Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (292)

Search Parameters:
Keywords = HSD3B

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1461 KiB  
Review
Roles of Type 10 17β-Hydroxysteroid Dehydrogenase in Health and Disease
by Xue-Ying He, Janusz Frackowiak and Song-Yu Yang
J. Pers. Med. 2025, 15(8), 346; https://doi.org/10.3390/jpm15080346 (registering DOI) - 1 Aug 2025
Abstract
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain [...] Read more.
Type 10 17β-hydroxysteroid dehydrogenase (17β-HSD10) is the HSD17B10 gene product. It plays an appreciable part in the carcinogenesis and pathogenesis of neurodegeneration, such as Alzheimer’s disease and infantile neurodegeneration. This mitochondrial, homo-tetrameric protein is a central hub in various metabolic pathways, e.g., branched-chain amino acid degradation and neurosteroid metabolism. It can bind to other proteins carrying out diverse physiological functions, e.g., tRNA maturation. It has also previously been proposed to be an Aβ-binding alcohol dehydrogenase (ABAD) or endoplasmic reticulum-associated Aβ-binding protein (ERAB), although those reports are controversial due to data analyses. For example, the reported km value of some substrate of ABAD/ERAB was five times higher than its natural solubility in the assay employed to measure km. Regarding any reported “one-site competitive inhibition” of ABAD/ERAB by Aβ, the kivalue estimations were likely impacted by non-physiological concentrations of 2-octanol at high concentrations of vehicle DMSO and, therefore, are likely artefactual. Certain data associated with ABAD/ERAB were found not reproducible, and multiple experimental approaches were undertaken under non-physiological conditions. In contrast, 17β-HSD10 studies prompted a conclusion that Aβ inhibited 17β-HSD10 activity, thus harming brain cells, replacing a prior supposition that “ABAD” mediates Aβ neurotoxicity. Furthermore, it is critical to find answers to the question as to why elevated levels of 17β-HSD10, in addition to Aβ and phosphorylated Tau, are present in the brains of AD patients and mouse AD models. Addressing this question will likely prompt better approaches to develop treatments for Alzheimer’s disease. Full article
14 pages, 7293 KiB  
Article
Components of Mineralocorticoid Receptor System in Human DRG Neurons Co-Expressing Pain-Signaling Molecules: Implications for Nociception
by Shaaban A. Mousa, Xueqi Hong, Elsayed Y. Metwally, Sascha Tafelski, Jan David Wandrey, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2025, 14(15), 1142; https://doi.org/10.3390/cells14151142 - 24 Jul 2025
Viewed by 233
Abstract
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR [...] Read more.
The mineralocorticoid receptor (MR), traditionally associated with renal function, has also been identified in various extrarenal tissues, including the heart, brain, and dorsal root ganglion (DRG) neurons in rodents. Previous studies suggest a role for the MR in modulating peripheral nociception, with MR activation in rat DRG neurons by its endogenous ligand, aldosterone. This study aimed to determine whether MR, its protective enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), its endogenous ligand aldosterone, and the aldosterone-synthesizing enzyme CYP11B2 are expressed in human DRG neurons and whether they colocalize with key pain-associated signaling molecules as potential targets for genomic regulation. To this end, we performed mRNA transcript profiling and immunofluorescence confocal microscopy on human and rat DRG tissues. We detected mRNA transcripts for MR, 11β-HSD2, and CYP11B2 in human DRG, alongside transcripts for key thermosensitive and nociceptive markers such as TRPV1, the TTX-resistant sodium channel Nav1.8, and the neuropeptides CGRP and substance P (Tac1). Immunofluorescence analysis revealed substantial colocalization of MR with 11β-HSD2 and CGRP, a marker of unmyelinated C-fibers and thinly myelinated Aδ-fibers, in human DRG. MR immunoreactivity was primarily restricted to small- and medium-diameter neurons, with lower expression in large neurons (>70 µm). Similarly, aldosterone colocalized with CYP11B2 and MR with nociceptive markers including TRPV1, Nav1.8, and TrkA in human DRG. Importantly, functional studies demonstrated that prolonged intrathecal inhibition of aldosterone synthesis within rat DRG neurons, using an aldosterone synthase inhibitor significantly downregulated pain-associated molecules and led to sustained attenuation of inflammation-induced hyperalgesia. Together, these findings identify a conserved peripheral MR signaling axis in humans and highlight its potential as a novel target for pain modulation therapies. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

