The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Diagnosis and Follow-Up of HCC
2.3. DNA Preparation and SNP Genotyping
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Distribution of SNPs in Each Studied Group
3.3. Association of Factors with the Overall Survival of Patients with HCC
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HCC | Hepatocellular carcinoma |
MASLD | Metabolic dysfunction-associated steatotic liver disease |
NAFLD | Non-alcoholic fatty liver disease |
BCLC | Barcelona Clinic Liver Cancer |
PNPLA3 | Patatin-like phospholipase domain-containing protein 3 |
TM6SF2 | Transmembrane 6 superfamily member 2 |
HSD17B13 | Hydroxysteroid 17-β dehydrogenase 13 |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
GWAS | Genome-wide association study |
CT | Computed tomography |
MRI | Magnetic resonance imaging |
OR | Odds ratio |
CI | Confidence interval |
OS | Overall survival |
MST | Median survival time |
MAF | Minor allele frequency |
References
- Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.; Soerjomataram, I. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 2022, 161, 108–118. [Google Scholar] [CrossRef]
- Ferrante, N.D.; Pillai, A.; Singal, A.G. Update on the Diagnosis and Treatment of Hepatocellular Carcinoma. Gastroenterol. Hepatol. 2020, 16, 506–516. [Google Scholar]
- Singal, A.G.; Kanwal, F.; Llovet, J.M. Global trends in hepatocellular carcinoma epidemiology: Implications for screening, prevention and therapy. Nat. Rev. Clin. Oncol. 2023, 20, 864–884. [Google Scholar] [CrossRef] [PubMed]
- Al-Busafi, S.A.; Alwassief, A. Global Perspectives on the Hepatitis B Vaccination: Challenges, Achievements, and the Road to Elimination by 2030. Vaccines 2024, 12, 288. [Google Scholar] [CrossRef]
- Zhang, H.; Quadeer, A.A.; McKay, M.R. Direct-acting antiviral resistance of Hepatitis C virus is promoted by epistasis. Nat. Commun. 2023, 14, 7457. [Google Scholar] [CrossRef] [PubMed]
- Phoolchund, A.G.S.; Khakoo, S.I. MASLD and the Development of HCC: Pathogenesis and Therapeutic Challenges. Cancers 2024, 16, 259. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Taru, M.-G.; Lupsor-Platon, M. Exploring Opportunities to Enhance the Screening and Surveillance of Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease (NAFLD) through Risk Stratification Algorithms Incorporating Ultrasound Elastography. Cancers 2023, 15, 4097. [Google Scholar] [CrossRef]
- Miao, L.; Targher, G.; Byrne, C.D.; Cao, Y.Y.; Zheng, M.H. Current status and future trends of the global burden of MASLD. Trends Endocrinol. Metab. 2024, 35, 697–707. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Setiawan, V.W.; Ng, C.H.; Lim, W.H.; Muthiah, M.D.; Tan, E.X.; Dan, Y.Y.; Roberts, L.R.; Loomba, R.; Huang, D.Q. Global burden of liver cancer in males and females: Changing etiological basis and the growing contribution of NASH. Hepatology 2023, 77, 1150–1163. [Google Scholar] [CrossRef]
