Dynamics of Cosmological Scalar Fields Revisited †
Abstract
:1. Introduction and motivation
2. Modelling Cosmological Scalar Fields
3. An Exact Solution: Exponential Potentials
4. Slow-Roll Approximation
5. Quadratic Potentials
6. Hilltop Inflation
7. Discussion
Funding
Conflicts of Interest
References
- Fixsen, D.J.; Cheng, E.S.; Gales, J.M.; Mather, J.C.; Shafer, R.A.; Wright, E.L. The Cosmic Microwave Background Spectrum from the full COBE FIRAS Data Set. Astrophys. J. 1996, 473, 576. [Google Scholar] [CrossRef]
- Hinshaw, G. et al. [WMAP Collab] Nine-year WMAP observations: Final maps and results. Astrophys. J. 2013, 208, 19. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collab] Planck 2018 results I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar]
- Betoule, M. et al. [SDDS-II and SNLS Collab] Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 2014, 568, A22. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DES Collab] Dark Energy Survey Year 3 Results: Cosmological Constraints from Galaxy Clutering and Weak Lensing. arXiv 2022, arXiv:2105.13549. [Google Scholar]
- Wetterich, C. Cosmology and the fate of dilatation symmetry. Nucl. Phys. B 1988, 302, 668. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Phys. Rev. Lett. 1999, 82, 896. [Google Scholar] [CrossRef]
- Starobinsky, A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Guth, A. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Albrecht, A.; Steinhardt, P. Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 1982, 48, 1220. [Google Scholar] [CrossRef]
- Linde, A. Chaotic inflation. Phys. Lett. B 1983, 129, 177. [Google Scholar] [CrossRef]
- Turner, M.S. Coherent scalar-field oscillations in an expanding universe. Phys. Rev. D 1983, 28, 1243. [Google Scholar] [CrossRef]
- Futamase, T.; Maeda, K.-I. Chaotic inflationary scenario in models having nonminimal coupling with curvature. Phys. Rev. D 1989, 39, 399. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Cota, J.L.; Dehnen, H. Induced gravity inflation in the standard model of particle physics. Nucl. Phys. B 1995, 442, 391. [Google Scholar] [CrossRef]
- Bezrukov, F.L.; Shaposhnikov, M. The standard model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703. [Google Scholar] [CrossRef]
- Hamada, Y.; Kawai, H.; Oda, K.-Y.; Park, S.C. Higgs Inflation is Still Alive after the Results from BICEP2. Phys. Rev. Lett. 2014, 112, 241301. [Google Scholar] [CrossRef] [PubMed]
- Calmet, X.; Kuntz, I. Higgs Starobinsky Inflation. Eur. Phys. J. C 2016, 76, 289. [Google Scholar] [CrossRef]
- Ema, Y.; Mukaida, K.; Vis, J.V. Higgs Inflation as Nonlinear Sigma Model and Scalaron as its σ-meson. J. High Energy Phys. 2020, 11, 011. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Martin, J.; Ringeval, C.; Vennin, V. Encyclopaedia Inflationaris. Phys. Dark Univ. 2014, 5–6, 75. [Google Scholar] [CrossRef]
- van Holten, J.W. Cosmological Higgs fields. Phys. Rev. Lett. 2002, 89, 201301. [Google Scholar] [CrossRef]
- van Holten, J.W. On single scalar field cosmology. arXiv 2013, arXiv:1301.1174v2. [Google Scholar]
- van Holten, J.W. Single scalar cosmology. Int. J. Mod. Phys. A 2013, 28, 1350132. [Google Scholar] [CrossRef]
- Halliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341. [Google Scholar] [CrossRef]
- Boubekeur, L.; Lyth, D. Hilltop Inflation. J. Cosmol. Astropart. Phys. 2005, 0507, 010. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. On hilltop and brane inflation after Planck. J. Cosmol. Astropart. Phys. 2019, 2019, 030. [Google Scholar] [CrossRef]
- Dimopoulos, K. An analytic treatment of quartic hilltop inflation. Phys. Lett. B 2020, 809, 135688. [Google Scholar] [CrossRef]
- Lillepalu, H.G.; Racioppi, A. Generalized hilltop inflation. Eur. Phys. J. Plus 2023, 138, 894. [Google Scholar] [CrossRef]
- Roest, D. Universality classes of inflation. J. Cosmol. Astropart. Phys. 2014, 01, 007. [Google Scholar] [CrossRef]
- Nibbelink, S.G.Ġ.; van Tent, B.J.W. Scalar perturbations during multiple-field slow-roll inflation. Class. Quantum Grav. 2002, 19, 613. [Google Scholar] [CrossRef]
- Armendáriz-Picón, C.; Damour, T.; Mukhanov, V. k-Inflation. Phys. Lett. B 1999, 458, 209–218. [Google Scholar] [CrossRef]
- van Holten, J.W.; Kerner, R. Time-reparametrization invariance and Hamilton-Jacobi approach to the cosmological σ-model. Fortschr. Phys. 2014, 62, 543. [Google Scholar] [CrossRef]
- Burgess, C.P.; Patil, A.P.; Trott, M. On the Predictiveness of Single-Field Inflationary Models. J. High Energy Phys. 2014, 1406, 010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Holten, J.-W. Dynamics of Cosmological Scalar Fields Revisited. Universe 2024, 10, 197. https://doi.org/10.3390/universe10050197
van Holten J-W. Dynamics of Cosmological Scalar Fields Revisited. Universe. 2024; 10(5):197. https://doi.org/10.3390/universe10050197
Chicago/Turabian Stylevan Holten, Jan-Willem. 2024. "Dynamics of Cosmological Scalar Fields Revisited" Universe 10, no. 5: 197. https://doi.org/10.3390/universe10050197
APA Stylevan Holten, J. -W. (2024). Dynamics of Cosmological Scalar Fields Revisited. Universe, 10(5), 197. https://doi.org/10.3390/universe10050197