15 pages, 857 KiB  
Article
Evaluation of Morphology and Prevalence of Palatoradicular Grooves on Affected Maxillary Anterior Teeth Using Cone-Beam Computed Tomography: An Institutional Retrospective Study
by Dilara Baştuğ and Leyla Benan Ayrancı
Appl. Sci. 2025, 15(14), 8031; https://doi.org/10.3390/app15148031 - 18 Jul 2025
Viewed by 212
Abstract
This retrospective study aimed to evaluate the prevalence, morphological types, and distribution patterns of palatoradicular grooves (PRGs) in maxillary anterior teeth using cone-beam computed tomography (CBCT) in a Turkish population. CBCT images of 1553 patients from the radiology archive of Ordu University Faculty [...] Read more.
This retrospective study aimed to evaluate the prevalence, morphological types, and distribution patterns of palatoradicular grooves (PRGs) in maxillary anterior teeth using cone-beam computed tomography (CBCT) in a Turkish population. CBCT images of 1553 patients from the radiology archive of Ordu University Faculty of Dentistry (2021–2022) were reviewed. A total of 920 patients (4012 teeth) met the inclusion criteria. The presence, type, and localization of PRGs were assessed. Groove types were classified as Type 1, 2, 3A, or 3B; localization was recorded as mesial, distal, or midpalatal. Bilateral and unilateral occurrences were also analyzed. Statistical analysis involved chi-square tests, Tukey’s HSD, and Cohen’s kappa for intra-observer reliability. PRGs were detected in 23.6% of patients and 10.42% of teeth. Lateral incisors were most affected (87.56%). Type 1 grooves were most common (71.53%), with midpalatal localization being most frequent (54.07%). Bilateral grooves were significantly more prevalent than unilateral ones (p < 0.001). No significant association was found between groove type and tooth type or between gender and bilaterality. This study revealed a high prevalence of PRGs, especially in maxillary lateral incisors, with a significant tendency toward bilateral and midpalatal presentation. CBCT proved essential for detecting palatoradicular grooves, aiding diagnosis and treatment. Full article
Show Figures

Figure 1

18 pages, 1379 KiB  
Article
Enzymatic Hydrolysis of Gluten in Beer: Effects of Enzyme Application on Different Brewing Stages on Beer Quality Parameters and Gluten Content
by Carolina Pedroso Partichelli, Vitor Manfroi and Rafael C. Rodrigues
Foods 2025, 14(14), 2519; https://doi.org/10.3390/foods14142519 - 18 Jul 2025
Viewed by 307
Abstract
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at [...] Read more.
A rising demand for low-gluten beer fuels research into enzymatic solutions. This study optimized Aspergillus niger prolyl endopeptidase (AN-PEP) application timing during brewing to reduce gluten while preserving physicochemical quality. Ale-type beers were produced with AN-PEP (2% v/v) added at mashing, boiling, post-boiling, or post-fermentation, plus a control. Three mashing profiles (Mash A, B, C) were also tested. Gluten was quantified by R5 ELISA (LOQ > 270 mg/L). Color, bitterness, ABV, and foam stability were assessed. Statistical analysis involved ANOVA and Tukey’s HSD (p < 0.05). Enzyme activity and thermal inactivation were also evaluated. Initial gluten levels consistently exceeded LOQ. Significant gluten reduction occurred only post-fermentation. Mashing, boiling, and post-boiling additions effectively lowered gluten to below 20 mg/L. Post-fermentation addition resulted in significantly higher residual gluten (136.5 mg/L). Different mashing profiles (A, B, C) with early enzyme addition achieved similar low-gluten levels. AN-PEP showed optimal activity at 60–65 °C, inactivating rapidly at 100 °C. Physicochemical attributes (color, extract, bitterness, ABV) were largely unaffected. However, foam stability was significantly compromised by mashing and post-fermentation additions, while preserved with boiling and post-boiling additions. AN-PEP effectively produces low-gluten beers. Enzyme addition timing is critical: while mashing, boiling, or post-boiling additions reduce gluten to regulatory levels, only the beginning of boiling or post-boiling additions maintain desirable foam stability. These findings offer practical strategies for optimizing low-gluten beer production. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