- Kanwal, F.; Kramer, J.R.; Mapakshi, S.; Natarajan, Y.; Chayanupatkul, M.; Richardson, P.A.; Li, L.; Desiderio, R.; Thrift, A.P.; Asch, S.M.; et al. Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology 2018, 155, 1828–1837.e1822. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Yamaguchi, K.; Itoh, Y. The genetic backgrounds in nonalcoholic fatty liver disease. Clin. J. Gastroenterol. 2018, 11, 97–102. [Google Scholar] [CrossRef]
- Sookoian, S.; Rotman, Y.; Valenti, L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin. Gastroenterol. Hepatol. 2024, 22, 2177–2187.e2173. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol. 2018, 68, 268–279. [Google Scholar] [CrossRef]
- Liu, Y.L.; Patman, G.L.; Leathart, J.B.S.; Piguet, A.C.; Burt, A.D.; Dufour, J.F.; Day, C.P.; Daly, A.K.; Reeves, H.L.; Anstee, Q.M. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J. Hepatol. 2014, 61, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mahdessian, H.; Taxiarchis, A.; Popov, S.; Silveira, A.; Franco-Cereceda, A.; Hamsten, A.; Eriksson, P.; van’t Hooft, F. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc. Natl. Acad. Sci. USA 2014, 111, 8913–8918. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Reeves, H.L.; Burt, A.D.; Tiniakos, D.; McPherson, S.; Leathart, J.B.S.; Allison, M.E.D.; Alexander, G.J.; Piguet, A.-C.; Anty, R.; et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat. Commun. 2014, 5, 4309. [Google Scholar] [CrossRef]
- Ma, Y.; Karki, S.; Brown, P.M.; Lin, D.D.; Podszun, M.C.; Zhou, W.; Belyaeva, O.V.; Kedishvili, N.Y.; Rotman, Y. Characterization of essential domains in HSD17B13 for cellular localization and enzymatic activity. J. Lipid Res. 2020, 61, 1400–1409. [Google Scholar] [CrossRef]
- Ting, Y.W.; Kong, A.S.; Zain, S.M.; Chan, W.K.; Tan, H.L.; Mohamed, Z.; Pung, Y.F.; Mohamed, R. Loss-of-function HSD17B13 variants, non-alcoholic steatohepatitis and adverse liver outcomes: Results from a multi-ethnic Asian cohort. Clin. Mol. Hepatol. 2021, 27, 486–498. [Google Scholar] [CrossRef]
- Bruix, J.; Sherman, M.; American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma: An update. Hepatology 2011, 53, 1020–1022. [Google Scholar] [CrossRef]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Trepo, E.; Valenti, L. Update on NAFLD genetics: From new variants to the clinic. J. Hepatol. 2020, 72, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- Amangurbanova, M.; Huang, D.Q.; Loomba, R. Review article: The role of HSD17B13 on global epidemiology, natural history, pathogenesis and treatment of NAFLD. Aliment. Pharmacol. Ther. 2023, 57, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Yamaguchi, K.; Tochiki, N.; Yano, K.; Takahashi, A.; Okishio, S.; Kataoka, S.; Okuda, K.; Umemura, A.; Moriguchi, M.; et al. Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int. 2020, 40, 1686–1692. [Google Scholar] [CrossRef]
- Ma, Y.; Belyaeva, O.V.; Brown, P.M.; Fujita, K.; Valles, K.; Karki, S.; de Boer, Y.S.; Koh, C.; Chen, Y.; Du, X.; et al. 17-Beta Hydroxysteroid Dehydrogenase 13 Is a Hepatic Retinol Dehydrogenase Associated With Histological Features of Nonalcoholic Fatty Liver Disease. Hepatology 2019, 69, 1504–1519. [Google Scholar] [CrossRef]
