Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,917)

Search Parameters:
Keywords = Hyperspectral Image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8476 KiB  
Article
A Weakly Supervised Network for Coarse-to-Fine Change Detection in Hyperspectral Images
by Yadong Zhao and Zhao Chen
Remote Sens. 2025, 17(15), 2624; https://doi.org/10.3390/rs17152624 - 28 Jul 2025
Abstract
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting [...] Read more.
Hyperspectral image change detection (HSI-CD) provides substantial value in environmental monitoring, urban planning and other fields. In recent years, deep-learning based HSI-CD methods have made remarkable progress due to their powerful nonlinear feature learning capabilities, yet they face several challenges: mixed-pixel phenomenon affecting pixel-level detection accuracy; heterogeneous spatial scales of change targets where coarse-grained features fail to preserve fine-grained details; and dependence on high-quality labels. To address these challenges, this paper introduces WSCDNet, a weakly supervised HSI-CD network employing coarse-to-fine feature learning, with key innovations including: (1) A dual-branch detection framework integrating binary and multiclass change detection at the sub-pixel level that enhances collaborative optimization through a cross-feature coupling module; (2) introduction of multi-granularity aggregation and difference feature enhancement module for detecting easily confused regions, which effectively improves the model’s detection accuracy; and (3) proposal of a weakly supervised learning strategy, reducing model sensitivity to noisy pseudo-labels through decision-level consistency measurement and sample filtering mechanisms. Experimental results demonstrate that WSCDNet effectively enhances the accuracy and robustness of HSI-CD tasks, exhibiting superior performance under complex scenarios and weakly supervised conditions. Full article
(This article belongs to the Section Remote Sensing Image Processing)
24 pages, 10444 KiB  
Article
Satellite Hyperspectral Mapping of Farmland Soil Organic Carbon in Yuncheng Basin Along the Yellow River, China
by Haixia Jin, Rutian Bi, Huiwen Tian, Hongfen Zhu and Yingqiang Jing
Agronomy 2025, 15(8), 1827; https://doi.org/10.3390/agronomy15081827 - 28 Jul 2025
Abstract
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the [...] Read more.
This study combined field survey data with Gaofen 5 (GF-5) satellite hyperspectral images of the Yuncheng Basin (China), considering 15 environmental variables. Random forest (RF) was used to select the optimal satellite hyperspectral model, sequentially introducing natural and farmland management factors into the model to analyze the spatial distribution of farmland soil organic carbon (SOC). Furthermore, RF factorial experiments determined the contributions of farmland management, climate, vegetation, soil, and topography to the SOC. Structural equation modeling (SEM) elucidated the driving mechanisms of SOC variations. Integrating satellite hyperspectral data and environmental variables improved the prediction accuracy and SOC-mapping precision of the model. The integration of natural variables significantly improved the RF model performance (R2 = 0.78). The prediction accuracy enhanced with the introduction of crop phenology (R2 = 0.81) and farmland management factors (R2 = 0.87). The model that incorporated all 15 variables demonstrated the highest prediction accuracy (R2 = 0.89) and greatest spatial SOC variability, with minimal uncertainty. Farmland management activities exerted the strongest influence on SOC (0.38). The proposed method can support future investigations on soil carbon sequestration processes in river basins worldwide. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