14 pages, 794 KiB  
Article
The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease
by Theint Cho Zin Aung, Bootsakorn Boonkaew, Maneerat Chayanupatkul, Kittiyod Poovorawan, Natthaya Chuaypen and Pisit Tangkijvanich
Genes 2025, 16(7), 808; https://doi.org/10.3390/genes16070808 - 9 Jul 2025
Viewed by 370
Abstract
Background/Objectives: The influence of single-nucleotide polymorphisms (SNPs) on hepatocellular carcinoma (HCC) in terms of etiological factors remains to be explored. This study evaluated the distribution of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs6834314 and overall survival of HCC patients with metabolic dysfunction-associated steatotic [...] Read more.
Background/Objectives: The influence of single-nucleotide polymorphisms (SNPs) on hepatocellular carcinoma (HCC) in terms of etiological factors remains to be explored. This study evaluated the distribution of PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs6834314 and overall survival of HCC patients with metabolic dysfunction-associated steatotic liver disease (MASLD-HCC) and viral-related HCC (VIRAL-HCC). Methods: This study included 564 patients with HCC: 254 with MASLD-HCC and 310 with VIRAL-HCC. The SNPs were determined by real-time PCR using TaqMan assays. Results: The mean ages of patients with MASLD-HCC and VIRAL-HCC were 68.4 vs. 60.9 years (p < 0.001), with a significant difference between groups. The prevalence of PNPLA3 GG genotype in MASLD-HCC was significantly higher in MASLD-HCC than in VIRAL-HCC (24.0% vs. 15.5%, OR = 1.86, 95% CI = 1.14–3.05, p = 0.009). Similarly, the prevalence of TM6SF2 TT genotype in MASLD-HCC and VIRAL-HCC was 7.1% vs. 2.6% (OR = 3.39, 95% CI = 1.36–9.21, p = 0.003), while HSD17B13 GG genotype in the corresponding groups was 7.1% vs. 12.6% (OR = 0.53, 95% CI = 0.27–1.01, p = 0.039). The overall median survival of MASLD-HCC was significantly shorter than that of the VIRAL-HCC group (42 vs. 66 months, p = 0.035). In Cox regression hazard analysis, HSD17B13 GG genotype was significantly associated with a lower mortality rate in MASLD-HCC (HR = 0.38, 95% CI = 0.18–0.81, p = 0.011). In contrast, PNPLA3 and TM6SF2 were not associated with overall survival in patients with MASLD-HCC or VIRAL-HCC. Conclusions: Our data demonstrated that the prevalence of the SNPs significantly differed between MASLD-HCC and VIRAL-HCC. The HSD176B13 GG genotype was also associated with a survival benefit in Thai patients with MASLD-HCC. Thus, assessing the HSD176B13 genotype might be beneficial in risk stratification and potential therapeutic inhibition of HSD17B13 among patients with MASLD-HCC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

13 pages, 712 KiB  
Article
Polymorphism’s MBOAT7 as Risk and MTARC1 as Protection for Liver Fibrosis in MASLD
by Sofia Rocha, Claudia P. Oliveira, José Tadeu Stefano, Roberta P. Yokogawa, Michele Gomes-Gouvea, Patricia Momoyo Youshimura Zitelli, Joyce Matie Kinoshita Silva-Etto, Eduarda Donegá Martins, Mario G. Pessoa, Flavio F. Alcantara, Raymundo S. Azevedo and João Renato Rebello Pinho
Int. J. Mol. Sci. 2025, 26(13), 6406; https://doi.org/10.3390/ijms26136406 - 3 Jul 2025
Viewed by 380
Abstract
Previous large-scale genetic studies identified single-nucleotide polymorphisms (SNPs) of the membrane bound O-acyltransferase domain containing 7 (MBOAT7) and patatin-like phospholipase domain containing 3 (PNPLA3) genes as risk factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, this has not yet been investigated in [...] Read more.
Previous large-scale genetic studies identified single-nucleotide polymorphisms (SNPs) of the membrane bound O-acyltransferase domain containing 7 (MBOAT7) and patatin-like phospholipase domain containing 3 (PNPLA3) genes as risk factors for metabolic dysfunction-associated steatotic liver disease (MASLD). However, this has not yet been investigated in Brazilian patients. In this study, we evaluated the association between the PNPLA3 variant rs738409 and MBOAT7 variant rs641738 and the risk of hepatic fibrosis or liver cirrhosis in MASLD etiology. In parallel, we also aimed to evaluate a protective SNP of the mitochondrial amidoxime-reducing component 1 (MTARC1) gene. We also evaluated TM6SF2 rs58542926, GCKR rs1260326 and rs780094, and HSD17B13 rs72613567 and they were not associated with liver fibrosis. The study was conducted at the Department of Gastroenterology and Nutrology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), and included 113 patients with liver fibrosis (F0–F1), 99 patients with significant liver fibrosis (F2–F4), and 90 controls. SNPs were genotyped by quantitative PCR, using TaqMan allelic discrimination assays. Overall, the PNPLA3 GG genotype was more frequent in F2–F4 (23%) and F0–F1 (22%) patients than in controls (9%; p = 0.02). The MBOAT7 TT genotype was significantly associated with fibrosis, with a prevalence of 23% in F2–F4 patients versus 10% in F0–F1 and 11% in controls (p = 0.01). This association was confirmed by regression analysis (OR = 5.01 95% CI: 1.86–13.49; p = 1.41 × 10−3). The protective MTARC1 AA genotypes were more frequent in controls (52%) when compared to patients with fibrosis (5% p = 2.76 × 10−20). Full article
Show Figures

