Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Data Sources
2.2. HSD17B10 Gene Expression Analysis
2.3. HSD17B10 Prognosis Analysis
2.4. Analysis of the Correlation Between HSD17B10 Expression and Immune Infiltration via Immune-Related Scores
2.5. HSD17B10 Gene Mutation Analysis
2.6. Study on the Relationship Between HSD17B10 and TMB, MSI, and MMR
2.7. DNA and RNA Methylation Analysis of HSD17B10
2.8. Drug Sensitivity Analysis
2.9. Co-Expressed Genes and Enrichment Analysis of HSD17B10
2.10. Processing of Single-Cell and Spatial Transcriptome Data
3. Results
3.1. Differential Expression and Survival-Related Analysis of HSD17B10 in Multiple Cancers
3.2. Prognostic Analysis of HSD17B10 Expression
3.3. Examining the Connection Between HSD17B10 Expression and Immune Cell Infiltration in Various Cancer Datasets
3.4. Correlation Between HSD17B10 Expression and ICP, TMB, MSI, and Neoantigens in Pan-Cancer Datasets
3.5. Analysis of HSD17B10 Gene Alterations
3.6. Connection Between HSD17B10 Expression and DNA and RNA Methylation
3.7. Drug Sensitivity Analysis
3.8. Functional Enrichment Analysis of HSD17B10-Related Genes
3.9. Validation of the HSD17B10 Co-Expression Network in BLCA
3.10. Investigation of the Role of HSD17B10 in CRC by Single-Cell Transcriptome and Spatial Transcriptome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, M.; Ma, Z.; Zhang, X.; Hang, D.; Yin, R.; Feng, J.; Xu, L.; Shen, H. C-reactive protein and cancer risk: A pan-cancer study of prospective cohort and Mendelian randomization analysis. BMC Med. 2022, 20, 301. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, D.C.; Shevde, L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019, 79, 4557–4566. [Google Scholar] [CrossRef]
- Ciki, K.; Alavanda, C.; Kara, M. Novel Mutation in the HSD17B10 Gene Accompanied by Dysmorphic Findings in Female Patients. Mol. Syndr. 2024, 15, 211–216. [Google Scholar] [CrossRef]
- Chatterjee, A.; Rodger, E.J.; Eccles, M.R. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin. Cancer Biol. 2018, 51, 149–159. [Google Scholar] [CrossRef]
- Wu, Q.; Fu, X.; He, X.; Liu, J.; Li, Y.; Ou, C. Experimental prognostic model integrating N6-methyladenosine-related programmed cell death genes in colorectal cancer. iScience 2023, 27, 108720. [Google Scholar] [CrossRef]
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Fan, J.; Wang, B.; Traugh, N.; Chen, Q.; Liu, J.S.; Li, B.; Liu, X.S. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer Res. 2017, 77, e108–e110. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Gong, Y.; Xu, Z.; Chen, L.; Li, S.; Cui, Y. Prognostic and therapeutic insights into colorectal carcinoma through immunogenic cell death gene profiling. PeerJ 2024, 12, e17629. [Google Scholar] [CrossRef]
- Wu, Z.; Uhl, B.; Gires, O.; Reichel, C.A. A transcriptomic pan-cancer signature for survival prognostication and prediction of immunotherapy response based on endothelial senescence. J. Biomed. Sci. 2023, 30, 21. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Deng, J.; Liao, W.; Liu, T.; Shen, F. NEK2 is a potential pan-cancer biomarker and immunotherapy target. Discov. Oncol. 2024, 15, 626. [Google Scholar] [CrossRef]
- Ma, Y.F.; Chen, Y.; Fang, D.; Huang, Q.; Luo, Z.; Qin, Q.; Lin, J.; Zou, C.; Huang, M.; Meng, D.; et al. The immune-related gene CD52 is a favorable biomarker for breast cancer prognosis. Gland Surg. 2021, 10, 780–798. [Google Scholar] [CrossRef]
- Battaglia, T.W.; Mimpen, I.L.; Traets, J.J.H.; van Hoeck, A.; Zeverijn, L.J.; Geurts, B.S.; de Wit, G.F.; Noë, M.; Hofl, I.; Vos, J.L.; et al. A pan-cancer analysis of the microbiome in metastatic cancer. BMC Med. Genom. 2024, 187, 2324–2335.e19. [Google Scholar] [CrossRef] [PubMed]
- Jeggo, P.A.; Pearl, L.H.; Carr, A.M. DNA repair, genome stability and cancer: A historical perspective. Nat. Rev. Cancer 2016, 16, 35–42. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Yang, X.; Wei, M.; Lu, B.; Dong, K.; Lyu, D.; Li, Y.; Guan, W.; Huang, R.; et al. Lymphocyte activation gene 3 served as a potential prognostic and immunological biomarker across various cancer types: A clinical and pan-cancer analysis. Clin. Transl. Immunol. 2024, 13, e70009. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xue, M.; Deng, X.; Dong, L.; Nguyen, L.X.T.; Ren, L.; Han, L.; Li, C.; Xue, J.; Zhao, Z.; et al. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023, 30, 1072–1090.e10. [Google Scholar] [CrossRef]
- Liu, T.; Yang, K.; Chen, J.; Qi, L.; Zhou, X.; Wang, P. Comprehensive Pan-Cancer Analysis of KIF18A as a Marker for Prognosis and Immunity. Biomolecules 2023, 13, 326. [Google Scholar] [CrossRef]