- Innes, H.; Morgan, M.Y.; Hampe, J.; Stickel, F.; Buch, S. The rs72613567:TA polymorphism in HSD17B13 is associated with survival benefit after development of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2023, 58, 623–631. [Google Scholar] [CrossRef]
- Valenti, L.; Casirati, E. Editorial: Unveiling new horizons for liver steatosis genetic variants beyond hepatocellular carcinoma diagnosis—Exploring the potential of HSD17B13 inhibition. Aliment. Pharmacol. Ther. 2023, 58, 727–728. [Google Scholar] [CrossRef]
- Jenkins, C.M.; Mancuso, D.J.; Yan, W.; Sims, H.F.; Gibson, B.; Gross, R.W. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 2004, 279, 48968–48975. [Google Scholar] [CrossRef]
- Tavaglione, F.; Pennisi, G.; Pelusi, S. PNPLA3 I148M and Hepatocellular Carcinoma. Liver Int. 2025, 45, e70051. [Google Scholar] [CrossRef]
- Singal, A.G.; Manjunath, H.; Yopp, A.C.; Beg, M.S.; Marrero, J.A.; Gopal, P.; Waljee, A.K. The effect of PNPLA3 on fibrosis progression and development of hepatocellular carcinoma: A meta-analysis. Am. J. Gastroenterol. 2014, 109, 325–334. [Google Scholar] [CrossRef]
- Trepo, E.; Nahon, P.; Bontempi, G.; Valenti, L.; Falleti, E.; Nischalke, H.D.; Hamza, S.; Corradini, S.G.; Burza, M.A.; Guyot, E.; et al. Association between the PNPLA3 (rs738409 C>G) variant and hepatocellular carcinoma: Evidence from a meta-analysis of individual participant data. Hepatology 2014, 59, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Development of hepatocellular carcinoma in Japanese patients with biopsy-proven non-alcoholic fatty liver disease: Association between PNPLA3 genotype and hepatocarcinogenesis/fibrosis progression. Hepatol. Res. 2017, 47, 1083–1092. [Google Scholar] [CrossRef]
- Ueyama, M.; Nishida, N.; Korenaga, M.; Korenaga, K.; Kumagai, E.; Yanai, H.; Adachi, H.; Katsuyama, H.; Moriyama, S.; Hamasaki, H.; et al. The impact of PNPLA3 and JAZF1 on hepatocellular carcinoma in non-viral hepatitis patients with type 2 diabetes mellitus. J. Gastroenterol. 2016, 51, 370–379. [Google Scholar] [CrossRef]
- Souza, M.; Al-Sharif, L.; Diaz, I.; Mantovani, A.; Villela-Nogueira, C.A. Global Epidemiology and Implications of PNPLA3 I148M Variant in Metabolic Dysfunction–Associated Steatotic Liver Disease: A Systematic Review and Meta-analysis. J. Clin. Exp. Hepatol. 2025, 15, 102495. [Google Scholar] [CrossRef]
- Hassan, M.M.; Kaseb, A.; Etzel, C.J.; El-Serag, H.; Spitz, M.R.; Chang, P.; Hale, K.S.; Liu, M.; Rashid, A.; Shama, M.; et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: Risk and prognosis prediction. Mol. Carcinog. 2013, 52 (Suppl. 1), E139–E147. [Google Scholar] [CrossRef]
- Valenti, L.; Motta, B.M.; Soardo, G.; Iavarone, M.; Donati, B.; Sangiovanni, A.; Carnelutti, A.; Dongiovanni, P.; Rametta, R.; Bertelli, C.; et al. PNPLA3 I148M polymorphism, clinical presentation, and survival in patients with hepatocellular carcinoma. PLoS ONE 2013, 8, e75982. [Google Scholar] [CrossRef]
