Patients Show Higher Urinary Levels of Lead and Copper: A Pilot Case-Control Study
by Ana Santurtún, Lucía Pérez-Soberón, María José Sedano and Javier Riancho
Biomedicines 2025, 13(10), 2385; https://doi.org/10.3390/biomedicines13102385 - 29 Sep 2025
Viewed by 300
Abstract
Background/Objectives: Amyotrophic Lateral Sclerosis (ALS) is the most frequent neurodegenerative disease affecting motor neurons. Sporadic ALS cases, which represent over 90% of the total, result from the interaction between genetic predisposition, aging, and environmental factors. Regarding natural environmental risk factors, the analysis of [...] Read more.
Background/Objectives: Amyotrophic Lateral Sclerosis (ALS) is the most frequent neurodegenerative disease affecting motor neurons. Sporadic ALS cases, which represent over 90% of the total, result from the interaction between genetic predisposition, aging, and environmental factors. Regarding natural environmental risk factors, the analysis of the role of exposure to heavy metals is of particular interest due to the well-known neurological effects of certain compounds. This study aims to compare the levels of heavy metals in urine samples in a cohort of patients with ALS who have not changed their living environment with the levels found in healthy controls (HCs). Methods: A cross-sectional case-control (14 patients with ALS vs. 28 HC) observational study was conducted in which urine samples were analyzed for five heavy metals (lead, manganese, selenium, copper, and zinc) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Results: The patients with ALS showed significantly higher urine levels of lead (p < 0.001) and copper (p = 0.007) and a subtle increase in manganese concentrations (p = 0.043). Urine samples reflect recent exposures, so if the source of metals was related to the residential environment (the patients in the present study had not moved), dietary habits, or certain activities or hobbies that had not changed since diagnosis, it would be representative. Conclusions: In this pilot study, patients with ALS presented higher urinary levels of lead, manganese, and copper. Future larger studies are needed to elucidate the precise role of these heavy metals in ALS pathogenesis. Full article
Show Figures

Figure 1

21 pages, 1447 KB  
Article
Multielemental Profile for Seminal Plasma Through Inductively Coupled Plasma–Tandem Mass Spectrometry and Its Relationship with Seminal Parameters, Spermatic Biomarkers, and Oxidative Stress
by Andrea López-Botella, Natalia Cenitagoya-Alonso, Raquel Sánchez-Romero, Paula Sáez-Espinosa, Miranda Hernández-Falcó, María José Gómez-Torres and José Luis Todolí-Torró
Antioxidants 2025, 14(9), 1118; https://doi.org/10.3390/antiox14091118 - 15 Sep 2025
Viewed by 957
Abstract
The present study investigated the decline in human fertility by analyzing the multielemental profile of seminal plasma and its relationship with seminal parameters and sperm biomarkers. Twenty-nine donor seminal plasma samples were examined using inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS). Method optimization demonstrated [...] Read more.
The present study investigated the decline in human fertility by analyzing the multielemental profile of seminal plasma and its relationship with seminal parameters and sperm biomarkers. Twenty-nine donor seminal plasma samples were examined using inductively coupled plasma–tandem mass spectrometry (ICP-MS/MS). Method optimization demonstrated that robust plasma conditions, including internal standardization and helium (He) collision gas, were essential to achieve reliable quantification. These conditions mitigated matrix effects and spectroscopic interferences, despite lower sensitivity. Elements such as copper (Cu), iron (Fe), manganese (Mn), strontium (Sr), titanium (Ti), vanadium (V), and chromium (Cr) were quantified, and several significant correlations were identified. Specifically, Cu was negatively correlated with seminal volume and positively correlated with sperm concentration and spontaneous acrosome reacted sperm, but negatively correlated with medium mitochondrial membrane potential (MMP); Mn showed negative associations with sperm vitality and medium MMP; Fe showed a negative correlation with motile sperm concentration (4 h); V was positively correlated with acrosome reacted sperm after acrosome reaction induction and with very low/medium MMP, whereas it was negatively associated with tyrosine phosphorylation; and Cr also showed a negative correlation with tyrosine phosphorylation. As, Mo, and Pb were detected in a few samples, limiting correlation analysis. From a functional perspective, elements such as As and Pb, as well as excess Cu or Fe, may contribute to oxidative stress by enhancing reactive oxygen species (ROS) generation and impairing antioxidant defenses. Conversely, essential metals, including Mn and Cu, at physiological concentrations act as cofactors of antioxidant enzymes and play a protective role against oxidative damage. Full article
(This article belongs to the Special Issue Oxidative and Nitrosative Stress in Male Reproduction)
Show Figures

