Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = Higgs fields

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 717 KiB  
Review
Baryon Construction with η Meson Field
by Fan Lin and Yong-Liang Ma
Symmetry 2025, 17(4), 477; https://doi.org/10.3390/sym17040477 - 21 Mar 2025
Viewed by 433
Abstract
In the low-energy regime, baryons with Nf2 have long been constructed as skyrmions or through bag models, but such constructions for Nf=1 are hindered by the trivial topological structure of the meson field. Recent proposals suggest that [...] Read more.
In the low-energy regime, baryons with Nf2 have long been constructed as skyrmions or through bag models, but such constructions for Nf=1 are hindered by the trivial topological structure of the meson field. Recent proposals suggest that one-flavor baryons can instead be interpreted as quantum Hall droplets on the η domain wall, providing a potential link to quark–hadron continuity at high density. In retrospect, the qualitative or semi-qualitative construction of one-flavor baryons on the η domain wall reveals that these baryons can be described as quantum Hall droplets, resembling topological solitons akin to skyrmions. Using an effective theory on the η domain wall, which is conjectured to be the Chern–Simons–Higgs theory, it is discussed that its vortex solution with unit baryon numbers naturally has a spin of Nc/2, and thus can be interpreted as a baryon or multi-baryon structure. The particle–vortex duality suggests that quarks carry a fractional topological charge of 1/Nc and obey fractional statistics. In terms of chiral bag models, confinement can be attributed to the monopoles confined within the bag, and the vector meson fields on the bag surface are essential for ensuring the correct baryon number in the chiral bag framework, thereby providing deeper insights into baryons as non-trivial topological structures of the meson field. In this paper, we review the progress in this development, with a special focus on the η domain wall dynamics. Naive extensions to Nf2 are also discussed. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

16 pages, 363 KiB  
Article
Spontaneous Brane Formation
by Arkadiy A. Popov and Sergey G. Rubin
Symmetry 2025, 17(2), 252; https://doi.org/10.3390/sym17020252 - 7 Feb 2025
Cited by 1 | Viewed by 530
Abstract
This paper presents a study of brane formation in six-dimensional space. There is no a priori assumption of the existence of brane(s). However, an analysis of the generalized Einstein equations shows that there is a set of metrics describing two static branes even [...] Read more.
This paper presents a study of brane formation in six-dimensional space. There is no a priori assumption of the existence of brane(s). However, an analysis of the generalized Einstein equations shows that there is a set of metrics describing two static branes even in the absence of matter fields. At the same time, no one-brane configurations were found. The trapping of massive particles on branes is a consequence of the metric structure, which prevents these particles from moving between branes. It is shown that communication between charged particles on different branes is provided by photons. Such positron–electron annihilation could be studied experimentally at the LHC collider. The Higgs field is distributed between the branes in such a way that it can serve as a Higgs portal connecting two worlds located on different branes. The values of the 4D physical parameters depend on the extra metric structure near the branes. We also found a non-trivial effect of the decompactification of extra space during the Hubble parameter variation. Full article
(This article belongs to the Special Issue Quantum Gravity and Cosmology: Exploring the Astroparticle Interface)
Show Figures

Figure 1

28 pages, 23407 KiB  
Article
Confronting the Broken Phase of the N2HDM with Higgs Data
by Maien Binjonaid
Particles 2025, 8(1), 10; https://doi.org/10.3390/particles8010010 - 3 Feb 2025
Viewed by 1148
Abstract
The broken phase of the next-to-two-Higgs-doublet model (N2HDM) constitutes an archetype of extended Higgs sectors. In the presence of a softly broken Z2 symmetry throughout the scalar and Yukawa sectors, as the additional gauge singlet field does not interact with fermions, the [...] Read more.
The broken phase of the next-to-two-Higgs-doublet model (N2HDM) constitutes an archetype of extended Higgs sectors. In the presence of a softly broken Z2 symmetry throughout the scalar and Yukawa sectors, as the additional gauge singlet field does not interact with fermions, the model admits four variants of Yukawa interactions between the doublets and Standard Model fermions. We confront each type with experimental Higgs data, especially those from CMS and ATLAS detectors at the LHC. Interfacing the models with the state-of-the-art package HiggsTools, we perform a statistical χ2 analysis to determine the best-fit points and exclusion limits at the 95% and 68% C.L.’s and identify SM-like Higgs measurements that affect each type the most. We further analyze the exclusion bounds on the additional Higgs bosons at the 95% C.L., paying special attention to searches for hypothetical non-SM Higgs resonances decaying into a pair of bosons or fermions. We show regions where the additional Higgs bosons do not satisfy the narrow-width approximation utilized in most experimental searches. Full article
Show Figures

Figure 1

23 pages, 909 KiB  
Article
Extending the QMM Framework to the Strong and Weak Interactions
by Florian Neukart, Eike Marx and Valerii Vinokur
Entropy 2025, 27(2), 153; https://doi.org/10.3390/e27020153 - 2 Feb 2025
Cited by 1 | Viewed by 1051
Abstract
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell [...] Read more.
We extend the Quantum Memory Matrix (QMM) framework, originally developed to reconcile quantum mechanics and general relativity by treating space–time as a dynamic information reservoir, to incorporate the full suite of Standard Model gauge interactions. In this discretized, Planck-scale formulation, each space–time cell possesses a finite-dimensional Hilbert space that acts as a local memory, or quantum imprint, for matter and gauge field configurations. We focus on embedding non-Abelian SU(3)c (quantum chromodynamics) and SU(2)L × U(1)Y (electroweak interactions) into QMM by constructing gauge-invariant imprint operators for quarks, gluons, electroweak bosons, and the Higgs mechanism. This unified approach naturally enforces unitarity by allowing black hole horizons, or any high-curvature region, to store and later retrieve quantum information about color and electroweak charges, thereby preserving subtle non-thermal correlations in evaporation processes. Moreover, the discretized nature of QMM imposes a Planck-scale cutoff, potentially taming UV divergences and modifying running couplings at trans-Planckian energies. We outline major challenges, such as the precise formulation of non-Abelian imprint operators and the integration of QMM with loop quantum gravity, as well as possible observational strategies—ranging from rare decay channels to primordial black hole evaporation spectra—that could provide indirect probes of this discrete, memory-based view of quantum gravity and the Standard Model. Full article
(This article belongs to the Section Astrophysics, Cosmology, and Black Holes)
Show Figures

Figure 1

50 pages, 679 KiB  
Article
Approximate SU(5) Fine Structure Constants
by Holger B. Nielsen
Universe 2025, 11(2), 32; https://doi.org/10.3390/universe11020032 - 21 Jan 2025
Cited by 4 | Viewed by 1017
Abstract
We fit the three finestructure constants of the Standard Model, in which the first approximation of theoretically estimable parameters include (1) a “unified scale”, turning out not equal to the Planck scale and thus only estimable by a very speculative story, the second [...] Read more.
We fit the three finestructure constants of the Standard Model, in which the first approximation of theoretically estimable parameters include (1) a “unified scale”, turning out not equal to the Planck scale and thus only estimable by a very speculative story, the second includes (2) a “number of layers” being a priori the number of families, and the third is (3) a unified coupling related to a critical coupling on a lattice. So formally, we postdict the three fine structure constants! In the philosophy of our model, there is a physical lattice theory with link variables taking values in a (or in the various) “small” representation(s) of the standard model Group. We argue for that these representations function in the first approximation based on the theory of a genuine SU(5) theory. Next, we take into account fluctuation of the gauge fields in the lattice and obtain a correction to the a priori SU(5) approximation, because of course the link fluctuations not corresponding to any standard model Lie algebra, but only to the SU(5), do not exist. The model is a development of our old anti-grand-unification model having as its genuine gauge group, close to fundamental scale, a cross-product of the standard model group S(U(3)×U(2)) with itself, with there being one Cartesian product factor for each family. In our old works, we included the hypothesis of the “multiple point criticallity principle”, which here effectively means the coupling constants are critical on the lattice. Counted relative to the Higgs scale, we suggest in our sense that the“unified scale” (where the deviations between the inverse fine structure constants deviate by quantum fluctuations being only from standard model groups, not SU(5)) makes up the 2/3rd power of the Planck scale relative to the Higgs scale or the topquarkmass scale. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

11 pages, 289 KiB  
Article
Precision Higgs Constraints in U(1) Extensions of the Standard Model with a Light Z′-Boson
by Zoltán Péli and Zoltán Trócsányi
Universe 2025, 11(1), 12; https://doi.org/10.3390/universe11010012 - 3 Jan 2025
Viewed by 793
Abstract
Anomaly-free U(1) extensions of the standard model (SM) predict a new neutral gauge boson Z. When Z obtains its mass from the spontaneous breaking of the new U(1) symmetry by a new complex scalar [...] Read more.
Anomaly-free U(1) extensions of the standard model (SM) predict a new neutral gauge boson Z. When Z obtains its mass from the spontaneous breaking of the new U(1) symmetry by a new complex scalar field, the model also predicts a second real scalar s, and the search for the new scalar and the search for the new gauge boson become intertwined. We present the computation of production cross sections and decay widths of such a scalar s in models with a light Z boson when the decay hZZ may have a sizeable branching ratio. We show how the Higgs signal strength measurement in this channel can provide stricter exclusion bounds on the parameters of the model than those obtained from the total signal strength for Higgs boson production. Full article
Show Figures

Figure 1

24 pages, 1325 KiB  
Article
Non-Canonical Dark Energy Parameter Evolution in a Canonical Quintessence Cosmology
by Rodger I. Thompson
Universe 2024, 10(9), 356; https://doi.org/10.3390/universe10090356 - 5 Sep 2024
Cited by 3 | Viewed by 1124
Abstract
This study considers the specific case of a flat, minimally coupled to gravity, quintessence cosmology with a dark energy quartic polynomial potential that has the same mathematical form as the Higgs potential. Previous work on this case determined that the scalar field is [...] Read more.
This study considers the specific case of a flat, minimally coupled to gravity, quintessence cosmology with a dark energy quartic polynomial potential that has the same mathematical form as the Higgs potential. Previous work on this case determined that the scalar field is given by a simple expression of the Lambert W function in terms of the easily observable scale factor. This expression provides analytic equations for the evolution of cosmological dark energy parameters as a function of the scale factor for all points on the Lambert W function principal branch. The Lambert W function is zero at a scale factor of zero that marks the big bang. The evolutionary equations beyond the big bang describe a canonical universe that is similar to ΛCDM, making it an excellent dynamical template to compare with observational data. The portion of the W function principal before the big bang extends to the infinite pre-bang past. It describes a noncanonical universe with an initially very low mass density that contracts by rolling down the dark energy potential to a singularity, big bang, at the scale factor zero point. This provides a natural origin for the big bang. It also raises the possibility that the universe existed before the big bang and is far older, and that it was once far larger than its current size. The recent increasing interest in the possibility of a dynamical universe instead of ΛCDM makes the exploration of the nature of such universes particularly relevant. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
Show Figures

Figure 1

13 pages, 9643 KiB  
Article
Mono-Higgs and Mono-Z Production in the Minimal Vector Dark Matter Model
by Gonzalo Benítez-Irarrázabal and Alfonso Zerwekh
Universe 2024, 10(7), 288; https://doi.org/10.3390/universe10070288 - 2 Jul 2024
Cited by 3 | Viewed by 1004
Abstract
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate [...] Read more.
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate corresponds to the neutral component of the new vector field (V0). Previous studies have shown that the model can explain the observed dark matter abundance while evading direct and indirect searches. At colliders, the attention has been put on the production of the charged companions of the dark matter candidate. In this work, we focus on the mono-Higgs and mono-Z signals at Hadron colliders. The new charged vectors (V±) are invisible unless a dedicated search is performed. Consequently, we assume that the mono-Higgs and mono-Z processes correspond to the pphV+,0V,0 and ppZV+,0V,0 reactions, respectively. We show that, while the pphV+,0V,0 is more important, both channels may produce significant signals at the HL-LHC and colliders running at s=27 TeV and 100 TeV, probing almost the complete parameter space. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

17 pages, 555 KiB  
Entry
The Emergence of Neuroleadership in the Knowledge Economy
by Constantin Bratianu and Roxana-Maria Staneiu
Encyclopedia 2024, 4(3), 1100-1116; https://doi.org/10.3390/encyclopedia4030071 - 1 Jul 2024
Viewed by 4191
Definition
“The Emergence of Neuroleadership in the Knowledge Economy” explores the field of neuroleadership in today’s constantly changing economy, highlighting the transition from traditional leadership to neuroleadership. Neuroleadership renders itself as a novel approach to the leadership theory, which brings together insights from neuroscience, [...] Read more.
“The Emergence of Neuroleadership in the Knowledge Economy” explores the field of neuroleadership in today’s constantly changing economy, highlighting the transition from traditional leadership to neuroleadership. Neuroleadership renders itself as a novel approach to the leadership theory, which brings together insights from neuroscience, psychology, and leadership studies. It emphasizes understanding the workings of the brain and human behavior in order to drive leadership effectiveness, at individual, team, and organizational levels. Additionally, the knowledge economy is characterized by the significant role of knowledge and intellectual capital when it comes to driving economic growth and organizational development. It highlights the creation, dissemination, and sharing of knowledge as important pillars for productivity and competitive advantage, shaping industries and transforming leadership traditional models. Through an extensive literature review and by employing the Dulewicz and Higgs leadership model, the authors showcase what are the intellectual, managerial, and emotional competencies that make neuroleadership the next natural step in leading teams and organizations. This article proposes a comparative matrix between traditional leaders and neuroleaders, and highlights a novel framework for better understanding neuroleadership. Full article
(This article belongs to the Collection Knowledge Management in Encyclopedia)
Show Figures

Figure 1

10 pages, 263 KiB  
Article
Cosmic Strings from Thermal Inflation
by Robert Brandenberger and Aline Favero
Universe 2024, 10(6), 253; https://doi.org/10.3390/universe10060253 - 4 Jun 2024
Viewed by 1022
Abstract
Thermal inflation was proposed as a mechanism to dilute the density of cosmological moduli. Thermal inflation is driven by a complex scalar field possessing a large vacuum expectation value and a very flat potential, called a “flaton”. Such a model admits cosmic string [...] Read more.
Thermal inflation was proposed as a mechanism to dilute the density of cosmological moduli. Thermal inflation is driven by a complex scalar field possessing a large vacuum expectation value and a very flat potential, called a “flaton”. Such a model admits cosmic string solutions, and a network of such strings will inevitably form in the symmetry breaking phase transition at the end of the period of thermal inflation. We discuss the differences of these strings compared to the strings which form in the Abelian Higgs model. Specifically, we find that the upper bound on the symmetry breaking scale is parametrically lower than in the case of Abelian Higgs strings, and that the lower cutoff on the string loop distribution is determined by cusp annihilation rather than by gravitational radiation (for the value of the transition temperature proposed in the original work on thermal inflation). Full article
21 pages, 462 KiB  
Article
Inflaton Decay in No-Scale Supergravity and Starobinsky-like Models
by Yohei Ema, Marcos A. G. Garcia, Wenqi Ke, Keith A. Olive and Sarunas Verner
Universe 2024, 10(6), 239; https://doi.org/10.3390/universe10060239 - 30 May 2024
Cited by 7 | Viewed by 982
Abstract
We consider the decay of the inflaton in Starobinsky-like models arising from either an R+R2 theory of gravity or N=1 no-scale supergravity models. If Standard Model matter is simply introduced to the R+R2 theory, the [...] Read more.
We consider the decay of the inflaton in Starobinsky-like models arising from either an R+R2 theory of gravity or N=1 no-scale supergravity models. If Standard Model matter is simply introduced to the R+R2 theory, the inflaton (which appears when the theory is conformally transformed into the Einstein frame) couples to matter predominantly in Standard Model Higgs kinetic terms. This will typically lead to a reheating temperature of ∼3 × 109 GeV. However, if the Standard Model Higgs is conformally coupled to curvature, the decay rate may be suppressed and vanishes for conformal coupling ξ=1/6. Nevertheless, the inflaton decays through the conformal anomaly, leading to a reheating temperature of the order of 108 GeV. The Starobinsky potential may also arise in no-scale supergravity. In this case, the inflaton decays if there is a direct coupling of the inflaton to matter in the superpotential or to gauge fields through the gauge kinetic function. We also discuss the relation between the theories and demonstrate the correspondence between the no-scale models and the conformally coupled R+R2 theory (with ξ=1/6). Full article
Show Figures

Figure 1

16 pages, 329 KiB  
Article
The Effective Potential of Scalar Pseudo-Quantum Electrodynamics in (2 + 1)D
by Leandro O. Nascimento, Carlos A. P. C. Junior and José R. Santos
Condens. Matter 2024, 9(2), 25; https://doi.org/10.3390/condmat9020025 - 30 May 2024
Viewed by 1702
Abstract
The description of the electron–electron interactions in two-dimensional materials has a dimensional mismatch, where electrons live in (2 + 1)D while photons propagate in (3 + 1)D. In order to define an action in (2 + 1)D, one may perform a dimensional reduction [...] Read more.
The description of the electron–electron interactions in two-dimensional materials has a dimensional mismatch, where electrons live in (2 + 1)D while photons propagate in (3 + 1)D. In order to define an action in (2 + 1)D, one may perform a dimensional reduction of quantum electrodynamics in (3 + 1)D (QED4) into pseudo-quantum electrodynamics (PQED). The main difference between this model and QED4 is the presence of a pseudo-differential operator in the Maxwell term. However, besides the Coulomb repulsion, electrons in a material are subjected to several microscopic interactions, which are inherent in a many-body system. These are expected to reduce the range of the Coulomb potential, leading to a short-range interaction. Here, we consider the coupling to a scalar field in PQED for explaining such a mechanism, which resembles the spontaneous symmetry breaking (SSB) in Abelian gauge theories. In order to do so, we consider two cases: (i) by coupling the quantum electrodynamics to a Higgs field in (3 + 1)D and, thereafter, performing the dimensional reduction; and (ii) by coupling a Higgs field to the gauge field in PQED and, subsequently, calculating its effective potential. In case (i), we obtain a model describing electrons interacting through the Yukawa potential and, in case (ii), we show that SSB does not occur at one-loop approximation. The relevance of the model for describing electronic interactions in two-dimensional materials is also addressed. Full article
(This article belongs to the Special Issue PQED: 30 Years of Reduced Quantum Electrodynamics)
Show Figures

Figure 1

18 pages, 967 KiB  
Article
Gravitating Scalarons with Inverted Higgs Potential
by Xiao Yan Chew and Kok-Geng Lim
Universe 2024, 10(5), 212; https://doi.org/10.3390/universe10050212 - 10 May 2024
Cited by 7 | Viewed by 1738
Abstract
Previously, a class of regular and asymptotically flat gravitating scalar solitons (scalarons) has been constructed in the Einstein–Klein–Gordon (EKG) theory by adopting a phantom field with Higgs-like potential where the kinetic term has the wrong sign and the scalaron possesses the negative Arnowitt–Deser–Misner [...] Read more.
Previously, a class of regular and asymptotically flat gravitating scalar solitons (scalarons) has been constructed in the Einstein–Klein–Gordon (EKG) theory by adopting a phantom field with Higgs-like potential where the kinetic term has the wrong sign and the scalaron possesses the negative Arnowitt–Deser–Misner (ADM) mass as a consequence. In this paper, we demonstrate that the use of the phantom field can be avoided by inverting the Higgs-like potential in the EKG system when the kinetic term has a proper sign, such that the corresponding gravitating scalaron can possess the positive ADM mass. We systematically study the basic properties of the gravitating scalaron, such as the ADM mass, the energy conditions, the geodesics of test particles, etc. Moreover, we find that it can be smoothly connected to the counterpart hairy black hole solutions from our recent work in the small horizon limit. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

12 pages, 1512 KiB  
Review
Dynamics of Cosmological Scalar Fields Revisited
by Jan-Willem van Holten
Universe 2024, 10(5), 197; https://doi.org/10.3390/universe10050197 - 28 Apr 2024
Cited by 1 | Viewed by 1250
Abstract
This paper reviews the dynamics of a single isotropic and homogeneous scalar field φ(t) in the context of cosmological models. A non-standard approach to the solution of the Einstein–Klein–Gordon equations is described which uses the scalar field as the evolution [...] Read more.
This paper reviews the dynamics of a single isotropic and homogeneous scalar field φ(t) in the context of cosmological models. A non-standard approach to the solution of the Einstein–Klein–Gordon equations is described which uses the scalar field as the evolution parameter for cosmic dynamics. General conclusions about the qualitative behaviour of the solutions can be drawn, and examples of how to obtain explicit solutions for some cosmological models of interest are given. For arbitrary potentials, analytical results can be obtained from the slow-roll approximation by using a series expansion for the Hubble parameter H[φ], from which a quantitative estimate for the number of e-folds of expansion is obtained. This approach is illustrated with the examples of quadratic potentials and hilltop models, with special consideration of Higgs-type potentials. The GUT-scale is shown to come out of such a model quite naturally. Finally, it is discussed how to find scalar potentials giving rise to a predetermined scalar-field behaviour and the associated evolution of the scale factor. Full article
Show Figures

Figure 1

9 pages, 449 KiB  
Review
Superconductors without Symmetry Breaking
by Maria Cristina Diamantini
Condens. Matter 2024, 9(2), 21; https://doi.org/10.3390/condmat9020021 - 2 Apr 2024
Viewed by 2029
Abstract
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs [...] Read more.
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs field involved. Superconductivity is destroyed by the proliferation of vortices and not by the breaking of Cooper pairs, which survive above the critical temperature. The hallmark of this superconductivity mechanism, in 3 spatial dimensions (3D), is the Vogel–Fulcher–Taman scaling of the resistance with temperature. Full article
(This article belongs to the Special Issue Superstripes Physics, 2nd Edition)
Show Figures

Figure 1

Back to TopTop