- Luo, F.; Oldoni, F.; Das, A. TM6SF2: A Novel Genetic Player in Nonalcoholic Fatty Liver and Cardiovascular Disease. Hepatol. Commun. 2022, 6, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Kozlitina, J.; Smagris, E.; Stender, S.; Nordestgaard, B.G.; Zhou, H.H.; Tybjaerg-Hansen, A.; Vogt, T.F.; Hobbs, H.H.; Cohen, J.C. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2014, 46, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Pirola, C.J.; Sookoian, S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: A meta-analysis. Hepatology 2015, 62, 1742–1756. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Seth, D.; Day, C.P. Genetic Factors That Affect Risk of Alcoholic and Nonalcoholic Fatty Liver Disease. Gastroenterology 2016, 150, 1728–1744.e1727. [Google Scholar] [CrossRef]
- Li, X.-Y.; Liu, Z.; Li, L.; Wang, H.-J.; Wang, H. TM6SF2 rs58542926 is related to hepatic steatosis, fibrosis and serum lipids both in adults and children: A meta-analysis. Front. Endocrinol. 2022, 13, 1026901. [Google Scholar] [CrossRef] [PubMed]
- Balcar, L.; Scheiner, B.; Urheu, M.; Weinberger, P.; Paternostro, R.; Simbrunner, B.; Semmler, G.; Willheim, C.; Pinter, M.; Ferenci, P.; et al. The impact of transmembrane 6 superfamily 2 (TM6SF2) rs58542926 on liver-related events in patients with advanced chronic liver disease. Dig. Liver Dis. 2023, 55, 1072–1080. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Zhang, J.; Mei, T.T.; Guo, H.Q.; Wei, X.H.; Zhang, W.Y.; Liu, Y.L.; Liang, S.; Fan, Z.P.; Ma, L.X.; et al. Association of TM6SF2 rs58542926 T/C gene polymorphism with hepatocellular carcinoma: A meta-analysis. BMC Cancer 2019, 19, 1128. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; An, J.N.; Joo, S.K.; Kim, D.; Lee, S.; Bae, J.M.; Park, J.H.; Kim, J.H.; Chang, M.S.; Kim, W. Association Between a Polymorphism in MBOAT7 and Chronic Kidney Disease in Patients With Biopsy-Confirmed Nonalcoholic Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2020, 18, 2837–2839.e2832. [Google Scholar] [CrossRef]
- Sulaiman, S.A.; Dorairaj, V.; Adrus, M.N.H. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022, 11, 106. [Google Scholar] [CrossRef]
- Caddeo, A.; Romeo, S. Precision medicine and nucleotide-based therapeutics to treat steatotic liver disease. Clin. Mol. Hepatol. 2025, 31, S76–S93. [Google Scholar] [CrossRef]
Characteristics | Healthy Controls (n = 180) | MASLD-HCC (n = 254) | VIRAL-HCC (n = 310) | p |
---|---|---|---|---|
Age (Years) | <0.001 * | |||
Sex (%) | <0.001 * | |||
Male | 20 (11.1) | 179 (70.5) | 241 (77.7) | |
Female | 160 (88.9) | 75 (29.5) | 69 (22.3179) | |
Body mass index (kg/m2) | 0.004 * | |||
Diabetes mellitus (Yes) | 98 (38.6) | 36 (11.6) | <0.001 * | |
Hypertension (Yes) | 98 (38.6) | 40 (12.9) | <0.001 * | |
Hemoglobin (g/dL) | <0.001 * | |||
Platelet count (103/ | 0.003 * | |||
Total bilirubin (mg/dL) | 0.041 * | |||
AST (IU/L) | <0.001 * | |||