Figure 1

17 pages, 2017 KB  
Article
Sustainable Recovery of Critical Metals from Spent Lithium-Ion Batteries Using Deep Eutectic Solvents
by Jafar Goudarzi, Zhi Chen, Gaixia Zhang, Jinguang Hu, Karim Zaghib, Sixu Deng, Afzal Ahmed Dar, Xiaolei Wang, Fariborz Haghighat, Catherine N. Mulligan, Chunjiang An and Antonio Avalos Ramirez
Batteries 2025, 11(9), 340; https://doi.org/10.3390/batteries11090340 - 14 Sep 2025
Viewed by 1163
Abstract
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste [...] Read more.
The surging demand for lithium-ion batteries (LIBs) has intensified the need for sustainable recovery of critical metals such as lithium, manganese, cobalt, and nickel from spent cathodes. While conventional hydrometallurgical and pyrometallurgical methods are widely used, they involve high energy consumption, hazardous waste generation, and complex processing steps, underscoring the urgency of developing eco-friendly alternatives. This study presents a novel, water-enhanced deep eutectic solvent (DES) system composed of choline chloride and D-glucose for the efficient leaching of valuable metals from spent LiMn-based battery cathodes. The DES was synthesized under mild conditions and applied to dissolve cathode powder, with leaching performance optimized by varying temperature and duration. Under optimal conditions (100 °C, 24 h), exceptional recovery efficiencies were achieved: 98.9% for lithium, 98.4% for manganese, and 71.7% for nickel. Material characterization using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and inductively coupled plasma mass spectrometer (ICP-MS) confirm effective phase dissolution and metal release. Although this DES system requires relatively higher temperature and longer reaction time compared to traditional acid leaching, it offers clear advantages in terms of non-toxicity, biodegradability, and elimination of strong oxidizing agents. These results demonstrate the potential of water-enhanced choline chloride–glucose DES as a green alternative for future development in sustainable battery recycling, supporting circular economy objectives. Full article
Show Figures

Figure 1

16 pages, 2255 KB  
Article
Qualitative Evaluation of Binding States of Lipid Membranes to Mesoporous Silica Microspheres via Single-Particle Inductively Coupled Plasma Mass Spectrometry
by Shin-ichi Miyashita, Toshihiko Ogura, Shun-ichi Matsuura, Toshiyuki Takagi and Eriko Fukuda
Molecules 2025, 30(17), 3621; https://doi.org/10.3390/molecules30173621 - 4 Sep 2025
Viewed by 1112
Abstract
Single-particle inductively coupled plasma mass spectrometry (spICP-MS) offers the unprecedented advantage of sensitive and selective detection of individual particles based on their constituent elements. It has been applied to the qualitative/quantitative evaluation of nonporous/mesoporous particles ranging from the nanoscale to the microscale and, [...] Read more.
Single-particle inductively coupled plasma mass spectrometry (spICP-MS) offers the unprecedented advantage of sensitive and selective detection of individual particles based on their constituent elements. It has been applied to the qualitative/quantitative evaluation of nonporous/mesoporous particles ranging from the nanoscale to the microscale and, recently, targeted proteins bound to particles. However, lipid membranes bound to particles have not been explored as potential targets for spICP-MS, despite its analytical potential. To address this, we investigated the applicability of spICP-MS for evaluating the binding states of two different types of lipid membranes (liposomes, i.e., phospholipid bilayer-based spherical vesicles, and nanodiscs comprising a disc-shaped phospholipid bilayer and membrane scaffold protein) to mesoporous silica microspheres (SBA24). The presence of bound liposomes and nanodiscs was confirmed using spICP-MS, which selectively monitored the derived P as a marker element. The presence of bound liposomes was confirmed by confocal laser Raman microscopy. Our findings demonstrate that spICP-MS can be used to qualitatively evaluate the binding states of lipid membranes to mesoporous SiO2 microspheres. This method offers a new platform for evaluating the effectiveness of particles as carriers of biomolecules (lipid membranes) and provides valuable insights into biomedical research and quality control in related industries. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia, 2nd Edition)
Show Figures

