Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = HPTLC–MS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2320 KiB  
Article
Glucoselipid Biosurfactant Biosynthesis Operon of Rouxiella badensis DSM 100043T: Screening, Identification, and Heterologous Expression in Escherichia coli
by Andre Fahriz Perdana Harahap, Chantal Treinen, Leonardo Joaquim Van Zyl, Wesley Trevor Williams, Jürgen Conrad, Jens Pfannstiel, Iris Klaiber, Jakob Grether, Eric Hiller, Maliheh Vahidinasab, Elvio Henrique Benatto Perino, Lars Lilge, Anita Burger, Marla Trindade and Rudolf Hausmann
Microorganisms 2025, 13(7), 1664; https://doi.org/10.3390/microorganisms13071664 - 15 Jul 2025
Viewed by 400
Abstract
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we [...] Read more.
Rouxiella badensis DSM 100043T had been previously proven to produce a novel glucoselipid biosurfactant which has a very low critical micelle concentration (CMC) as well as very good stability against a wide range of pH, temperature, and salinity. In this study, we performed a function-based library screening from a R. badensis DSM 100043T genome library to identify responsible genes for biosynthesis of this glucoselipid. The identified open reading frames (ORFs) were cloned into several constructs in Escherichia coli for gene permutation analysis and the individual products were analyzed using high-performance thin-layer chromatography (HPTLC). Products of interest from positive expression strains were purified and analyzed by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) for further structure elucidation. Function-based screening of 5400 clones led to the identification of an operon containing three ORFs encoding acetyltransferase GlcA (ORF1), acyltransferase GlcB (ORF2), and phosphatase/HAD GlcC (ORF3). E. coli pCAT2, with all three ORFs, resulted in the production of identical R. badensis DSM 100043T glucosedilipid with Glu-C10:0-C12:1 as the main congener. ORF2-deletion strain E. coli pAFP1 primarily produced glucosemonolipids, with Glu-C10:0,3OH and Glu-C12:0 as the major congeners, predominantly esterified at the C-2 position of the glucose moiety. Furthermore, fed-batch bioreactor cultivation of E. coli pCAT2 using glucose as the carbon source yielded a maximum glucosedilipid titer of 2.34 g/L after 25 h of fermentation, which is 55-fold higher than that produced by batch cultivation of R. badensis DSM 100043T in the previous study. Full article
Show Figures

Figure 1

13 pages, 3506 KiB  
Article
Development of an HPTLC-MS Method for the Differentiation of Celosiae Semen: Celosia argentea Versus C. cristata
by Kyu Won Kim, Geonha Park, Sejin Ku and Young Pyo Jang
Molecules 2025, 30(13), 2786; https://doi.org/10.3390/molecules30132786 - 28 Jun 2025
Viewed by 288
Abstract
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, [...] Read more.
Celosiae Argentea Semen (CAS), derived from Celosia argentea L., is traditionally used in Korean and Chinese medicine to treat eye disorders and liver heat and is recognized in official Pharmacopeias. In contrast, Celosiae Cristatae Semen (CCS), despite its frequent presence in the market, is not officially listed. The morphological and chemical similarities between the two pose challenges for accurate identification. This study presents an integrative method combining digital image analysis and high-performance thin-layer chromatography coupled with mass spectrometry (HPTLC-MS) to differentiate CAS from CCS. Digital microscopy and ImageJ analysis showed that CCS has a projection area over twice that of CAS. Chemically, an optimized HPTLC method using ethyl acetate, methanol, water, and formic acid revealed distinct fingerprint patterns under UV 366 nm and white light. Notably, celosin F was exclusively detected in CAS, while celosin H, J, and K were characteristic of CCS. ESI-TOF-MS analysis confirmed these markers, resolving an overlap in RF values. Repeatability tests showed total SDs of sucrose for intra-day, inter-day, and inter-analysis precision were 0.006, 0.004, and 0.005, respectively, confirming method reliability. This combined approach offers a rapid, reliable, and practical tool for distinguishing these two medicinal seeds, supporting enhanced quality control and regulatory standardization in pharmaceutical applications. Full article
Show Figures

Figure 1

13 pages, 2707 KiB  
Article
Unique Composition and Sustainability Aspects of the EETP801 Amazonian Cocoa Cultivar vs. CCN51 and Commercial Cocoas
by Rocío De la Peña-Armada, Roberta Ascrizzi, Rocio Alarcon, Michelle Viteri, Guido Flamini and Jose M. Prieto
Beverages 2025, 11(4), 93; https://doi.org/10.3390/beverages11040093 - 20 Jun 2025
Viewed by 532
Abstract
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring [...] Read more.
In this study, we analysed cocoa (a dried and fully fermented seed of Theobroma cacao L.) from two Amazonian cultivars and a commercial sample of the Amazonian variety EETP801, grown under sustainable organic conditions, in comparison to CCN51 cocoa grown on a neighbouring commercial farm using standard practises and a European commercial cacao powdered beverage. The overall metabolite profile of the 70% aq acetone sample cocoa extracts was analysed using high-performance TLC analyses (HPTLC), and the xanthine alkaloids were analysed using quantitative liquid chromatography–UV photodiode array (HPLC-DAD) analyses. The volatile fraction in the headspace of the freshly ground cocoa was subjected to solid phase micro-extraction and analysed by gas chromatography–mass spectrometry (HS-SPME/GC-MS). Total polyphenol content was determined by the Folin–Ciocalteu method. Despite the reduced production of cocoa by the EETP801 cultivar in comparison with the CCN51 cultivar, the obtained produce is significantly richer in theobromine (130 mg vs. 170 mg per g of cacao), with CCN51 having a double concentration of theophylline (12.6 vs. 6.5 mg per g of cacao). Qualitatively, the two Amazonian cocoa samples had a similar polyphenolic composition (per the HPTLC fingerprint). HS-SPME/GC-MS analyses revealed that all the samples show a spontaneous emission profile mainly rich in non-terpene derivatives, of which hydrocarbons and pyrazines are the most abundant groups. The most represented volatile organic compound is n-tridecane for both EETP801 and CCN51. The variability in the artisan fermentation and roasting processes influenced certain aspects of the volatile composition as reflected by the trimethyl pyrazine/tetramethyl pyrazine ratio, which was zero in EETP-801 and lower than 1 in CCN51. Acetic acid was absent in CCN51 but significant (c.a. 5.5.%) in EETP801 and the commercial samples. The cultivar EETP801 is a viable option for a more ecologically conscious sector of the cocoa beverages consumer group. Full article
Show Figures

Figure 1

19 pages, 1738 KiB  
Article
Exploration of Bioactive Compounds, Antioxidant and Antibacterial Properties, and Their Potential Efficacy Against HT29 Cell Lines in Dictyota bartayresiana
by Durairaj Swarna Bharathi, Andiyappan Boopathy Raja, Suganthi Nachimuthu, S. Thangavel, Karthik Kannan, Sengottaiyan Shanmugan and Vinaya Tari
Mar. Drugs 2025, 23(6), 224; https://doi.org/10.3390/md23060224 - 23 May 2025
Viewed by 1150
Abstract
This study investigates the rare seaweed alga Dictyota bartayresiana lamour for biological activity. Antioxidant and antibacterial activities were examined. An MTT assay was carried out to examine cytotoxicity activity against colon cancer cells. The HPTLC analysis was performed for four different extracts, which [...] Read more.
This study investigates the rare seaweed alga Dictyota bartayresiana lamour for biological activity. Antioxidant and antibacterial activities were examined. An MTT assay was carried out to examine cytotoxicity activity against colon cancer cells. The HPTLC analysis was performed for four different extracts, which exhibited clear flavonoid band formation at 254 nm and 366 nm with varied ranges of Rf values: methanolic extract (Rf 0.87), acetone extract (Rf 0.82), and benzene (Rf 0.83). Methanolic Extract Fraction One (MEF1) has a distinct band formation at 366 nm, it is shown to have the highest inhibition (6.20 ± 0.53 mm) against Escherichia coli, and the MTT assay reveals that the aqueous extract of Dictyota bartayresiana extract has an IC50 value of 300 µg/mL. It is divulged that methanolic extract shows the highest phytochemical compound level among the four extracts of Dictyota bartayresiana. A GC/MS analysis was employed to investigate the flavonoid profile of the crude seaweed extract. Although LC/MS is typically preferred for flavonoid analysis due to thermal sensitivity, GC/MS was used in this study owing to time constraints, with optimized conditions to reduce thermal degradation. The GC-MS analysis identified Quinoline and other flavonoids, suggesting potential bioactivity. The cytotoxicity activity of MEF1 shows that the development of a promising drug may be evaluated from a seaweed source. The present study provides excellent insight with the first report of the biologically active compound of Dictyota bartayresiana. Full article
Show Figures

Figure 1

33 pages, 2775 KiB  
Article
Phytochemical Profile and Biological Activities of Rtanj’s Hypericum perforatum Infusion Tea and Methanolic Extracts: Insights from LC-MS/MS and HPTLC–Bioautography
by Sofija Kilibarda, Marko D. Jović, Danijel D. Milinčić, Sandra Vuković, Jelena Đ. Trifković, Mirjana B. Pešić and Aleksandar Ž. Kostić
Plants 2025, 14(9), 1377; https://doi.org/10.3390/plants14091377 - 1 May 2025
Cited by 1 | Viewed by 922
Abstract
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume [...] Read more.
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume when drinking the tea?), as well as a detailed examination of methanol(ic) extracts as the optimal extraction system. Due to the broad spectrum of both polar and nonpolar metabolites, 80% methanolic and pure methanol extracts were prepared for ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF) characterization through untargeted metabolomics analysis. Given the high diversity of compounds identified, the 80% methanolic extract was selected for further antioxidant examination and bioautographic characterization, including an antimicrobial activity assessment. UHPLC Q-ToF analysis identified 35 phenolics in the methanolic extract, compared to 25 metabolites in the infusion tea. The main differences were observed in flavonol/flavan-3-ol aglycones, xantones, and coumestans, which are more nonpolar compounds found only in the methanol(ic) system. Notably, specific H. perforatum metabolites were entirely absent in the infusion tea. Specifically, pseudohypericin, pseudoprotohypricin, and adhyperfirin were detected in the pure methanol extract, whereas hyperfirin was present in both methanol(ic) extracts. Additionally, eight furano-polycyclic polyprenylated acilphloroglucinols (FPPAPs) were identified in the methanol(ic) extracts as possible products of the thermal degradation and/or oxidation of hypericin/hyperforin. Both the infusion tea and methanolic extracts exhibited excellent antioxidant properties, with variations depending on the applied assay. High-performance thin-layer chromatography (HPTLC) analysis also confirmed the presence of a wide spectrum of phytochemical classes. Bioautography confirmed a promising activity of methanolic extracts against both Staphylococcus aureus and Klebsiella pneumoniae. Full article
Show Figures

Figure 1

18 pages, 1385 KiB  
Article
Detection of Adulterants in Herbal Weight Loss Supplements
by Oana Ramona Cătălina Gheorghiu, Anne Marie Ciobanu, Claudia Maria Guțu, George-Mădălin Dănilă, Gabriela Viorela Nițescu, Ștefan Rohnean and Daniela Luiza Baconi
J. Mind Med. Sci. 2025, 12(1), 23; https://doi.org/10.3390/jmms12010023 - 25 Apr 2025
Viewed by 1664
Abstract
The growing popularity and consumption of herbal slimming supplements can be attributed to their perception as natural products that lack side effects. However, the composition and ingredient quality listed on their labels often undergo insufficient control. As a result, some manufacturers add undeclared [...] Read more.
The growing popularity and consumption of herbal slimming supplements can be attributed to their perception as natural products that lack side effects. However, the composition and ingredient quality listed on their labels often undergo insufficient control. As a result, some manufacturers add undeclared synthetic pharmaceuticals to enhance weight loss effects. The synthetic adulterants, particularly the anorectic stimulants, have been associated with increased risks of cardiovascular adverse effects, posing significant health risks to consumers. This study aimed to analyze various weight loss supplements marketed as “natural” products to detect possible adulterants. A new high-performance thin-layer chromatography (HPTLC) method was used for initial screening, while gas chromatography coupled with mass spectrometry (GC–MS) served as a confirmation tool. Additionally, high-performance liquid chromatography (HPLC) was employed to analyze phenolphthalein. A total of 34 supplements acquired online or from specialty stores were analyzed. It was found that most of them contain caffeine from herbal ingredients included in the products’ formulation. Some products list the added caffeine, but the measured levels significantly exceeded the labeled values. The most commonly detected adulterants were sibutramine and phenolphthalein. These results highlighted the inadequacies and inconsistencies in labeling, as all herbal supplements were declared “natural” despite containing adulterants. Furthermore, they highlighted the suitability of the HPTLC method as an effective and cost-effective screening tool for detecting adulterants in dietary supplements. Full article
Show Figures

Figure 1

25 pages, 3505 KiB  
Article
Phenolic Acid Investigation and In Vitro Antioxidant and Antiacetylcholinesterase Potentials of Galeopsis spp. (Lamiaceae) from Romanian Flora
by Roxana Maria Golu, Cornelia Bejenaru, Ludovic Everard Bejenaru, Adina-Elena Segneanu, Andrei Biţă, Antonia Radu, Adriana Cosmina Tîrnă, Maria Viorica Ciocîlteu, George Dan Mogoşanu, Johny Neamţu and Oana Elena Nicolaescu
Pharmaceuticals 2025, 18(4), 599; https://doi.org/10.3390/ph18040599 - 20 Apr 2025
Viewed by 482
Abstract
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content [...] Read more.
Background/Objectives Galeopsis spp. (Lamiaceae) are widely distributed across extensive areas in Romania, being used mainly for their sedative, neuroprotective, antioxidant, anti-inflammatory, expectorant, astringent, and diuretic properties. The paper reports for the first time the investigation of the total phenolic content (TPC), total flavonoid content (TFC), and phenolic acid profile in the roots, aerial parts, and leaves from three wild-grown Galeopsis spp. (G. bifida Boenn., G. speciosa Mill., and G. tetrahit L.), along with their antioxidant and acetylcholinesterase (AChE) inhibitory potentials. Methods: The ultra-high-performance liquid chromatography/ultraviolet/mass spectrometry (HPLC/UV/MS) method was used for the identification and quantification of key phenolic acids. The spectrophotometric method was applied for the determination of TPC, TFC, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities and also the ferric-reducing antioxidant power (FRAP). High-performance thin-layer chromatography (HPTLC) was employed for the assessment of in situ antioxidant (DPPH assay) and AChE inhibitory potentials. Results: Galeopsis spp. exhibit significant polyphenol accumulation. Chlorogenic acid was the most abundant compound, with the highest levels detected in G. tetrahit leaves (22,347.907 ± 1117.395 μg/g), followed by G. tetrahit aerial parts (11,678.509 ± 583.925 μg/g) and G. speciosa leaves (8712.628 ± 435.631 μg/g). G. tetrahit leaves had the highest DDPH radical scavenging activity, with a half-maximal inhibitory concentration (IC50) of 0.458 ± 0.03 mg/mL, demonstrating a markedly stronger antioxidant effect. Leaves consistently showed the strongest DPPH activity across all species, with G. speciosa leaves also displaying a low IC50 value of 0.789 ± 0.03 mg/mL, comparable to G. tetrahit. Aerial parts exhibited an intermediate effect, with G. bifida aerial parts showing an IC50 of 8.102 ± 0.49 mg/mL, while G. tetrahit aerial parts demonstrated stronger activity at 1.511 ± 0.11 mg/mL. AChE inhibition activity increased progressively from the roots to aerial parts to leaves, with leaves consistently exhibiting the strongest inhibitory effects across all Galeopsis spp. G. tetrahit leaves had the strongest inhibition, with an IC50 of 4.002 ± 0.32 mg/mL, followed by G. speciosa leaves (6.92 ± 0.14 mg/mL) and G. bifida leaves (6.97 ± 0.68 mg/mL). Conclusions: Our study provides a comprehensive analysis of the phenolic acid content, in vitro antioxidant activity, and neuroprotective potential of three Galeopsis spp. (G. bifida, G. speciosa, and G. tetrahit) from the southwestern Romanian flora. Full article
Show Figures

Graphical abstract

29 pages, 1199 KiB  
Review
Exhaustive Analytical Profiling of Phytocompounds in Botanical Active Ingredients: Fighting the Global Prevalence of Adulterated Botanical Ingredients for Cosmetics
by Jean-Marie Botto, Loïc Loffredo, Gopinathan K. Menon, Pierre Champy and Francis Hadji-Minaglou
Cosmetics 2025, 12(2), 63; https://doi.org/10.3390/cosmetics12020063 - 31 Mar 2025
Cited by 1 | Viewed by 3493
Abstract
Traditional herbal medicine, ethnopharmacology, and evidence-based phytotherapy inspire the development of botanical active ingredients for cosmetics. Ensuring their authenticity and quality is essential in guaranteeing the safety and efficacy of cosmetic formulations. However, the industry faces challenges related to adulteration and inconsistent verification [...] Read more.
Traditional herbal medicine, ethnopharmacology, and evidence-based phytotherapy inspire the development of botanical active ingredients for cosmetics. Ensuring their authenticity and quality is essential in guaranteeing the safety and efficacy of cosmetic formulations. However, the industry faces challenges related to adulteration and inconsistent verification practices. Adulteration can occur at both the crude raw material stage and during processing, involving misidentification, contamination, or the addition of unauthorized substances. This review emphasizes the need for robust authentication methods, including botanical identification, genetic testing, and phytochemical/metabolomic profiling. Analytical tools such as UV/VIS spectroscopy, HPTLC, GC-MS, HPLC/UHPLC, and isotope analysis provide complementary data for detecting and addressing adulteration. Adulteration jeopardizes product safety, efficacy, regulatory compliance, and consumer trust, while dilutions or substitutions erode the intended health benefits. A standardized, comprehensive approach across the supply chain—from raw material sourcing to extract manufacturing—is critical for maintaining the integrity of botanical ingredients. Cosmetovigilance and nutrivigilance are crucial aspects of ensuring product safety and compliance. This review presents a novel perspective by highlighting that, while the pharmaceutical and nutraceutical industries have long recognized the risks of botanical adulteration, awareness in the cosmetics industry remains limited. It further integrates recent advancements in metabolomic profiling, global regulatory challenges, and the economic implications of botanical adulteration in cosmetics. Future developments in AI-driven authentication technologies may represent a promising solution for addressing evolving challenges in product safety and traceability. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

29 pages, 16189 KiB  
Article
Comparative Study of Chaga (Inonotus obliquus) Dietary Supplements Using Complementary Analytical Techniques
by Coleton Windsor, Anna E. Kreynes, Jeff S. Chilton, William A. Chioffi, Arun Krishnamurthy and Melissa Ishii
Int. J. Mol. Sci. 2025, 26(7), 2970; https://doi.org/10.3390/ijms26072970 - 25 Mar 2025
Viewed by 3896
Abstract
Chaga (Inonotus obliquus) is an increasingly used natural product in botanical dietary supplements, valued for its bioactive compounds. However, inconsistent standardized analytical methods raise concerns over product authenticity, mislabeling, and quality control. This study employs a multi-analytical approach to differentiate wildcrafted [...] Read more.
Chaga (Inonotus obliquus) is an increasingly used natural product in botanical dietary supplements, valued for its bioactive compounds. However, inconsistent standardized analytical methods raise concerns over product authenticity, mislabeling, and quality control. This study employs a multi-analytical approach to differentiate wildcrafted chaga canker from North American chaga dietary supplements, particularly those containing mycelia fermented grain products. High-Performance Thin-Layer Chromatography (HPTLC), Liquid Chromatography with Evaporative Light Scattering Detection (LC-ELSD) or Photo/Diode Array Detection (LC-PDA/DAD), Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (LC-QToF-MS), Nuclear Magnetic Resonance (NMR) spectroscopy, UV-Vis spectrophotometry, and iodine-starch assays were used to evaluate key markers, including triterpenoids, polysaccharides, and melanin. Whole chaga canker contained triterpenoids (inotodiol, trametenolic acid) and phenolics, like osmundacetone, while melanin absorbance at 500 nm differentiated it from fermented grain products. β-Glucan quantification and iodine-starch assays confirmed starch-rich composition in fermented grains and its absence in authentic chaga canker. NMR fingerprinting and LC-QToF-MS metabolomics demonstrated stark compositional deviations between wildcrafted chaga canker, I. obliquus mycelium, and fermented grain products. By integrating complementary techniques, we establish a framework that can reliably distinguish genuine chaga canker from misrepresented products, ensuring consumer safety and fostering trust in the functional mushroom, canker, and mycelium markets. Full article
(This article belongs to the Special Issue Bioactive Compounds of Natural Origin)
Show Figures

Figure 1

14 pages, 1667 KiB  
Article
Antimicrobial Effect of Boswellia serrata Resin’s Methanolic Extracts Against Skin Infection Pathogens
by Petar Todorović, Maja Krstić Ristivojević, Marko Jović, Đurđa Ivković, Jasmina Nestorović Živković, Uroš Gašić, Ivica Dimkić, Ivana Stojiljković and Petar Ristivojević
Processes 2025, 13(3), 850; https://doi.org/10.3390/pr13030850 - 14 Mar 2025
Viewed by 1506
Abstract
Frankincense resin (Boswellia serrata), native to arid regions of India, the Middle East, and parts of Africa, has been highly valued for its medicinal properties. This study evaluated the antimicrobial potential of methanolic extracts of Boswellia serrata resin against Staphylococcus aureus [...] Read more.
Frankincense resin (Boswellia serrata), native to arid regions of India, the Middle East, and parts of Africa, has been highly valued for its medicinal properties. This study evaluated the antimicrobial potential of methanolic extracts of Boswellia serrata resin against Staphylococcus aureus, Pseudomonas aeruginosa, and Listeria monocytogenes. High-performance thin-layer chromatography (HPTLC) coupled with bioautography identified bioactive zones, while Liquid Chromatography–Mass Spectrometry (LC-MS) quantified the phenolic and terpenoid compounds. The cytotoxicity was assessed on HaCaT human keratinocyte cells to evaluate the safety for dermatological applications. The results demonstrated significant antibacterial activity, particularly against S. aureus and L. monocytogenes. The bioautograms revealed that samples from central and southern Serbia showed the highest antimicrobial effect against the tested bacterial strains. The active compounds included 11-keto-β-boswellic acid (up to 3733.96 μg/g), gallic acid (110.93 μg/g), and naringenin (53.13 μg/g). Cytotoxicity assays confirmed non-toxic effects at 10 µg/mL, with sample 6 enhancing the keratinocyte viability by 137%, while higher concentrations (50 µg/mL) showed variable cytotoxicity. These findings highlight the potential of B. serrata resin as a natural antimicrobial agent, particularly against antibiotic-resistant pathogens. Its therapeutic applicability in pharmaceutical and cosmetic formulations is promising provided that dosing ensures a balance between efficacy and safety. Full article
Show Figures

Figure 1

24 pages, 3840 KiB  
Article
Polyphenolic Composition, Antioxidant Activity, and Cytotoxic Effect of Male Floral Buds from Three Populus Species Growing in the South of Romania
by Mona Luciana Gălăţanu, Mariana Panţuroiu, Luiza Mădălina Cima, Ana Maria Neculai, Emilia Pănuş, Coralia Bleotu, Cristian Mihai Enescu, Ion Mircioiu, Roxana Măriuca Gavriloaia, Sorina Nicoleta Aurică, Mirela Claudia Rîmbu and Roxana Colette Sandulovici
Molecules 2025, 30(4), 913; https://doi.org/10.3390/molecules30040913 - 16 Feb 2025
Cited by 2 | Viewed by 1112
Abstract
Three poplar species widely distributed in southern Romania were investigated for their chemical composition and bioactivity. Male buds from black poplar (Populus nigra L.), white poplar (Populus alba L.), and Euroamerican hybrid poplar (Populus × euramericana (Dode) Guinier.) were analyzed [...] Read more.
Three poplar species widely distributed in southern Romania were investigated for their chemical composition and bioactivity. Male buds from black poplar (Populus nigra L.), white poplar (Populus alba L.), and Euroamerican hybrid poplar (Populus × euramericana (Dode) Guinier.) were analyzed using HPTLC, HPLC, GC-MS, and spectrophotometric assays. The analysis revealed predominantly polyphenolic compounds, including phenolic acids and flavonoids, secondary metabolites recognized for their antioxidant properties, particularly valuable in alleviating oxidative stress disorders. Heavy metal content was measured using atomic absorption spectroscopy, and antioxidant capacity was assessed through DPPH and FRAP assays alongside a cytotoxicity evaluation. Polyphenolic content ranged from 19.26 to 33.37 mg GAE/g DW and flavonoid content from 2.15 to 4.45 mg RE/g DW. All three species demonstrated notable antioxidant capacity and cytotoxic activity. Hydroethanolic extracts of P. nigra and P. euramericana showed higher antioxidant activity than aqueous extracts, with P. nigra achieving the lowest IC50 value overall, highlighting the influence of solvent choice on antioxidant efficacy. Furthermore, poplar hydroethanolic extracts exhibited concentration-dependent cytotoxicity against fibroblast-like human osteosarcoma MG63 cell lines, with IC50 values of 42.55 µg/mL for P. nigra, 40.87 µg/mL for P. × euramericana, and 132.49 µg/mL for P. alba, underscoring significant interspecies variability in cytotoxic potency. These findings suggest that male floral buds from Romanian poplar species may serve as valuable sources of bioactive compounds with therapeutic potential. Full article
Show Figures

Figure 1

16 pages, 3047 KiB  
Article
Two-Dimensional Chromatographic Isolation of High Purity Erinacine A from Hericium erinaceus
by Katerina Naumoska, Andrej Gregori and Alen Albreht
J. Fungi 2025, 11(2), 150; https://doi.org/10.3390/jof11020150 - 15 Feb 2025
Cited by 2 | Viewed by 1571
Abstract
A simple and robust two-dimensional chromatographic fractionation protocol for the isolation of the neuroprotective compound erinacine A from Hericium erinaceus is proposed. This production platform yielded 19.4 mg of erinacine A from approximately 130 g of mushroom material, with a chromatographic purity of [...] Read more.
A simple and robust two-dimensional chromatographic fractionation protocol for the isolation of the neuroprotective compound erinacine A from Hericium erinaceus is proposed. This production platform yielded 19.4 mg of erinacine A from approximately 130 g of mushroom material, with a chromatographic purity of 97.4%. The procedure includes extraction, concentration, fractionation, purification, and characterisation of the bioactive compound. The crude H. erinaceus extract was fractionated in the first dimension by normal-phase flash chromatography, and the fraction containing erinacine A was further purified in the second dimension by semi-preparative reversed-phase chromatography. This strategy utilises the orthogonality of the two chromatographic modes to effectively eliminate difficult impurities, including structural isomers and analogues of erinacine A. Complementary analytical approaches such as high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography with ultraviolet and tandem mass spectrometric detection (HPLC–UV–MS/MS) were employed to unambiguously confirm erinacine A in the isolated fractions, while HPLC with a charged aerosol detector (CAD) was used to determine its purity. Given the limited commercial availability and the high price of erinacine A, the described method offers a straightforward and cost-effective alternative to obtain this valuable compound for further research and applications. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

25 pages, 2660 KiB  
Article
Phytochemistry and Biological Activities of Hedeoma piperita Benth. (Quiensabe)
by Jeanette Guadalupe Cárdenas-Valdovinos, Hortencia Gabriela Mena-Violante, Flor de Fátima Rosas-Cárdenas, María Valentina Angoa-Pérez and Silvia Luna-Suárez
Int. J. Mol. Sci. 2025, 26(4), 1640; https://doi.org/10.3390/ijms26041640 - 14 Feb 2025
Viewed by 1333
Abstract
Hedeoma piperita Benth. (Lamiaceae) is a native medicinal plant from Mexico. It grows in pine, oak, and oyamel forests, as well as grasslands. In the Purépecha Plateau of Michoacán, it is called quiensabe and traditionally used to treat stomach pain, colic, cough, and [...] Read more.
Hedeoma piperita Benth. (Lamiaceae) is a native medicinal plant from Mexico. It grows in pine, oak, and oyamel forests, as well as grasslands. In the Purépecha Plateau of Michoacán, it is called quiensabe and traditionally used to treat stomach pain, colic, cough, and low blood pressure, among other ailments. This study aimed to determine the phytochemical profile of infusions and ethanolic extracts of the stems and green and purple leaves of H. piperita collected in Cherán, Michoacán. Total phenols, flavonoids, anthocyanins, and terpenoids were analyzed using UV–visible spectrophotometry; specific phenolic acids and flavonoids were detected by high performance thin layer chromatography (HPTLC); and the volatile profile of stems, green and purple leaves was determined by solid phase microextraction in GC-MS. Biological activities such as antioxidant activities (via DPPH and ABTS methods), antihypertensive activities (angiotensin converting enzyme (ACE) inhibition), antibacterial activities (minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC), anti-inflammatory activities (xanthine oxidase enzyme (XOD) inhibition) and antidiabetic activities (α-glucosidase enzyme inhibition) were evaluated in vitro. Results showed key compounds like rosmarinic acid, luteolin, menthone, menthol, and pulegone were identified using HPTLC and SPME/GC-MS, with organ-specific variations. Green and purple leaves infusions inhibited DPPH and ABTS+ by 90–99% (IC50 3.3–3.8 and 7.4–11.5 µg/mL, respectively) and purple leaves infusion showed a 69.88% XOD enzyme inhibition (IC50 47.991 µg/mL) and an 85.12% α-glucosidase enzyme inhibition (IC50 72.49 µg/mL). Purple leaves ethanolic extract exhibited the lowest MIC and MBC against Shigella flexneri and ACE inhibition at 97.25% (IC50 11.19 µg/mL). These results demonstrate the biological potential of H. piperita in the development of natural drugs and expand its use as an herbal remedy. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

20 pages, 4065 KiB  
Article
Development of a Combined 2D-MGD TLC/HPTLC Method for the Separation of Terpinen-4-ol and α-Terpineol from Tea Tree, Melaleuca alternifolia, Essential Oil
by Aimé Vázquez and Nurhayat Tabanca
Biomolecules 2025, 15(1), 147; https://doi.org/10.3390/biom15010147 - 18 Jan 2025
Cited by 2 | Viewed by 1552
Abstract
Tea tree oil (TTO), acquired from Melaleuca alternifolia (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. [...] Read more.
Tea tree oil (TTO), acquired from Melaleuca alternifolia (Maiden & Betche) Cheel, Myrtaceae, is a widely utilized essential oil (EO) due to its bioactive properties. The identification and quantification of TTO ingredients is generally performed by GC-MS, which provides the most accurate results. However, in some instances, the cost and time of analysis may pose a challenge. Thin-layer chromatography (TLC) and high-performance thin-layer chromatography (HPTLC) offer a simpler, faster, cost-effective alternative capable of simultaneously analyzing and quantifying multiple samples. In addition, for more complex oils, two-dimensional (2D) or multigradient development (MGD) TLC provide better separation. Nevertheless, further development is sometimes necessary for the isolation of comigrating components. This study showcases a combined 2D-MGD TLC/HPTLC method for the successful separation of TTO components of interest. While human error, limited separation, and the partial evaporation of volatile components may still present a challenge during the process, considerable recovery of mono- and sesquiterpenes was achieved. This protocol also resulted in the successful isolation of target oxygenated monoterpenes (OMs) producing highly pure terpinen-4-ol (100%) and α-terpineol (≥94%), confirmed by GC-MS. The accurate enantiomeric distribution of these major OMs was verified by GC-FID through the use of a chiral cyclodextrin-based stationary phase. The observed positive enantiomer range (area percent) as well as (+)/(−) ratio for each terpinen-4-ol and α-terpineol were within acceptable ISO criteria. Full article
(This article belongs to the Special Issue Feature Papers in the Natural and Bio-Derived Molecules Section)
Show Figures

Figure 1

18 pages, 5813 KiB  
Article
Lipid Profile of Larix cajanderi Mayr in Adaptation to Natural Conditions in the Cryolithozone
by Vasiliy V. Nokhsorov, Tatiana D. Tatarinova, Lyubov V. Dudareva, Natalia V. Semenova and Trofim C. Maximov
Int. J. Mol. Sci. 2025, 26(1), 164; https://doi.org/10.3390/ijms26010164 - 28 Dec 2024
Viewed by 803
Abstract
The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch (Larix cajanderi Mayr), which can survive under natural conditions (down to −60 °C) in the cryolithozone of Yakutia, is the [...] Read more.
The prevalence of coniferous trees in the forest landscapes of northeastern Siberia is conditioned by their high frost resistance. The Kajander larch (Larix cajanderi Mayr), which can survive under natural conditions (down to −60 °C) in the cryolithozone of Yakutia, is the dominant forest-forming species. We hypothesise that our study using HPTLC–UV/Vis/FLD, TLC–GC/FID, and GC–MS methods of seasonal features of the lipid profile of Kajander larch tissues will bring us closer to understanding the mechanisms of participation of lipid components in the adaptation of this valuable tree species to the cold climate of the cryolithozone. Rare delta5-unsaturated polymethylene-interrupted fatty acids (∆5-UPIFA) were identified in the fatty acids (FAs) of L. cajanderi shoots, including 18:2(Δ5.9) (taxoleic), 18:3(Δ5.9.12) (pinolenic), and 18:4(Δ5.9.12.15) (coniferonic). It was found that the content of ∆5-UPIFA in L. cajanderi shoots markedly increased (1.5-fold, representing up to 23.9% of sum FAs) during the autumnal transition of trees to dormancy. It was observed that the ranges of low temperatures experienced during the prolonged winter period primarily determined the structural diversity of membrane lipids and their constituent FAs during the cold adaptation of L. cajanderi. The results obtained can be used for the selection of molecular markers of cold tolerance in woody plants, including fruit trees. Full article
Show Figures

Figure 1

Back to TopTop