18 pages, 5229 KiB  
Article
Exploring the Spectral Variability of Estonian Lakes Using Spaceborne Imaging Spectroscopy
by Alice Fabbretto, Mariano Bresciani, Andrea Pellegrino, Kersti Kangro, Anna Joelle Greife, Lodovica Panizza, François Steinmetz, Joel Kuusk, Claudia Giardino and Krista Alikas
Appl. Sci. 2025, 15(15), 8357; https://doi.org/10.3390/app15158357 - 27 Jul 2025
Abstract
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 [...] Read more.
This study investigates the potential of spaceborne imaging spectroscopy to support the analysis of the status of two major Estonian lakes, i.e., Lake Peipsi and Lake Võrtsjärv, using data from the PRISMA and EnMAP missions. The study encompasses nine specific applications across 12 satellite scenes, including the validation of remote sensing reflectance, optical water type classification, estimation of phycocyanin concentration, detection of macrophytes, and characterization of reflectance for lake ice/snow coverage. Rrs validation, which was performed using in situ measurements and Sentinel-2 and Sentinel-3 as references, showed a level of agreement with Spectral Angle < 16°. Hyperspectral imagery successfully captured fine-scale spatial and spectral features not detectable by multispectral sensors, in particular it was possible to identify cyanobacterial pigments and optical variations driven by seasonal and meteorological dynamics. Through the combined use of in situ observations, the study can serve as a starting point for the use of hyperspectral data in northern freshwater systems, offering new insights into ecological processes. Given the increasing global concern over freshwater ecosystem health, this work provides a transferable framework for leveraging new-generation hyperspectral missions to enhance water quality monitoring on a global scale. Full article
Show Figures

Figure 1

24 pages, 2508 KiB  
Article
Class-Discrepancy Dynamic Weighting for Cross-Domain Few-Shot Hyperspectral Image Classification
by Chen Ding, Jiahao Yue, Sirui Zheng, Yizhuo Dong, Wenqiang Hua, Xueling Chen, Yu Xie, Song Yan, Wei Wei and Lei Zhang
Remote Sens. 2025, 17(15), 2605; https://doi.org/10.3390/rs17152605 - 27 Jul 2025
Abstract
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for [...] Read more.
In recent years, cross-domain few-shot learning (CDFSL) has demonstrated remarkable performance in hyperspectral image classification (HSIC), partially alleviating the distribution shift problem. However, most domain adaptation methods rely on similarity metrics to establish cross-domain class matching, making it difficult to simultaneously account for intra-class sample size variations and inherent inter-class differences. To address this problem, existing studies have introduced a class weighting mechanism within the prototype network framework, determining class weights by calculating inter-sample similarity through distance metrics. However, this method suffers from a dual limitation: susceptibility to noise interference and insufficient capacity to capture global class variations, which may lead to distorted weight allocation and consequently result in alignment bias. To solve these issues, we propose a novel class-discrepancy dynamic weighting-based cross-domain FSL (CDDW-CFSL) framework. It integrates three key components: (1) the class-weighted domain adaptation (CWDA) method dynamically measures cross-domain distribution shifts using global class mean discrepancies. It employs discrepancy-sensitive weighting to strengthen the alignment of critical categories, enabling accurate domain adaptation while maintaining feature topology; (2) the class mean refinement (CMR) method incorporates class covariance distance to compute distribution discrepancies between support set samples and class prototypes, enabling the precise capture of cross-domain feature internal structures; (3) a novel multi-dimensional feature extractor that captures both local spatial details and continuous spectral characteristics simultaneously, facilitating deep cross-dimensional feature fusion. The results in three publicly available HSIC datasets show the effectiveness of the CDDW-CFSL. Full article
Show Figures

Figure 1

24 pages, 8553 KiB  
Article
DO-MDS&DSCA: A New Method for Seed Vigor Detection in Hyperspectral Images Targeting Significant Information Loss and High Feature Similarity
by Liangquan Jia, Jianhao He, Jinsheng Wang, Miao Huan, Guangzeng Du, Lu Gao and Yang Wang
Agriculture 2025, 15(15), 1625; https://doi.org/10.3390/agriculture15151625 - 26 Jul 2025
Viewed by 141
Abstract
Hyperspectral imaging for seed vigor detection faces the challenges of handling high-dimensional spectral data, information loss after dimensionality reduction, and low feature differentiation between vigor levels. To address the above issues, this study proposes an improved dynamic optimize MDS (DO-MDS) dimensionality reduction algorithm [...] Read more.
Hyperspectral imaging for seed vigor detection faces the challenges of handling high-dimensional spectral data, information loss after dimensionality reduction, and low feature differentiation between vigor levels. To address the above issues, this study proposes an improved dynamic optimize MDS (DO-MDS) dimensionality reduction algorithm based on multidimensional scaling transformation. DO-MDS better preserves key features between samples during dimensionality reduction. Secondly, a dual-stream spectral collaborative attention (DSCA) module is proposed. The DSCA module adopts a dual-modal fusion approach combining global feature capture and local feature enhancement, deepening the characterization capability of spectral features. This study selected commonly used rice seed varieties in Zhejiang Province and constructed three individual spectral datasets and a mixed dataset through aging, spectral acquisition, and germination experiments. The experiments involved using the DO-MDS processed datasets with a convolutional neural network embedded with the DSCA attention module, and the results demonstrate vigor discrimination accuracy rates of 93.85%, 93.4%, and 96.23% for the Chunyou 83, Zhongzao 39, and Zhongzu 53 datasets, respectively, achieving 94.8% for the mixed dataset. This study provides effective strategies for spectral dimensionality reduction in hyperspectral seed vigor detection and enhances the differentiation of spectral information for seeds with similar vigor levels. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Viewed by 357
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