ALT (IU/L) | <0.001 * | |||
ALP (IU/L) | 0.385 | |||
Albumin (mg/dL) | 0.071 | |||
INR | <0.001 * | |||
AFP (ng/mL) | <0.001 * | |||
100 | 195 (76.8) | 172 (55.5) | ||
100 | 59 (23.2) | 138 (44.5) | ||
Tumor size (cm) | 0.317 | |||
Extrahepatic metastasis (Yes) | 87 (34.3) | 41 (13.2) | <0.001 * | |
Ascites (Yes) | 54 (21.3) | 64 (20.6) | 0.858 | |
Cirrhosis (Yes) | 182 (71.7) | 260 (83.9) | <0.001 * | |
Child–Pugh Score | 0.837 | |||
A | 204 (80.3) | 247 (79.7) | ||
B, C | 50 (19.7) | 63 (20.3) | ||
BCLC stage | 0.007 * | |||
0–A | 92 (36.2) | 147 (47.4)) | ||
B, C, D | 162 (63.8) | 163 (52.6) |
Healthy Controls (n = 180) | MASLD-HCC (n = 254) | VIRAL-HCC (n = 310) | Healthy Controls vs. MASLD-HCC | Healthy Controls vs. VIRAL-HCC | MASLD-HCC vs. VIRAL-HCC | ||||
---|---|---|---|---|---|---|---|---|---|
Polymorphisms | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |||
PNPLA3 rs738409 | |||||||||
Genotype frequency | |||||||||
CC | 83 (46.1) | 86 (33.9) | 126 (40.6) | 1.00 | 1.00 | 1.00 | |||
CG | 76 (42.2) | 107 (42.1) | 136 (43.9) | 0.74 (0.47–1.15) | 0.153 | 0.85 (0.56–1.28) | 0.413 | 1.15 (0.78–1.70) | 0.455 |
GG | 21 (11.7) | 61 (24.0) | 48 (15.5) | 0.36 (0.19–0.66) | <0.001 * | 0.66 (0.35–1.22) | 0.167 | 1.86 (1.14–3.05) | 0.009 * |
CG + GG | 97 (53.9) | 168 (66.1) | 184 (59.4) | 0.59 (0.39–0.91) | 0.009 * | 0.80 (0.54–1.18) | 0.238 | 1.33 (0.93–1.92) | 0.098 |
Allele frequency | |||||||||
Major (C) | 0.67 | 0.55 | 0.63 | 1.0 | 1.0 | 1.0 | |||
Minor (G) | 0.33 | 0.45 | 0.37 | 0.60 (0.33–1.11) | 0.08 | 0.84 (0.45–1.56) | 0.553 | 1.39 (0.76–2.55) | 0.250 |
TM6SF2 rs58542926 | |||||||||
Genotype frequency | |||||||||
CC | 145 (80.5) | 160 (63.0) | 241 (77.7) | 1.00 | 1.00 | 1.00 | |||
CT | 34 (18.9) | 76 (29.9) | 61 (19.7) | 0.49 (0.30–0.80) | 0.003 * | 0.93 (0.56–1.51) | 0.749 | 1.88 (1.24–2.83) | 0.002 * |
TT | 1 (0.5) | 18 (7.1) | 8 (2.6) | 0.06 (0.001–0.4) | <0.001 * | 0.21 (0.004–1.58) | 0.104 | 3.39 (1.36–9.21) | 0.003 * |
CT + TT | 35 (19.4) | 94 (37.0) | 69 (22.2) | 0.41 (0.25–0.66) | <0.001 * | 0.84 (0.52–1.36) | 0.463 | 2.05 (1.39–3.02) | <0.001 * |
Allele frequency | |||||||||
Major (C) | 0.9 | 0.78 | 0.88 | 1.00 | 1.00 | 1.00 | |||
Minor (T) | 0.1 | 0.22 | 0.12 | 0.39 (0.16–0.94) | 0.02 * | 0.81 (0.29–2.18) | 0.651 | 2.32 (1.03–5.42) | 0.027 * |
HSD17B13 rs6834314 | |||||||||
Genotype frequency | |||||||||
AA | 67 (37.2) | 132 (52.0) | 152 (49.0) | 1.00 | 1.00 | 1.00 | |||
AG | 90 (50.0) | 104 (40.9) | 119 (38.4) | 1.70 (1.11–2.62) | 0.01 * | 1.71 (1.13–2.60) | 0.008 * | 1.01 (0.69–1.45) | 0.972 |
GG | 23 (12.8) | 18 (7.1) | 39 (12.6) | 2.52 (1.20–5.31) | 0.006 * | 1.33 (0.70–2.50) | 0.333 | 0.53 (0.27–0.97) | 0.039 * |
AG + GG | 113 (62.8) | 122 (48.0) | 158 (51.0) | 1.82 (1.21–2.75) | 0.002 * | 1.62 (1.09–2.41) | 0.01 * | 0.89 (0.63–1.26) | 0.488 |
Allele frequency | |||||||||
Major (A) | 0.62 | 0.72 | 0.68 | 1.00 | 1.00 | 1.00 | |||
Minor (G) | 0.38 | 0.28 | 0.32 | 1.58 (0.83–2.98) | 0.133 | 1.30 (0.69–2.43) | 0.373 | 0.83 (0.43–1.58) | 0.537 |