Figure 1

18 pages, 2832 KB  
Article
Elemental Analysis and Chemometric Assessment of Edible Part and Peel of Mango Fruits (Mangifera indica L.)
by Michaela Zeiner, Ema Mihalić, Iva Juranović Cindrić, Ivan Nemet and Heidelore Fiedler
Foods 2025, 14(17), 3096; https://doi.org/10.3390/foods14173096 - 3 Sep 2025
Viewed by 871
Abstract
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. [...] Read more.
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. However, it can also contain potentially toxic elements, which justifies the need of properly investigating this food product. Commercially available samples of dried mango, as well as the mesocarp and peel of fresh mango, were analysed. Prior to the multi-element analysis by inductively coupled plasma mass spectrometry (ICP-MS), the microwave-assisted sample digestion method using various reagents and reagent mixtures was optimised, showing that a mixture of nitric acid and hydrogen peroxide gave the best recoveries. The results obtained were processed by chemometric methods. The content of elements in the peel was higher than in the mesocarp. The macroelements Ca, K, Mg, and Na were found in the largest proportion, and the micronutrients present in significant quantities were Cu, Zn, and Mn (>3 mg/kg), while toxic elements, which according to the guidelines of The European Food Safety Authority) would represent a danger to human health, were not found in mass fractions above the permissible values. Full article
Show Figures

Figure 1

24 pages, 1991 KB  
Article
Dietary Intakes and Exposures to Minerals and Trace Elements from Cereal-Based Mixtures: Potential Health Benefits and Risks for Adults
by Martina Mrázková, Daniela Sumczynski, Lenka Šenkárová and Richardos Nikolaos Salek
Nutrients 2025, 17(17), 2848; https://doi.org/10.3390/nu17172848 - 31 Aug 2025
Viewed by 1076
Abstract
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements [...] Read more.
Background: Foods containing nutraceuticals from the mineral element group are being developed to compensate for the problem of deficiency in billions of people around the world. This research focuses on essential elements of patented cereal-based mixtures to complement the deficiencies of these elements and, at the same time, assesses their safety in terms of toxic elements in the human diet. Methods: The mineral and trace element contents in the mixtures were determined using the ICP-MS method with a subsequent evaluation of the contributions of the mixtures to the essential and toxic reference values based on dietary intakes and exposures for adults at 60, 80 and 100 kg of adult body weight and a portion size of 50 g. The potential health risk was evaluated using a metal pollution index. Results: The concentrations of minerals and trace elements in the cereal-based mixtures analyzed were as follows: K (up to 4150 µg/g) ≥ P > Mg > Ca > Na > Fe > Zn > Mn > Cu > Al > Ba (up to 4.40 µg/g) > Sr (up to 480 ng/g) ≥ Ti ≥ Ni > Ce ≥ Co > As ≥ Cs > Ag ≥ Li > Se > Be > Cr > Tl > Pb ≥ Hg > Ho > Cd > Sn (up to 1.12 ng/g). The mixtures contribute significantly to the reference values for Mn, Cu, Zn, Fe, and P for adults. Individual dietary exposure values of toxic elements for adults weighing 60 kg decrease in this order: Al (10.1 µg/kg bw/day) > Ni (362 ng/kg bw/day) > As ≥ Pb > Ag > Hg > Cd > and Sn (0.93 ng/kg bw/day). Conclusions: In terms of Regulation (EU) No 1924/2006 of the European Parliament and of the Council on nutrition and health claims made on foods, the cereal-based mixtures could be labelled “source of” Mn, Cu, Zn, Fe, and P when their contributions to the reference values exceeded 15%; in addition, “low sodium/salt” or “very low sodium/salt” can be applied. The mixtures contribute insignificantly to the toxic reference values of Al, Sn, Hg, Cd, Ni, and Ag, and the exposure values of Pb for developmental neurotoxicity, nephrotoxicity, and cardiovascular effects were considered safe. Regarding the metal pollution index of mixtures, there is no concern for potential health effects. Cereal-based mixtures are suitable for use in the food industry as a potential source of beneficial micronutrients for the human diet, although bioaccessible studies should not be neglected. Full article
Show Figures