31 pages, 15992 KiB  
Article
Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
by Inés Pereira, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela and Juncal A. Cruz
Remote Sens. 2025, 17(15), 2582; https://doi.org/10.3390/rs17152582 - 24 Jul 2025
Viewed by 87
Abstract
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral [...] Read more.
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral imagery for multi-temporal mapping of AMD-related minerals in two mining-affected drainage basins: Beal and Gorguel. Key minerals indicative of AMD—iron oxides and hydroxides (hematite, jarosite, goethite), gypsum, and aluminium-bearing clays—were identified and mapped using band ratios applied to PRISMA data acquired over five dates between 2020 and 2024. Additionally, Sentinel-2 data were incorporated in the analysis due to their higher temporal resolution to complement iron oxide and hydroxide evolution from PRISMA. Results reveal distinct temporal and spatial patterns in mineral distribution, influenced by seasonal precipitation and climatic factors. Jarosite was predominant after torrential precipitation events, reflecting recent AMD deposition, while gypsum exhibited seasonal variability linked to evaporation cycles. Goethite and hematite increased in drier conditions, indicating transitions in oxidation states. Validation using X-ray diffraction (XRD), laboratory spectral curves, and a larger time-series of Sentinel-2 imagery demonstrated strong correlations, confirming PRISMA’s effectiveness for iron oxides and hydroxides and gypsum identification and monitoring. However, challenges such as noise, striping effects, and limited image availability affected the accuracy of aluminium-bearing clay mapping and limited long-term trend analysis. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

25 pages, 5445 KiB  
Article
HyperspectralMamba: A Novel State Space Model Architecture for Hyperspectral Image Classification
by Jianshang Liao and Liguo Wang
Remote Sens. 2025, 17(15), 2577; https://doi.org/10.3390/rs17152577 - 24 Jul 2025
Viewed by 193
Abstract
Hyperspectral image classification faces challenges with high-dimensional spectral data and complex dependencies between bands. This paper proposes HyperspectralMamba, a novel architecture for hyperspectral image classification that integrates state space modeling with adaptive recalibration mechanisms. The method addresses limitations in existing techniques through three [...] Read more.
Hyperspectral image classification faces challenges with high-dimensional spectral data and complex dependencies between bands. This paper proposes HyperspectralMamba, a novel architecture for hyperspectral image classification that integrates state space modeling with adaptive recalibration mechanisms. The method addresses limitations in existing techniques through three key innovations: (1) a novel dual-stream architecture that combines SSM global modeling with parallel convolutional local feature extraction, distinguishing our approach from existing single-stream SSM methods; (2) a band-adaptive feature recalibration mechanism specifically designed for hyperspectral data that adaptively adjusts the importance of different spectral band features; and (3) an effective feature fusion strategy that integrates global and local features through residual connections. Experimental results on three benchmark datasets—Indian Pines, Pavia University, and Salinas Valley—demonstrate that the proposed method achieves overall accuracies of 95.31%, 98.60%, and 96.40%, respectively, significantly outperforming existing convolutional neural networks, attention-enhanced networks, and Transformer methods. HyperspectralMamba demonstrates an exceptional performance in small-sample class recognition and distinguishing spectrally similar terrain, while maintaining lower computational complexity, providing a new technical approach for high-precision hyperspectral image classification. Full article
Show Figures