Figure 1

21 pages, 1355 KiB  
Article
Detection of LUAD-Associated Genes Using Wasserstein Distance in Multiomics Feature Selection
by Shaofei Zhao, Siming Huang, Lingli Yang, Weiyu Zhou, Kexuan Li and Shige Wang
Bioengineering 2025, 12(7), 694; https://doi.org/10.3390/bioengineering12070694 - 25 Jun 2025
Viewed by 444
Abstract
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this [...] Read more.
Lung adenocarcinoma (LUAD) is characterized by substantial genetic heterogeneity, making it challenging to identify reliable biomarkers for diagnosis and treatment. Tumor mutational burden (TMB) is widely recognized as a predictive biomarker due to its association with immune response and treatment efficacy. In this study, we take a different approach by treating TMB as a response variable to uncover its genetic drivers using multiomics data. We conducted a thorough evaluation of recent feature selection methods through extensive simulations and identified three top-performing approaches: projection correlation screening (PC-Screen), distance correlation sure independence screening (DC-SIS), and Wasserstein distance-based screening (WD-Screen). Unlike traditional approaches that rely on simple statistical tests or dataset splitting for validation, we adopt a method-based validation strategy, selecting top-ranked features from each method and identifying consistently selected genes across all three. Using The Cancer Genome Atlas (TCGA) dataset, we integrated copy number alteration (CNA), mRNA expression, and DNA methylation data as predictors and applied our selected methods. In the two-platform analysis (mRNA + CNA), we identified 13 key genes, including both previously reported LUAD-associated genes (CCNG1, CKAP2L, HSD17B4, SHROOM1, TIGD6, and TMEM173) and novel candidates (DTWD2, FLJ33630, NME5, NUDT12, PCBD2, REEP5, and SLC22A5). Expanding to a three-platform analysis (mRNA + CNA + methylation) further refined our findings, with PCBD2 and TMEM173 emerging as the robust candidates. These results highlight the complexity of multiomics integration and the need for advanced feature selection techniques to uncover biologically meaningful patterns. Our multiomics strategy and robust selection approach provide insights into the genetic determinants of TMB, offering potential biomarkers for targeted LUAD therapies and demonstrating the power of Wasserstein distance-based feature selection in complex genomic analysis. Full article
(This article belongs to the Special Issue Recent Advances in Genomics Research)
Show Figures

Figure 1

18 pages, 2447 KiB  
Article
lncRNA 1700009J07Rik Impaired Male Fertility by Interfering with Sexual Behaviors in Mice
by Hongyu Wang, Xiaojun Liu, Shijue Dong, Yang Zhou, Jingyan Yu, Meng Zou, Mengqian Ding, Aiwen Kang, Nanxi Ji, Xuhui Zeng and Xiaoning Zhang
Int. J. Mol. Sci. 2025, 26(12), 5801; https://doi.org/10.3390/ijms26125801 - 17 Jun 2025
Viewed by 358
Abstract
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs [...] Read more.
Long non-coding (lnc) RNAs exhibit tissue-specific expression characteristics and have been shown to be involved in the regulation of various biological processes. The testis is one of the organs with the most abundant lncRNAs. However, the functions of many testis-specific or -enriched lncRNAs in male fertility remain undisclosed. In this study, we screened lncRNA 1700009J07Rik (07Rik) to investigate its roles in spermatogenesis and male fertility using knockout (KO) mice. We found that 07Rik mainly acted as an intact lncRNA rather than a small protein, being highly expressed in various spermatogenic cells, which suggests its potential involvement in spermatogenesis. Unexpectedly, the deletion of 07Rik did not impact spermatogenesis or sperm functions. Intriguingly, two-thirds of the male KO were infertile, which was ascribed to the lack of sexual behaviors rather than abnormalities in spermatogenesis or sperm functions. Further results reveal that, compared with wild-type mice, free testosterone content in serum was significantly reduced in the KO infertile (KO-I) mice, whereas it was remarkably elevated in the testes. Correspondingly, Hsd3b2, a key gene that promotes testosterone synthesis, was dramatically upregulated. Cyp19a1 and Cyp11b1, which are responsible for testosterone metabolism, were downregulated in the testes. In addition, the expression of sex hormone-binding globulin was observably elevated in the testes of 07Rik KO-I mice, which might partially explain the decrease in testosterone in the serum. These results suggest that disruptions in testosterone synthesis and metabolism might contribute to the loss of libido in 07Rik KO-I mice. Our findings expand the understanding of lncRNA function and provide novel insights into the role of lncRNAs in male fertility, particularly in relation to hormonal turnover disorders that mediate sexual behavior defects. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