Cases | Events | MST | Univariate | Multivariate | |||
---|---|---|---|---|---|---|---|
Factors | 564 | 139 | 51 | HR (95% CI) | p | aHR (95%CI) | p |
PNPLA3 rs738409 | |||||||
CC + CG | 454 | 108 | 55 | Ref (1.00) | |||
GG | 110 | 31 | 45 | 1.14 (0.78–1.67) | 0.492 | ||
TM6SF2 rs58542926 | |||||||
CC + CT | 538 | 129 | 51 | Rec (1.00) | |||
TT | 26 | 10 | 46 | 1.11 (0.59–2.11) | 0.746 | ||
HSD17B13 rs6834314 | |||||||
AA + AG | 507 | 122 | 44 | Ref (1.00) | Ref (1.00) | ||
GG | 57 | 17 | 65 | 0.50 (0.29–0.85) | 0.008 * | 0.44 (0.26–0.75) | 0.002 * |
Age | |||||||
65 | 306 | 69 | 58 | Ref (1.00) | |||
65 | 258 | 70 | 45 | 1.25 (0.91–1.73) | 0.175 | ||
Sex | |||||||
Female | 144 | 35 | 52 | Ref (1.00) | |||
Male | 420 | 104 | 51 | 0.97 (0.67–1.39) | 0.873 | ||
HCC etiology | |||||||
Viral | 310 | 58 | 66 | Ref (1.00) | Ref (1.00) | ||
MASLD | 254 | 81 | 42 | 1.58 (1.13–2.18) | 0.006 * | 1.48 (1.03–2.13) | 0.035 * |
Diabetes | |||||||
No | 430 | 102 | 55 | Ref (1.00) | |||
Yes | 134 | 37 | 41 | 1.23 (0.85–1.77) | 0.274 | ||
Hypertension | |||||||
No | 426 | 96 | 61 | Ref (1.00) | Ref (1.00) | ||
Yes | 138 | 43 | 41 | 1.44 (1.02–2.05) | 0.039 * | 1.13 (0.78–1.65) | 0.517 |
Tumor size (cm) | |||||||
3.0 | 255 | 50 | 79 | Ref (1.00) | Ref (1.00) | ||
3.0 | 309 | 89 | 37 | 2.54 (1.80–3.59) | <0.001 * | 2.59 (1.81–3.73) | <0.0018 * |
Extrahepatic metastasis | |||||||
No | 436 | 92 | 63 | Ref (1.00) | Ref (1.00) | ||
Yes | 128 | 47 | 34 | 1.55 (1.09–2.19) | 0.014 * | 1.41 (1.01–2.02) | 0.006 * |
Cirrhosis | |||||||
No | 122 | 32 | 44 | Ref (1.00) | Ref (1.00) | ||
Yes | 442 | 107 | 61 | 0.61 (0.42–0.88) | 0.009 * | 0.74 (0.51–1.08) | 0.120 |
Child–Pugh score | |||||||
A | 450 | 106 | 58 | Ref (1.00) | |||
B, C | 113 | 33 | 42 | 1.45 (1.00–2.10) | 0.051 | ||
BCLC stage | |||||||
0–A | 240 | 41 | 79 | Ref (1.00) | Ref (1.00) | ||
B C D | 324 | 98 | 41 | 2.02 (1.42–2.87) | <0.001 * | 1.37 (0.98– 2.01) | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aung, T.C.Z.; Boonkaew, B.; Chayanupatkul, M.; Poovorawan, K.; Chuaypen, N.; Tangkijvanich, P. The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease. Genes 2025, 16, 808. https://doi.org/10.3390/genes16070808
Aung TCZ, Boonkaew B, Chayanupatkul M, Poovorawan K, Chuaypen N, Tangkijvanich P. The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease. Genes. 2025; 16(7):808. https://doi.org/10.3390/genes16070808
Chicago/Turabian StyleAung, Theint Cho Zin, Bootsakorn Boonkaew, Maneerat Chayanupatkul, Kittiyod Poovorawan, Natthaya Chuaypen, and Pisit Tangkijvanich. 2025. "The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease" Genes 16, no. 7: 808. https://doi.org/10.3390/genes16070808
APA StyleAung, T. C. Z., Boonkaew, B., Chayanupatkul, M., Poovorawan, K., Chuaypen, N., & Tangkijvanich, P. (2025). The Distribution and Survival Association of Genetic Polymorphisms in Thai Patients with Hepatocellular Carcinoma According to Underlying Liver Disease. Genes, 16(7), 808. https://doi.org/10.3390/genes16070808