Figure 1

23 pages, 10648 KiB  
Article
Meta-Learning-Integrated Neural Architecture Search for Few-Shot Hyperspectral Image Classification
by Aili Wang, Kang Zhang, Haibin Wu, Haisong Chen and Minhui Wang
Electronics 2025, 14(15), 2952; https://doi.org/10.3390/electronics14152952 - 24 Jul 2025
Viewed by 143
Abstract
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a [...] Read more.
In order to address the limitations of the number of label samples in practical accurate classification scenarios and the problems of overfitting and an insufficient generalization ability caused by Few-Shot Learning (FSL) in hyperspectral image classification (HSIC), this paper designs and implements a neural architecture search (NAS) for a few-shot HSI classification method that combines meta learning. Firstly, a multi-source domain learning framework was constructed to integrate heterogeneous natural images and homogeneous remote sensing images to improve the information breadth of few-sample learning, enabling the final network to enhance its generalization ability under limited labeled samples by learning the similarity between different data sources. Secondly, by constructing precise and robust search spaces and deploying different units at different locations, the classification accuracy and model transfer robustness of the final network can be improved. This method fully utilizes spatial texture information and rich category information of multi-source data and transfers the learned meta knowledge to the optimal architecture for HSIC execution through precise and robust search space design, achieving HSIC tasks with limited samples. Experimental results have shown that our proposed method achieved an overall accuracy (OA) of 98.57%, 78.39%, and 98.74% for classification on the Pavia Center, Indian Pine, and WHU-Hi-LongKou datasets, respectively. It is fully demonstrated that utilizing spatial texture information and rich category information of multi-source data, and through precise and robust search space design, the learned meta knowledge is fully transmitted to the optimal architecture for HSIC, perfectly achieving classification tasks with few-shot samples. Full article
Show Figures

Figure 1

25 pages, 5633 KiB  
Article
A Hybrid Framework for Soil Property Estimation from Hyperspectral Imaging
by Daniel La’ah Ayuba, Jean-Yves Guillemaut, Belen Marti-Cardona and Oscar Mendez
Remote Sens. 2025, 17(15), 2568; https://doi.org/10.3390/rs17152568 - 24 Jul 2025
Viewed by 152
Abstract
Accurate estimation of soil properties is crucial for optimizing agricultural practices and promoting sustainable resource management. Hyperspectral imaging provides a non-invasive means of quantifying key soil parameters, but effectively utilizing the high-dimensional hyperspectral data presents significant challenges. In this paper, we introduce HyperSoilNet, [...] Read more.
Accurate estimation of soil properties is crucial for optimizing agricultural practices and promoting sustainable resource management. Hyperspectral imaging provides a non-invasive means of quantifying key soil parameters, but effectively utilizing the high-dimensional hyperspectral data presents significant challenges. In this paper, we introduce HyperSoilNet, a hybrid deep learning framework for estimating soil properties from hyperspectral imagery. HyperSoilNet leverages a pretrained hyperspectral-native CNN backbone and integrates it with a carefully optimized machine learning (ML) ensemble to combine the strengths of deep representation learning with traditional ML techniques. We evaluate our framework on the Hyperview challenge dataset, focusing on four critical soil properties: potassium oxide, phosphorus pentoxide, magnesium, and soil pH. Comprehensive experiments demonstrate that HyperSoilNet surpasses state-of-the-art models, achieving a score of 0.762 on the challenge leaderboard. Through detailed ablation studies and spectral analysis, we provide insights on the components of the framework, and their contribution to performance, showcasing its potential for advancing precision agriculture and sustainable soil management practices. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Soil Property Mapping)
Show Figures