21 pages, 2425 KiB  
Article
HSD3B1 (c.1100C) Genotype Is Associated with Distinct Tumoral and Clinical Outcomes in Breast and Endometrial Cancers
by Nikitha Vobugari, Allison Makovec, Samuel Kellen, Shayan S. Nazari, Andrew Elliott, Devin Schmeck, Aiden Deacon, Gabriella von Dohlen, Emily John, Pedro C. Barata, Neeraj Agarwal, Melissa A. Geller, Britt K. Erickson, George Sledge, Julie H. Ostrander, Rana R. McKay, Charles J. Ryan, Nima Sharifi, Emmanuel S. Antonarakis and Justin Hwang
Int. J. Mol. Sci. 2025, 26(12), 5720; https://doi.org/10.3390/ijms26125720 - 14 Jun 2025
Viewed by 682
Abstract
HSD3B1 encodes an enzyme that catalyzes the conversion of adrenal precursors into potent sex steroids. A common germline variant (c.1100C) enhances this effect and is linked to breast cancer (BC) progression. As the HSD3B1 genotypes contribute to differences in local and adrenal steroid [...] Read more.
HSD3B1 encodes an enzyme that catalyzes the conversion of adrenal precursors into potent sex steroids. A common germline variant (c.1100C) enhances this effect and is linked to breast cancer (BC) progression. As the HSD3B1 genotypes contribute to differences in local and adrenal steroid production, their transcriptional and phenotypic effects on cancers influenced by hormonal signaling such as BC and endometrial cancer (EC)—particularly in relation to menopausal status—remain unclear. We analyzed BC and EC sequenced from patients that received diagnostic tests in oncology clinics, and we determined the germline HSD3B1 c.1100 genotype (AA, AC, CC) from tumor DNA sequencing by using variant allele frequency, with inferred menopausal status assumed by age at molecular profiling. Whole-transcriptome RNA sequencing and gene set enrichment analysis showed that adrenal-permissive homozygous (CC) tumors in premenopausal ER + BC were enriched for hormone-related pathways, including Estrogen Response Early (NES ≈ +1.8). In premenopausal triple-negative BC, adrenal-restrictive homozygous (AA) tumors exhibited the elevated expression of immune and epithelial genes and the increased prevalence of MED12 alterations (AA 0.25% vs. CC 8%, p < 0.01). In endometrioid EC, CC tumors demonstrated the suppression of immune and proliferative pathways. Postmenopausal cases had higher progesterone receptor IHC positivity (AA 75% vs. CC 83%, p < 0.05) and numerically more frequent ESR1 copy number gains (AA 2.0% vs. CC 4.0%). Results highlight context-specific associations between germline HSD3B1 genotypes and tumor biology in BC and EC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 1453 KiB  
Article
Performance and Environmental Sustainability of Fish Waste Biodiesel on Diesel Engines
by Mehmood Ali, Muhammad Shakaib, Asad A. Zaidi, Muhammad Asad Javed, Sohaib Z. Khan and Ashraf Aly Hassan
Sustainability 2025, 17(12), 5385; https://doi.org/10.3390/su17125385 - 11 Jun 2025
Viewed by 499
Abstract
The harmful environmental impacts of fossil fuel combustion, particularly greenhouse gas (GHG) emissions, have driven global interest in developing sustainable biodiesel alternatives. Pakistan imports 294.46 million tons of high-speed diesel (HSD) annually, costing approximately USD 140.237 million. A 10% biodiesel blend could save [...] Read more.
The harmful environmental impacts of fossil fuel combustion, particularly greenhouse gas (GHG) emissions, have driven global interest in developing sustainable biodiesel alternatives. Pakistan imports 294.46 million tons of high-speed diesel (HSD) annually, costing approximately USD 140.237 million. A 10% biodiesel blend could save 29.446 million tons of HSD and USD 14.023 million annually. Fish waste, a significant byproduct of Pakistan’s fishing industry, offers a promising feedstock for biodiesel production. This study explores its conversion into biodiesel and evaluates performance in diesel engines, supporting sustainability and circular economy goals. This study produced fish waste biodiesel through two-step transesterification reactions, achieving a 68% conversion yield. The biodiesel exhibited properties within ASTM D6751 standards, with a calorific value of 40.47 MJ/kg and a cetane number of 55.92. Engine performance and emission tests on LOMBARDINI 15LD225 diesel engines showed significant CO emission reductions with B10 and B20 blends compared to conventional diesel. Simulation using Ricardo Wave software 2019.1 demonstrated a 90% model accuracy for predicting CO emissions. The findings highlight the viability of fish waste-derived biodiesel as a cleaner, renewable alternative to fossil diesel, supporting sustainability and circular economy goals. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