Figure 1

13 pages, 1443 KB  
Article
Evaluation of Three Traditional Curing Methods Applied in Mexican Lead-Glazed Ceramics: Detection, Concentration, and Leaching of Lead to Food
by Maria F. Rodríguez-Hernández, Larissa Betanzos-Robledo, Rosa María Mariscal-Moreno, Francisco A. Valverde-Arámbula, Cristina Chuck-Hernández, Netzy Peralta-Delgado, Richard Fuller and Alejandra Cantoral
Processes 2025, 13(9), 2766; https://doi.org/10.3390/pr13092766 - 29 Aug 2025
Viewed by 791
Abstract
In Mexico, the main source of lead (Pb) exposure is the use of lead-glazed ceramic (LGC). Curing is a traditional technique employed to seal the pores of ceramic, enhancing resistance to high temperatures and moisture absorption. One common belief, sometimes promoted by governmental [...] Read more.
In Mexico, the main source of lead (Pb) exposure is the use of lead-glazed ceramic (LGC). Curing is a traditional technique employed to seal the pores of ceramic, enhancing resistance to high temperatures and moisture absorption. One common belief, sometimes promoted by governmental sources, is that this practice can also remove Pb from LGC. In this study, we evaluated the effect of three traditional curing methods (oil/heat, boiling water/lard, and garlic/boiling vinegar) on Pb detection, concentration and leaching in three LGC pieces. Before and after curing, detection (LumetallixTM and sodium rhodizonate) and concentration (XRF) were measured; meanwhile, leaching after curing was evaluated by ICP-MS in a simulated solution. All pieces were positive for Pb detection. Mean Pb concentration before curing was 164,400 ppm and increased on average to 266,700 ppm after curing, exceeding the limits established for ceramics (100 ppm). The highest level of Pb leaching was in the piece cured with oil/heat (378.18 ppm) followed by garlic/boiling vinegar (2.6 ppm), both exceeding the Mexican Normativity for leaching (0.5 ppm). We find that traditional curing should not be considered as a practice to remove Pb. Even worse, it may increase its availability and leach into food, increasing the health risk to consumers. Full article
(This article belongs to the Special Issue Monitoring, Detection and Control of Food Contaminants)
Show Figures

Figure 1

17 pages, 304 KB  
Article
Comprehensive Profiling of Essential Elements and Organic and Inorganic Contaminants in Dromedary Camels from the Canary Islands: A Baseline for Nutritional and Environmental Assessment
by Andrea Acosta-Dacal, Adrián Melián Henríquez, Juan Alberto Corbera, Ana Macías-Montes, Manuel Zumbado, Norberto Ruiz-Suárez, José Luis Martín-Barrasa, Octavio P. Luzardo and María Teresa Tejedor-Junco
Vet. Sci. 2025, 12(9), 829; https://doi.org/10.3390/vetsci12090829 - 29 Aug 2025
Viewed by 765
Abstract
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in [...] Read more.
Dromedary camels raised under semi-extensive management can act as One Health sentinels for environmental exposures and food chain surveillance, yet serum reference information remains scarce. Our objective was to provide the most comprehensive assessment to date of physiological and toxicological serum profiles in dromedary camels (Camelus dromedarius) from the Canary Islands. We included 114 clinically healthy animals of different sex, age, and reproductive status. Serum samples were analyzed for essential, toxic, and potentially toxic elements using inductively coupled plasma mass spectrometry (ICP-MS). In addition, a high-throughput multi-residue method based on QuEChERS extraction followed by UHPLC-MS/MS and GC-MS/MS was used to screen for 360 organic compounds, including pesticides, veterinary drugs, human pharmaceuticals, and persistent organic pollutants. Essential elements showed biologically consistent variations according to sex, age group, and pregnancy status. Males had higher levels of selenium and copper, while calves showed elevated concentrations of manganese and zinc. Pregnant females exhibited lower iron, zinc, and selenium levels, consistent with increased fetal demand. These results provide preliminary reference values for healthy camels, stratified by physiological status. In contrast, classical toxic elements such as arsenic, mercury, lead, and cadmium were found at very low or undetectable concentrations. Several potentially toxic elements, including barium, strontium, and rare earth elements, were detected sporadically but without toxicological concern. Only 13 organic compounds (3.6%) were detected in any sample, and concentrations were consistently low. The most prevalent was the PAH acenaphthene (55.3%), followed by the fungicide procymidone and the PAH fluorene. Notably, no residues of the usually detected 4,4′-DDE or PCB congeners were found in any sample. These findings confirm the low environmental and dietary exposure of camels under low-intensity farming systems and highlight their value as sentinel species for food safety and environmental monitoring. Full article
(This article belongs to the Section Veterinary Biomedical Sciences)
Back to TopTop