Figure 1

25 pages, 5190 KiB  
Article
Comparative Evaluation of the Effectiveness and Efficiency of Computational Methods in the Detection of Asbestos Cement in Hyperspectral Images
by Gabriel Elías Chanchí-Golondrino, Manuel Saba and Manuel Alejandro Ospina-Alarcón
Materials 2025, 18(15), 3456; https://doi.org/10.3390/ma18153456 - 23 Jul 2025
Viewed by 271
Abstract
Among the existing challenges in the field of hyperspectral imaging, the need to optimize memory usage and computational capacity in material detection methods stands out, given the vast amount of data associated with the hundreds of reflectance bands. In line with this, this [...] Read more.
Among the existing challenges in the field of hyperspectral imaging, the need to optimize memory usage and computational capacity in material detection methods stands out, given the vast amount of data associated with the hundreds of reflectance bands. In line with this, this article proposes a comparative study on the effectiveness and efficiency of five computational methods for detecting composite material asbestos cement (AC) in hyperspectral images: correlation, spectral differential similarity (SDS), Fourier phase similarity (FPS), area under the curve (AUC), and decision trees (DT). The novelty lies in the comparison between the first four methods, which represent the spectral proximity method and a machine learning method, such as DT. Furthermore, SDS and FPS are novel methods proposed in the present document. Given the accuracy that detection methods based on supervised learning have demonstrated in material identification, the results obtained from the DT model were compared with the percentage of AC detected in a hyperspectral image of the Manga neighborhood in the city of Cartagena by the other four methods. Similarly, in terms of computational efficiency, a 20 × 20 pixel region with 380 bands was selected for the execution of multiple repetitions of each of the five computational methods considered, in order to obtain the average processing time of each method and the relative efficiency of the methods with respect to the method with the best effectiveness. The decision tree (DT) model achieved the highest classification accuracy at 99.4%, identifying 11.44% of asbestos cement (AC) pixels in the reference image. However, the correlation method, while detecting a lower percentage of AC pixels (9.72%), showed the most accurate visual performance and had no spectral overlap, with a 1.4% separation between AC and non-AC pixels. The SDS method was the most computationally efficient, running 23.85 times faster than the DT model. The proposed methods and results can be applied to other hyperspectral imaging tasks involving material identification in urban environments, especially when balancing accuracy and computational efficiency is essential. Full article
Show Figures

Figure 1

28 pages, 115558 KiB  
Article
A Knowledge-Based Strategy for Interpretation of SWIR Hyperspectral Images of Rocks
by Frank J. A. van Ruitenbeek, Wim H. Bakker, Harald M. A. van der Werff, Christoph A. Hecker, Kim A. A. Hein and Wijnand van Eijndthoven
Remote Sens. 2025, 17(15), 2555; https://doi.org/10.3390/rs17152555 - 23 Jul 2025
Viewed by 183
Abstract
Strategies to interpret short-wave infrared hyperspectral images of rocks involve the application of analysis and classification steps that guide the extraction of geological and mineralogical information with the aim of creating mineral maps. Pre-existing strategies often rely on the use of statistical measures [...] Read more.
Strategies to interpret short-wave infrared hyperspectral images of rocks involve the application of analysis and classification steps that guide the extraction of geological and mineralogical information with the aim of creating mineral maps. Pre-existing strategies often rely on the use of statistical measures between reference and image spectra that are scene dependent. Therefore, classification thresholds based on statistical measures to create mineral maps are also scene dependent. This is problematic because thresholds must be adjusted between images to produce mineral maps of the same accuracy. We developed an innovative, knowledge-based strategy to perform mineralogical analyses and create classifications that overcome this problem by using physics-based wavelength positions of absorption features that are invariant between scenes as the main sources of mineral information. The strategy to interpret short-wave infrared hyperspectral images of rocks is implemented using the open source Hyperspectral Python package (HypPy) and demonstrated on a series of hyperspectral images of hydrothermally altered rock samples. The results show how expert knowledge can be embedded into a standardized processing chain to develop reproducible mineral maps without relying on statistical matching criteria. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