- Xie, N.; Shen, G.; Gao, W.; Huang, Z.; Huang, C.; Fu, L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhu, J.; Ye, Y.; Li, P.; Sun, W.; Zhang, M. N6AMT1 is a novel potential diagnostic, prognostic and immunotherapy response biomarker in pan-cancer. Bus. Strategy Environ. 2023, 15, 6526–6544. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, H.; Zhao, H.; Wang, J.; Wu, N.; Li, L.; Wu, J.; Zhang, D. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett. 2021, 511, 68–76. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Z.; Huang, Y. Comprehensive Analyses of the Infiltrating Immune Cell Landscape and Its Clinical Significance in Hepatocellular Carcinoma. Int. J. Gen. Med. 2021, 14, 4695–4704. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucl. Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 2016, 17, 218. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Defining driver DNA methylation changes in human cancers. Int. J. Mol. Sci. 2018, 19, 1166. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, Y.; Qian, B.; Cao, X.; Xu, C.; Guo, K.; Wan, R.; Jiang, Y.; Wang, T.; Mei, Z.; et al. A systematic pan-cancer analysis identifies LDHA as a novel immunological, prognostic, and immunotherapy resistance predictor. Aging 2024, 16, 8000–8018. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 2017, 377, 2500–2501. [Google Scholar] [CrossRef] [PubMed]
- Darragh, L.B.; Oweida, A.J.; Karam, S.D. Overcoming resistance to combination radiation-immunotherapy: A focus on contributing pathways within the tumor microenvironment. Front. Immunol. 2018, 9, 3154. [Google Scholar] [CrossRef]
- Chen, Y.; McAndrews, K.M.; Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 2021, 18, 792–804. [Google Scholar] [CrossRef]
- Ye, Z.; Zhong, Y.; Zhang, Z. Pan-cancer multi-omics analysis of PTBP1 reveals it as an inflammatory, progressive and prognostic marker in glioma. Sci. Rep. 2024, 14, 14584. [Google Scholar] [CrossRef]
- Kashani, B.; Zandi, Z.; Pourbagheri-Sigaroodi, A.; Bashash, D.; Ghaffari, S.H. The role of toll-like receptor 4 (TLR4) in cancer progression: A possible therapeutic target? J. Cell. Physiol. 2021, 236, 4121–4137. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, B.; Zhang, W.; Wang, F.; Zhang, Y.; Zhang, Q.; Li, E. Pan-cancer analysis of the prognostic and immunological role of GJB2: A potential target for survival and immunotherapy. Front. Oncol. 2023, 13, 1110207. [Google Scholar] [CrossRef]
- Bertolin, G.; Jacoupy, M.; Traver, S.; Ferrando-Miguel, R.; Saint Georges, T.; Grenier, K.; Ardila-Osorio, H.; Muriel, M.P.; Takahashi, H.; Lees, A.J.; et al. Parkin maintains mitochondrial levels of the protective Parkinson’s disease-related enzyme 17-β hydroxysteroid dehydrogenase type 10. Cell Death Differ. 2015, 22, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Liu, Y.; Yao, Y.; Zhu, D.; Zhang, X.; Dong, K.; Xu, X.; Lv, D.; Zhao, Z.; Zhang, H.; et al. Reveiling the unique role of TSPAN7 across tumors: A pan-cancer study incorporating retrospective clinical research and bioinformatic analysis. Biol. Direct. 2024, 19, 72. [Google Scholar] [CrossRef]
- Yan, B.; Guo, J.; Deng, S.; Chen, D.; Huang, M. A pan-cancer analysis of the role of USP5 in human cancers. Sci Rep. 2023, 13, 8972. [Google Scholar] [CrossRef]
- Li, K.; Liu, J.; Yang, X.; Tu, Z.; Huang, K.; Zhu, X. Pan-cancer analysis of N4-acetylcytidine adaptor THUMPD1 as a predictor for prognosis and immunotherapy. Biosci. Rep. 2021, 41, BSR20212300. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Luo, L.; Liu, S.; Guan, Z.; Zhang, Q.; Wu, Z.; Tao, K. The role of TGR5 as an onco-immunological biomarker in tumor staging and prognosis by encompassing the tumor microenvironment. Front. Oncol. 2022, 12, 953091. [Google Scholar] [CrossRef]
- Chen, G.; Luo, D.; Zhong, N.; Li, D.; Zheng, J.; Liao, H.; Li, Z.; Lin, X.; Chen, Q.; Zhang, C.; et al. GPC2 Is a Potential Diagnostic, Immunological, and Prognostic Biomarker in Pan-Cancer. Front. Immunol. 2022, 13, 857308. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, L.; Liu, J.; Chen, B. Inhibition of autophagy-related protein 7 enhances anti-tumor immune response and improves efficacy of immune checkpoint blockade in microsatellite instability colorectal cancer. J. Exp. Clin. Cancer Res. 2024, 43, 114. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, T.; Chang, X.; Wang, Y. Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions. Biology 2025, 14, 567. https://doi.org/10.3390/biology14050567
Qi T, Chang X, Wang Y. Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions. Biology. 2025; 14(5):567. https://doi.org/10.3390/biology14050567
Chicago/Turabian StyleQi, Tao, Xiao Chang, and Yiming Wang. 2025. "Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions" Biology 14, no. 5: 567. https://doi.org/10.3390/biology14050567
APA StyleQi, T., Chang, X., & Wang, Y. (2025). Multi-Omics Pan-Cancer Profiling of HSD17B10 Unveils Its Prognostic Potential, Metabolic Regulation, and Immune Microenvironment Interactions. Biology, 14(5), 567. https://doi.org/10.3390/biology14050567