21 pages, 762 KiB  
Review
Polygenic Risk Score for Metabolic Dysfunction-Associated Steatotic Liver Disease and Steatohepatitis: A Narrative Review
by Tatsuo Kanda, Reina Sasaki-Tanaka, Hiroyuki Abe, Naruhiro Kimura, Tomoaki Yoshida, Kazunao Hayashi, Akira Sakamaki, Takeshi Yokoo, Hiroteru Kamimura, Atsunori Tsuchiya, Kenya Kamimura and Shuji Terai
Int. J. Mol. Sci. 2025, 26(11), 5164; https://doi.org/10.3390/ijms26115164 - 28 May 2025
Cited by 1 | Viewed by 947
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are spreading worldwide as the most critical causes of cirrhosis and hepatocellular carcinoma (HCC). Thus, improving the screening and managing strategies for patients with MASLD or MASH is necessary. A traditional non-systemic [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) are spreading worldwide as the most critical causes of cirrhosis and hepatocellular carcinoma (HCC). Thus, improving the screening and managing strategies for patients with MASLD or MASH is necessary. A traditional non-systemic review provided this narrative. Genetic variations associated with the development of MASLD and MASH, such as PNPLA3, TM6SF2, GCKR, MBOAT7, MERTK, and HSD17B13, were initially reviewed. PNPLA3 genetic variants appeared to be strongly associated with the increased pathogenesis of MASLD, MASH, cirrhosis, and HCC. We also reviewed the useful polygenic risk score (PRS) for the development of MASLD, MASH, their related cirrhosis, and the occurrence of HCC. PRSs appeared to be better predictors of MASLD, MASH, the development of cirrhosis, and the occurrence of HCC in patients with MASLD or MASH than any single-nucleotide polymorphisms. RNA interference and antisense nucleotides against the genetic variations of PNPLA3 and HSD17B13 are also being developed. Multidisciplinary collaboration and cooperation involving hepatologists, geneticists, pharmacologists, and pathologists should resolve complicated problems in MASLD and MASH. This narrative review highlights the importance of the genetic susceptibility and PRS as predictive markers and personalized medicine for patients with MASLD or MASH in the future. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 4010 KiB  
Article
Lipidomic Profiling Reveals HSD17B13 Deficiency-Associated Dysregulated Hepatic Phospholipid Metabolism in Aged Mice
by Cong Zhang, Yingxin Feng, Xiaoyan Zhang, Youfei Guan and Wen Su
Metabolites 2025, 15(6), 353; https://doi.org/10.3390/metabo15060353 - 27 May 2025
Viewed by 731
Abstract
Objectives: HSD17B13 (17β-hydroxysteroid dehydrogenase 13), a lipid droplet-associated enzyme, has emerged as a key regulator of hepatic lipid metabolism and a potential therapeutic target for metabolic-associated fatty liver disease (MAFLD). While its role in lipid homeostasis and liver inflammation has been partially revealed, [...] Read more.
Objectives: HSD17B13 (17β-hydroxysteroid dehydrogenase 13), a lipid droplet-associated enzyme, has emerged as a key regulator of hepatic lipid metabolism and a potential therapeutic target for metabolic-associated fatty liver disease (MAFLD). While its role in lipid homeostasis and liver inflammation has been partially revealed, the impact of HSD17B13 deficiency on lipid metabolism in aged mice remains poorly understood. In this study, we performed comprehensive lipidomic profiling of liver tissues from aged Hsd17b13 gene knockout (Hsd17b13 KO) mice to investigate the effects of Hsd17b13 deletion on hepatic lipid composition and metabolic pathways. Methods: Changes in hepatic lipid profiles were assessed through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomic analysis. Results: The lipid profiles, including triglycerides (TGs), diglycerides (DGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), and ceramides (Cers), exhibited notable alterations in the Hsd17b13 KO mice. Conclusions: HSD17B13 plays a pivotal role in liver lipid metabolism during aging, and it is involved in the regulation of hepatic phospholipid metabolism. Our study highlights the importance of HSD17B13 in maintaining liver lipid homeostasis and its potential as a therapeutic target for age-related liver diseases. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Figure 1

20 pages, 44320 KiB  
Article
Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions
by Tao Qi, Xiao Chang and Yiming Wang
Biology 2025, 14(5), 567; https://doi.org/10.3390/biology14050567 - 19 May 2025
Viewed by 570
Abstract
This study systematically analyzed the expression and clinical significance of Hydroxysteroid 17-beta dehydrogenase type 10 (HSD17B10) in 33 cancers by integrating TCGA, GTEx, and other multi-omics databases. HSD17B10 was highly expressed in 14 cancers, like GBM and LGG, but low in [...] Read more.
This study systematically analyzed the expression and clinical significance of Hydroxysteroid 17-beta dehydrogenase type 10 (HSD17B10) in 33 cancers by integrating TCGA, GTEx, and other multi-omics databases. HSD17B10 was highly expressed in 14 cancers, like GBM and LGG, but low in 5, such as KIRC. Its expression correlated closely with overall survival (OS) and disease-free survival (DFS). In GBM-LGG, LGG, and other cancers, high HSD17B10 expression was linked to lower survival rates, indicating that it could be an independent prognostic marker. HSD17B10 also had a two-way relationship with the tumor’s immune microenvironment. In cancers such as GBM-LGG, high expression correlated positively with immune/stromal scores. However, in most cancers like LUAD, it was negatively associated with B- and T-cell infiltration. Epigenetic analysis showed that low methylation in the HSD17B10 promoter region might drive its high expression in tumors such as SARC, and specific methylation sites (e.g., CG26323797) were significantly related to patient survival. Functional enrichment analysis revealed that HSD17B10 participated in tumor progression by regulating oxidative phosphorylation, mitochondrial metabolism, and RNA methylation. Single-cell and spatial transcriptome data further demonstrated that HSD17B10 had a cell-type-specific expression pattern in colorectal cancer. This study provides a theoretical basis for HSD17B10 as a pan-cancer prognostic marker and therapeutic target. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

21 pages, 2910 KiB  
Article
Bisphenol a Disrupts Steroidogenesis and Induces Apoptosis in Human Granulosa Cells Cultured In Vitro
by Dominika Celar Šturm, Tadeja Režen, Nina Jančar and Irma Virant-Klun
Int. J. Mol. Sci. 2025, 26(9), 4081; https://doi.org/10.3390/ijms26094081 - 25 Apr 2025
Viewed by 565
Abstract
Bisphenol A (BPA) is a common synthetic chemical compound classified as an endocrine disruptor. It affects multiple physiological systems in the body, including the female reproductive system, particularly granulosa cells (GCs) in the ovaries, where steroidogenesis occurs. This study investigated the impact of [...] Read more.
Bisphenol A (BPA) is a common synthetic chemical compound classified as an endocrine disruptor. It affects multiple physiological systems in the body, including the female reproductive system, particularly granulosa cells (GCs) in the ovaries, where steroidogenesis occurs. This study investigated the impact of various BPA concentrations (environmentally relevant concentrations of 0.001 µM and 0.1 µM and toxicological concentration of 100 µM) and exposure times (24 and 72 h) on cell viability and counts and in vitro production of estradiol and progesterone in human GCs collected from waste follicular fluid of IVF patients. Gene expression analysis of 182 genes associated with steroidogenesis and apoptosis was performed in GCs using PCR arrays, followed by protein expression analysis by Western blot. Our results demonstrate that after longer BPA exposure (72 h), a higher concentration of BPA (100 µM) negatively affects the cellular viability and counts and significantly alters steroid hormone biosynthesis in vitro, leading to reduced concentrations of estradiol and progesterone in the culture medium. We found that all BPA concentrations altered the expression of different steroidogenesis- and apoptosis-related genes in GCs. At 0.001 μM, BPA exposure decreased the expression of TRIM25, UGT2B15, CASP3, and RPS6KA3 genes and increased the expression of NR6A1 and PPID genes. At 0.1 μM, BPA increased the expression of AR, HSD3B1, BID, IKBKG, and PPID genes while reducing the expression of TRIM25 and CASP3 genes. At the highest concentration of 100 μM, BPA upregulated the expression of AR, GPER30, BID, IKBKG, and PPID genes and downregulated the expression of FOXO1 and UGT2B15 genes. These results highlight BPA’s concentration-specific effects on steroidogenesis and apoptosis and show its potential to compromise GC function, with possible negative implications for female fertility and ovarian health, even at environmentally relevant concentrations. Full article
(This article belongs to the Special Issue Progress in Research on Endocrine-Disrupting Chemicals)
Show Figures

Figure 1

24 pages, 8567 KiB  
Article
Integrated lncRNA and mRNA Transcriptome Analyses of IGF1 and IGF2 Stimulated Ovaries Reveal Genes and Pathways Potentially Associated with Ovarian Development and Oocyte Maturation in Golden Pompano (Trachinotus ovatus)
by Charles Brighton Ndandala, Yuwen Guo, Zhimin Ju, Muhammad Fachri, Happiness Moses Mwemi and Huapu Chen
Animals 2025, 15(8), 1134; https://doi.org/10.3390/ani15081134 - 15 Apr 2025
Cited by 1 | Viewed by 698
Abstract
Insulin-like growth factors (IGFs) play crucial roles in the regulation of animal growth and reproduction. However, the functional and regulatory mechanisms underlying ovarian growth and oocyte maturation in teleosts remain unclear. In this study, the expression profiles of lncRNAs and mRNAs were analyzed [...] Read more.
Insulin-like growth factors (IGFs) play crucial roles in the regulation of animal growth and reproduction. However, the functional and regulatory mechanisms underlying ovarian growth and oocyte maturation in teleosts remain unclear. In this study, the expression profiles of lncRNAs and mRNAs were analyzed in the ovaries of golden pompano (Trachinotus ovatus) treated with IGF1 and IGF2 proteins to gain insights into the role of these two IGF ligands in the regulation of ovarian development and maturation. A total of 1494 lncRNAs and 8728 mRNAs were differentially expressed following IGF1 treatment compared with the control group. A total of 101 lncRNAs and 377 mRNAs were differentially expressed after IGF2 treatment compared to those in the control group. The results revealed that KEGG pathways enriched by target genes of the DE lncRNAs overlapped significantly with those enriched by the DE mRNAs in both the IGF1 and IGF2 groups. The key overlapping enriched pathways included ECM receptor interaction, gap junction, Hedgehog signaling pathway, Ras signaling pathway, Rap1 signaling pathway, TGF beta signaling pathway, Wnt signaling pathway, GnRH signaling pathway, progesterone-mediated oocyte maturation, oocyte meiosis, cell cycle, and MAPK signaling pathway. The differentially expressed genes (DEGs) involved in ovarian development and oocyte maturation were cyp17a1, cyp19a1, star, hsd17b3, hsd17b7, adam23, slc26a6, htr2b, h2ax, nanos3, krt18, pgr, and inhbb, following IGF1 and IGF2 treatment. Furthermore, four lncRNAs (MSTRG.66521.1, MSTRG.49969.1, MSTRG.59923.1, and MSTRG.13767.1) for IGF1 and two (MSTRG.20896.2 and MSTRG.58123.2) for IGF2 within the lncRNA–mRNA network were found to target DEGs related to ovarian development and maturation. This suggests that IGFs may affect reproductive processes by regulating the expression of lncRNAs and mRNAs. RT-qPCR analysis revealed that these six lncRNAs showed high expression levels in the brain, pituitary, liver, and gonad tissues, indicating their potential involvement in regulating ovarian growth and development. This study elucidates the lncRNA–mRNA regulatory mechanism in response to IGF1 and IGF2 treatment during stage III of ovarian development in golden pompano, thereby deepening our understanding of its functional role. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

Back to TopTop