14 pages, 4699 KiB  
Article
Parallel Dictionary Reconstruction and Fusion for Spectral Recovery in Computational Imaging Spectrometers
by Hongzhen Song, Qifeng Hou, Kaipeng Sun, Guixiang Zhang, Tuoqi Xu, Benjin Sun and Liu Zhang
Sensors 2025, 25(15), 4556; https://doi.org/10.3390/s25154556 - 23 Jul 2025
Viewed by 157
Abstract
Computational imaging spectrometers using broad-bandpass filter arrays with distinct transmission functions are promising implementations of miniaturization. The number of filters is limited by the practical factors. Compressed sensing is used to model the system as linear underdetermined equations for hyperspectral imaging. This paper [...] Read more.
Computational imaging spectrometers using broad-bandpass filter arrays with distinct transmission functions are promising implementations of miniaturization. The number of filters is limited by the practical factors. Compressed sensing is used to model the system as linear underdetermined equations for hyperspectral imaging. This paper proposes the following method: parallel dictionary reconstruction and fusion for spectral recovery in computational imaging spectrometers. Orthogonal systems are the dictionary candidates for reconstruction. According to observation of ground objects, the dictionaries are selected from the candidates using the criterion of incoherence. Parallel computations are performed with the selected dictionaries, and spectral recovery is achieved by fusion of the computational results. The method is verified by simulating visible-NIR spectral recovery of typical ground objects. The proposed method has a mean square recovery error of ≤1.73 × 10−4 and recovery accuracy of ≥0.98 and is both more universal and more stable than those of traditional sparse representation methods. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 4139 KiB  
Article
Design and Development of an Intelligent Chlorophyll Content Detection System for Cotton Leaves
by Wu Wei, Lixin Zhang, Xue Hu and Siyao Yu
Processes 2025, 13(8), 2329; https://doi.org/10.3390/pr13082329 - 22 Jul 2025
Viewed by 166
Abstract
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a [...] Read more.
In order to meet the needs for the rapid detection of crop growth and support variable management in farmland, an intelligent chlorophyll content in cotton leaves (CCC) detection system based on hyperspectral imaging (HSI) technology was designed and developed. The system includes a near-infrared (NIR) hyperspectral image acquisition module, a spectral extraction module, a main control processor module, a model acceleration module, a display module, and a power module, which are used to achieve rapid and non-destructive detection of chlorophyll content. Firstly, spectral images of cotton canopy leaves during the seedling, budding, and flowering-boll stages were collected, and the dataset was optimized using the first-order differential algorithm (1D) and Savitzky–Golay five-term quadratic smoothing (SG) algorithm. The results showed that SG had better processing performance. Secondly, the sparrow search algorithm optimized backpropagation neural network (SSA-BPNN) and one-dimensional convolutional neural network (1DCNN) algorithms were selected to establish a chlorophyll content detection model. The results showed that the determination coefficients Rp2 of the chlorophyll SG-1DCNN detection model during the seedling, budding, and flowering-boll stages were 0.92, 0.97, and 0.95, respectively, and the model performance was superior to SG-SSA-BPNN. Therefore, the SG-1DCNN model was embedded into the detection system. Finally, a CCC intelligent detection system was developed using Python 3.12.3, MATLAB 2020b, and ENVI, and the system was subjected to application testing. The results showed that the average detection accuracy of the CCC intelligent detection system in the three stages was 98.522%, 99.132%, and 97.449%, respectively. Meanwhile, the average detection time for the samples is only 20.12 s. The research results can effectively solve the problem of detecting the nutritional status of cotton in the field environment, meet the real-time detection needs of the field environment, and provide solutions and technical support for the intelligent perception of crop production. Full article
(This article belongs to the Special Issue Design and Control of Complex and Intelligent Systems)
Show Figures

Figure 1

23 pages, 5310 KiB  
Article
Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods
by Xuehong De, Haoming Li, Jianchao Zhang, Nanding Li, Huimeng Wan and Yanhua Ma
Agriculture 2025, 15(14), 1557; https://doi.org/10.3390/agriculture15141557 - 21 Jul 2025
Viewed by 214
Abstract
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the [...] Read more.
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient (RP2), root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its RP2, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop