Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = HPHT process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5698 KB  
Article
A Broad Photon Energy Range Multi-Strip Imaging Array Based upon Single Crystal Diamond Schottky Photodiode
by Claudio Verona, Maurizio Angelone, Marco Marinelli and Gianluca Verona-Rinati
Instruments 2025, 9(4), 26; https://doi.org/10.3390/instruments9040026 - 28 Oct 2025
Abstract
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made [...] Read more.
A multi-strip detector made of synthetic single crystal diamond (SCD), based on a p-type/intrinsic diamond/Schottky metal transverse configuration and operating at zero bias voltage, was developed for imaging from extreme UV (EUV) to soft X-rays. The photodetector was patterned with 32 strips made of boron-doped diamond directly deposited, by means of the CVD technique and the standard lithographic technique, on top of the HPHT diamond growth substrate. The width of each strip and the gap between two adjacent strips were 100 μm and 20 μm, respectively. The strips were embedded in intrinsic SCD of an active area of 3.2 × 2.5 mm2, also deposited using the CVD technique in a separate growing machine. In the present structure, the prototype photodetector is suitable for 1D imaging. However, all the dimensions above can be varied depending on the applications. The use of p-type diamond strips represents an attempt to mitigate the photoelectron emission from metal contacts, a non-negligible problem under EUV irradiation. The detector was tested with UV radiation and soft X-rays. To test the photodetector as an imaging device, a headboard (XDAS-DH) and a signal processing board (XDAS-SP) were used as front-end electronics. A standard XDAS software was used to acquire the experimental data. The results of the tests and the detector’s construction process are presented and discussed in the paper. Full article
35 pages, 3882 KB  
Article
Multi-Criteria Decision-Making Approach to Material Selection for Abandonment of High-Pressure High-Temperature (HPHT) Wells Exposed to Harsh Reservoir Fluids
by Augustine Okechukwu Chukwuemeka, Gbenga Oluyemi, Auwalu I. Mohammed, Suhail Attar and James Njuguna
Polymers 2025, 17(10), 1329; https://doi.org/10.3390/polym17101329 - 13 May 2025
Cited by 1 | Viewed by 1637
Abstract
Portland cement is the primary barrier material for well abandonment. However, the limitations of cement, especially under harsh downhole conditions, are necessitating research into alternative barrier materials. While several alternatives have been proposed, the screening process leading to their selection is scarcely discussed [...] Read more.
Portland cement is the primary barrier material for well abandonment. However, the limitations of cement, especially under harsh downhole conditions, are necessitating research into alternative barrier materials. While several alternatives have been proposed, the screening process leading to their selection is scarcely discussed in the literature, resulting in the non-repeatability of the selection process. This study develops a dynamic multi-criteria decision-making technique for assessing the material options for the abandonment of high-pressure high-temperature (HPHT) wells with exposure to harsh reservoir fluids. The material screening process is performed in ANSYS Granta and a combined technique for order of preference by similarity to ideal solution (TOPSIS) and analytical hierarchy process (AHP) approach is used for ranking the shortlisted material alternatives based on seven material properties proven in the literature to be critical to the long-term integrity of well barrier materials. Nine alternative materials are ranked against Portland cement and high alumina cement. The results show that the top-ranking materials are from the phenol formaldehyde and polyamide–imide groups. Of these, the primary production CO2 of the polyamide–imide is, on average, about 25 times higher than the primary production CO2 of the phenol formaldehyde material. A sensitivity analysis of the methodology confirms that the criteria with the highest initial weights are the most impactful in terms of the final rank. The material property values also have an impact on the extent to which variations in their weights affect the hierarchical position of the materials in the TOPSIS-AHP analysis. Despite their higher cost per unit volume, the alternative materials consistently outperformed cement—even when average price was weighted more heavily than the most influential mechanical property. Full article
Show Figures

Graphical abstract

12 pages, 2992 KB  
Article
Enhanced Toughness of High-Entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C Ceramics with SiC Whiskers by High-Pressure and High-Temperature Sintering
by Hao Li, Zhenxing Yang, Min Lian, Shuailing Ma, Wei Li, Xinmiao Wei, Xingbin Zhao, Yilong Pan, Yunfeng She, Lingyan Dang, Bao Yuan and Tian Cui
Materials 2025, 18(7), 1655; https://doi.org/10.3390/ma18071655 - 4 Apr 2025
Cited by 2 | Viewed by 937
Abstract
High-entropy ceramics (HECs) have garnered considerable interest due to their exceptional mechanical properties and high-temperature stability. Nevertheless, their inherent brittleness significantly restricts industrial applications, posing a challenge to improving toughness without compromising hardness. This study investigates the role of SiC whiskers (SiCw) in [...] Read more.
High-entropy ceramics (HECs) have garnered considerable interest due to their exceptional mechanical properties and high-temperature stability. Nevertheless, their inherent brittleness significantly restricts industrial applications, posing a challenge to improving toughness without compromising hardness. This study investigates the role of SiC whiskers (SiCw) in simultaneously suppressing grain growth and enhancing the toughness of high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C (HEC) composites, while maintaining high hardness during high-pressure high-temperature (HPHT) sintering. HEC-SiCw composites were fabricated via HPHT (P = 5 GPa, T = 2000 °C), with SiCw contents ranging from 0 to 40 mol%. As the SiCw content increased, the growth of HEC grains was inhibited, and the fracture toughness progressively rose to a peak value (KIC = 9.4 ± 1.2 MPa·m1/2), representing an increase of approximately 184% compared to that of pure HEC, while Vickers hardness remained stable at 26 GPa. The enhancement in fracture toughness is attributed to the heterogeneous grain distribution and robust grain boundary strength, which facilitated a synergistic combination of transgranular and intergranular fracture mechanisms. These mechanisms induced crack deflection and whisker pull-out, effectively dissipating fracture energy and impeding crack propagation, thereby enhancing toughness. This study presents a novel approach to simultaneously refine grain size and improve toughness in HECs through HPHT processing, providing valuable insights for the development of next-generation ceramic composites. Full article
Show Figures

Figure 1

13 pages, 6097 KB  
Article
Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering
by Xiaonan Wang, Dianzhen Wang, Kaixuan Rong, Qiang Tao and Pinwen Zhu
Materials 2024, 17(23), 5838; https://doi.org/10.3390/ma17235838 - 28 Nov 2024
Viewed by 1068
Abstract
Introducing a second phase has been an effective way to solve the brittleness of boron carbide (B4C) for its application. Though reduced graphene oxide (rGO) is an ideal candidate for reinforcing the B4C duo’s two-dimensional structure and excellent mechanical [...] Read more.
Introducing a second phase has been an effective way to solve the brittleness of boron carbide (B4C) for its application. Though reduced graphene oxide (rGO) is an ideal candidate for reinforcing the B4C duo’s two-dimensional structure and excellent mechanical properties, the toughness is less than 6 MPa·m1/2, or the hardness is lower than 30 GPa in B4C–graphene composites. A barrier to enhancing toughness is the weak interface strength between rGO and B4C, which limits the bridging and pull-out toughening effects of rGO. In this work, internal stress was introduced using a high-pressure and high-temperature (HPHT) method with B4C–rGO composites. The optimal hardness and toughness values for the B4C-2 vol% rGO composite reached 30.1 GPa and 8.6 MPa·m1/2, respectively. The improvement in toughness was 4 times higher than that of pure B4C. The internal stress in the composite increased gradually from 2.3 GPa to 3.3 GPa with an increase in rGO content from 1 vol% to 3 vol%. Crack deflection, bridging, and rGO pull-out are responsible for the improvement in toughness. Moreover, the high internal stress contributed to the formation of good interface strength by embedding rGO into the B4C matrix particles, which further enhanced the dissipation of the crack energy during the pull-out process and led to high toughness. This work provides new insights into synthesizing high-toughness B4C matrix composites. Full article
Show Figures

Figure 1

11 pages, 4809 KB  
Article
Binderless Polycrystalline Cubic Boron Nitride Sintered Compacts for Machining of Cemented Carbides
by Alexander S. Osipov, Piotr Klimczyk, Igor A. Petrusha, Yurii O. Melniichuk, Lucyna Jaworska, Kinga Momot and Yuliia Rumiantseva
Ceramics 2024, 7(4), 1477-1487; https://doi.org/10.3390/ceramics7040095 - 13 Oct 2024
Cited by 1 | Viewed by 1723
Abstract
High-purity, superhard, binderless polycrystalline cubic boron nitride (BL-PCBN) was obtained by direct hBN to cBN transformation in a toroid-type high-pressure apparatus at a pressure of 8.0 GPa and temperature of 2250 °C (HPHT-DCS; high-pressure, high-temperature direct conversion sintering). X-ray diffraction analysis revealed a [...] Read more.
High-purity, superhard, binderless polycrystalline cubic boron nitride (BL-PCBN) was obtained by direct hBN to cBN transformation in a toroid-type high-pressure apparatus at a pressure of 8.0 GPa and temperature of 2250 °C (HPHT-DCS; high-pressure, high-temperature direct conversion sintering). X-ray diffraction analysis revealed a prominent [111] axial texture in the sintered material when the axis was oriented perpendicular to the end surface of the sample. Vickers hardness tests conducted at a load of 49 N showed that BL-PCBN possessed an exceptional hardness value of 63.4 GPa. Finally, cutting tools made of BL-PCBN and SN-PCBN (Si3N4-doped cBN-based composite) reference materials were tested during the turning of a cemented tungsten carbide workpiece. The results of the cutting tests demonstrated that the wear resistance of the BL-PCBN material obtained with the HPHT-DCS process is 1.5–1.9 times higher compared to the conventional SN-PCBN material, suggesting its significant potential for industrial application. Full article
Show Figures

Graphical abstract

37 pages, 16512 KB  
Review
Food Preservation in the Industrial Revolution Epoch: Innovative High Pressure Processing (HPP, HPT) for the 21st-Century Sustainable Society
by Agata Angelika Sojecka, Aleksandra Drozd-Rzoska and Sylwester J. Rzoska
Foods 2024, 13(19), 3028; https://doi.org/10.3390/foods13193028 - 24 Sep 2024
Cited by 7 | Viewed by 4106
Abstract
The paper presents the ‘progressive review’ for high pressure preservation/processing (HPP) (cold pasteurization) of foods and the next-generation high-pressure and high temperature (HPHT, HPT) food sterilization technologies. It recalls the basics of HPP and HPT, showing their key features and advantages. It does [...] Read more.
The paper presents the ‘progressive review’ for high pressure preservation/processing (HPP) (cold pasteurization) of foods and the next-generation high-pressure and high temperature (HPHT, HPT) food sterilization technologies. It recalls the basics of HPP and HPT, showing their key features and advantages. It does not repeat detailed results regarding HPP and HPT implementations for specific foods, available in numerous excellent review papers. This report focuses on HPP and HPT-related issues that remain challenging and can hinder further progress. For HPP implementations, the reliable modeling of microorganisms’ number decay after different times of high pressure treatment or product storage is essential. This report indicates significant problems with model equations standard nonlinear fitting paradigm and introduces the distortion-sensitive routine enabling the ultimate validation. An innovative concept based on the barocaloric effect is proposed for the new generation of HPT technology. The required high temperature appears only for a strictly defined short time period controlled by the maximal pressure value. Results of the feasibility test using neopentyl glycol as the barocaloric medium are presented. Attention is also paid to feedback interactions between socioeconomic and technological issues in the ongoing Industrial Revolution epoch. It indicates economic constraints for HPP and HPT developments and emerging business possibilities. The discussion recalls the inherent feedback interactions between technological and socioeconomic innovations as the driving force for the Industrial Revolution epoch. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

14 pages, 1286 KB  
Article
Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds
by Oleksandr Romanyuk, Štěpán Stehlík, Josef Zemek, Kateřina Aubrechtová Dragounová and Alexander Kromka
Nanomaterials 2024, 14(7), 590; https://doi.org/10.3390/nano14070590 - 27 Mar 2024
Cited by 3 | Viewed by 2611
Abstract
The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative [...] Read more.
The modification of nanodiamond (ND) surfaces has significant applications in sensing devices, drug delivery, bioimaging, and tissue engineering. Precise control of the diamond phase composition and bond configurations during ND processing and surface finalization is crucial. In this study, we conducted a comparative analysis of the graphitization process in various types of hydrogenated NDs, considering differences in ND size and quality. We prepared three types of hydrogenated NDs: high-pressure high-temperature NDs (HPHT ND-H; 0–30 nm), conventional detonation nanodiamonds (DND-H; ~5 nm), and size- and nitrogen-reduced hydrogenated nanodiamonds (snr-DND-H; 2–3 nm). The samples underwent annealing in an ultra-high vacuum and sputtering by Ar cluster ion beam (ArCIB). Samples were investigated by in situ X-ray photoelectron spectroscopy (XPS), in situ ultraviolet photoelectron spectroscopy (UPS), and Raman spectroscopy (RS). Our investigation revealed that the graphitization temperature of NDs ranges from 600 °C to 700 °C and depends on the size and crystallinity of the NDs. Smaller DND particles with a high density of defects exhibit a lower graphitization temperature. We revealed a constant energy difference of 271.3 eV between the sp-peak in the valence band spectra (at around 13.7 eV) and the sp3 component in the C 1s core level spectra (at 285.0 eV). The identification of this energy difference helps in calibrating charge shifts and serves the unambiguous identification of the sp3 bond contribution in the C 1s spectra obtained from ND samples. Results were validated through reference measurements on hydrogenated single crystal C(111)-H and highly-ordered pyrolytic graphite (HOPG). Full article
Show Figures

Figure 1

11 pages, 2671 KB  
Article
Numerical Aperture-Dependent Spatial Scaling of Plasma Channels in HPHT Diamond
by Yulia Gulina, Jiaqi Zhu, George Krasin, Evgeny Kuzmin and Sergey Kudryashov
Photonics 2023, 10(10), 1177; https://doi.org/10.3390/photonics10101177 - 23 Oct 2023
Cited by 4 | Viewed by 1594
Abstract
The investigation of plasma channels induced by focused ultra-short 1030-nm laser pulses in bulk of synthetic High Pressure High Temperature (HPHT) diamond revealed strong dependence of their spatial parameters on the used numerical aperture of the lens (NA = 0.15–0.45). It was shown [...] Read more.
The investigation of plasma channels induced by focused ultra-short 1030-nm laser pulses in bulk of synthetic High Pressure High Temperature (HPHT) diamond revealed strong dependence of their spatial parameters on the used numerical aperture of the lens (NA = 0.15–0.45). It was shown that at weak focusing conditions it is possible to significantly increase the length of the plasma channel with a slight increase in pulse power, while tight focusing allows one to obtain more compact structures in the same range of used powers. Such a dependence paves the way to new possibilities in 3D processing of transparent dielectrics, allowing one, for example, to vary the spatial parameters of modified regions without changing the setup, but only by controlling the lens aperture, which seems very promising for industrial applications. Full article
Show Figures

Figure 1

11 pages, 3639 KB  
Article
High Gas Pressure and High-Temperature Synthesis (HP-HTS) Technique and Its Impact on Iron-Based Superconductors
by Mohammad Azam, Manasa Manasa, Andrzej Morawski, Tomasz Cetner and Shiv J. Singh
Crystals 2023, 13(10), 1525; https://doi.org/10.3390/cryst13101525 - 21 Oct 2023
Cited by 7 | Viewed by 2396
Abstract
The high-pressure growth technique generally plays an important role in the improvement of sample quality and the enhancement of various physical and magnetic properties of materials. The high gas pressure technique provides a large sample space (10–15 cm) to grow various kinds of [...] Read more.
The high-pressure growth technique generally plays an important role in the improvement of sample quality and the enhancement of various physical and magnetic properties of materials. The high gas pressure technique provides a large sample space (10–15 cm) to grow various kinds of materials. In this paper, we introduce the high gas pressure and high-temperature synthesis (HP-HTS) technique that is present at our institute and is applied to the growth process of different kinds of superconducting materials, particularly iron-based superconductors. More details and the working principle of this HP-HTS technique are discussed. We have also demonstrated the current results based on iron-based superconductors by using this unique HP-HTS technique. These results demonstrate the enhancement of the superconducting properties with improved sample quality compared to the conventional synthesis process at ambient pressure. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 11304 KB  
Article
Research on Microstructure, Synthesis Mechanisms, and Residual Stress Evolution of Polycrystalline Diamond Compacts
by Peishen Ni, Yongxuan Chen, Wenxin Yang, Zijian Hu and Xin Deng
Crystals 2023, 13(8), 1286; https://doi.org/10.3390/cryst13081286 - 20 Aug 2023
Cited by 5 | Viewed by 2710
Abstract
The microstructure and residual stress of polycrystalline diamond compact (PDC) play crucial roles in the performance of PDCs. Currently, in-depth research is still to be desired on the evolution mechanisms of microstructure and residual stress during high pressure high temperature (HPHT) synthesis process [...] Read more.
The microstructure and residual stress of polycrystalline diamond compact (PDC) play crucial roles in the performance of PDCs. Currently, in-depth research is still to be desired on the evolution mechanisms of microstructure and residual stress during high pressure high temperature (HPHT) synthesis process of PDCs. This study systematically investigated the influencing mechanisms of polycrystalline diamond (PCD) layer material design, especially the Co content of the PCD layer, on microstructure and residual stress evolution in PDCs via Raman spectroscopy and finite element micromechanical simulation. The research shows that when the original Co content of the PCD layer is higher than 15 wt.%, the extra Co in the PCD layer will migrate backwards towards the carbide substrate and form Co-enrichment regions at the PCD–carbide substrate interface. As the original Co content of the PCD layer increases from 13 to 20 wt.%, the residual compressive stress of diamond phase at the upper surface center of the PCD layer gradually decreases and transforms into tensile stress. When the original Co content of the PCD layer is as high as 30 wt.%, the residual stress transforms back into significant compressive stress again. The microstructure-based micromechanical simulation at the PCD–carbide substrate interface shows that the Co-enrichment region is the key for the transformation of the residual stress of the diamond phase from tensile stress into significant compressive stress. Full article
Show Figures

Figure 1

23 pages, 5145 KB  
Article
High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe0.5Te0.5
by Mohammad Azam, Manasa Manasa, Tatiana Zajarniuk, Ryszard Diduszko, Tomasz Cetner, Andrzej Morawski, Jarosław Więckowski, Andrzej Wiśniewski and Shiv J. Singh
Materials 2023, 16(15), 5358; https://doi.org/10.3390/ma16155358 - 30 Jul 2023
Cited by 11 | Viewed by 3806
Abstract
A series of FeSe0.5Te0.5 bulk samples have been prepared using the high gas pressure and high-temperature synthesis (HP-HTS) method to optimize the growth conditions for the first time and investigated for their superconducting properties using structural, microstructure, transport, and magnetic [...] Read more.
A series of FeSe0.5Te0.5 bulk samples have been prepared using the high gas pressure and high-temperature synthesis (HP-HTS) method to optimize the growth conditions for the first time and investigated for their superconducting properties using structural, microstructure, transport, and magnetic measurements to reach the final conclusions. Ex situ and in situ processes are used to prepare bulk samples under a range of growth pressures using Ta-tube and without Ta-tube. The parent compound synthesized by convenient synthesis method at ambient pressure (CSP) exhibits a superconducting transition temperature of 14.8 K. Our data demonstrate that the prepared FeSe0.5Te0.5 sealed in a Ta-tube is of better quality than the samples without a Ta-tube, and the optimum growth conditions (500 MPa, 600 °C for 1 h) are favorable for the development of the tetragonal FeSe0.5Te0.5 phase. The optimum bulk FeSe0.5Te0.5 depicts a higher transition temperature of 17.3 K and a high critical current density of the order of >104 A/cm2 at 0 T, which is improved over the entire magnetic field range and almost twice higher than the parent compound prepared using CSP. Our studies confirm that the high-pressure synthesis method is a highly efficient way to improve the superconducting transition, grain connectivity, sample density, and pinning properties of a superconductor. Full article
(This article belongs to the Special Issue Characterization and Application of Superconducting Materials)
Show Figures

Figure 1

4 pages, 750 KB  
Proceeding Paper
Formation of Nanoscale (Ti,V)N Solid Solutions form Equimolar TiN/VN Blend at Mechanical Alloying or HPHT Sintering
by Nadezhda Belyavina, Olesya Nakonechna, Alla Kuryliuk, Pavlo Kogutyuk, Denis Stratiichuk and Vladimir Turkevich
Mater. Proc. 2023, 14(1), 16; https://doi.org/10.3390/IOCN2023-14518 - 2 Jun 2023
Cited by 4 | Viewed by 1355
Abstract
The comparative study of TiN and VN interaction at mechanical alloying (MA) of the equimolar TiN-VN mixture in a ball mill and after high pressure, high temperature (HPHT) sintering of the cBN-TiN-VN charge, which contains 35 vol.% of this mixture, is presented. MA [...] Read more.
The comparative study of TiN and VN interaction at mechanical alloying (MA) of the equimolar TiN-VN mixture in a ball mill and after high pressure, high temperature (HPHT) sintering of the cBN-TiN-VN charge, which contains 35 vol.% of this mixture, is presented. MA for five hours or HPHT sintering at 2000–2300 °C results in the formation of TixV1−xNy and VxTi1−xNy solid solutions containing 8–10 at.% of vanadium or titanium. Preliminary processing of the initial powder mixture in a ball mill promotes the occurrence of solid-state reactions during HPHT sintering of composites and influences their physical characteristics. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Nanomaterials)
Show Figures

Figure 1

17 pages, 6671 KB  
Article
Temperature- and Pressure-Reducing Regimes in the Growth Cell of HPHT Diamonds, Optimal for Preserving Crystal Integrity after Growth Completion
by Nikolay I. Alekseyev, Anton P. Broyko, Ivan K. Khmelnitskiy, Alexander V. Kolyadin, Vagarshak M. Aivazyan and Ivan V. Oreshko
C 2023, 9(2), 52; https://doi.org/10.3390/c9020052 - 18 May 2023
Cited by 1 | Viewed by 4288
Abstract
With its exceptional strength characteristics, diamond has some mechanical drawbacks, significant brittleness being among them. In particular, some HPHT-grown diamonds crack when the extreme parameters inherent to the diamond growth process gradually decrease. The cracking is caused by excessive stress due to the [...] Read more.
With its exceptional strength characteristics, diamond has some mechanical drawbacks, significant brittleness being among them. In particular, some HPHT-grown diamonds crack when the extreme parameters inherent to the diamond growth process gradually decrease. The cracking is caused by excessive stress due to the poor plastic properties of the diamond growth catalytic medium at certain stages of reducing the pressure and the temperature. An insulating container with the growth cell and heating circuit fragment inside can also make a significant contribution to the probability of cracking. This paper considers the possibility of minimizing the mechanical stress in the growth cell and, consequently, in the diamond crystal by choosing the optimal trajectory for the decrease in the pressure and temperature from diamond growth conditions to normal conditions. Full article
(This article belongs to the Special Issue Advanced in Low Dimensional Carbon: Processing and Applications)
Show Figures

Figure 1

17 pages, 3580 KB  
Article
Aquathermolysis of Heavy Crude Oil: Comparison Study of the Performance of Ni(CH3COO)2 and Zn(CH3COO)2 Water-Soluble Catalysts
by Yasser I. I. Abdelsalam, Firdavs A. Aliev, Oybek O. Mirzayev, Sergey A. Sitnov, Vladimir E. Katnov, Leysan A. Akhmetzyanova, Rezeda E. Mukhamatdinova and Alexey V. Vakhin
Catalysts 2023, 13(5), 873; https://doi.org/10.3390/catal13050873 - 11 May 2023
Cited by 13 | Viewed by 4203
Abstract
Aquathermolysis is one of the crucial processes being considered to successfully upgrade and irreversibly reduce the high viscosity of heavy crude oil during steam enhanced oil recovery technologies. The aquathermolysis of heavy oil can be promoted by transition metal-based catalysts. In this study, [...] Read more.
Aquathermolysis is one of the crucial processes being considered to successfully upgrade and irreversibly reduce the high viscosity of heavy crude oil during steam enhanced oil recovery technologies. The aquathermolysis of heavy oil can be promoted by transition metal-based catalysts. In this study, the catalytic performance of two water-soluble catalysts Ni(CH3COO)2 and Zn(CH3COO)2 on the aquathermolytic upgrading of heavy oil at 300 °C for 24 h was investigated in a high pressure–high temperature (HP-HT) batch reactor. The comparison study showed that nickel acetate is more effective than zinc acetate in terms of viscosity reduction at 20 °C (58% versus 48%). The viscosity alteration can be mainly explained by the changes in the group composition, where the content of resins and asphaltenes in the upgraded heavy crude oil sample in the presence of nickel catalyst was reduced by 44% and 13%, respectively. Moreover, the nickel acetate-assisted aquathermolysis of heavy oil contributed to the increase in the yield of gasoline and diesel oil fractions by 33% and 29%, respectively. The activity of the compared metal acetates in hydrogenation of the crude oil was judged by the results of the atomic H/C ratio. The atomic H/C ratio of crude oil upgraded in the presence of Ni(CH3COO)2 was significantly increased from 1.52 to 2.02. In addition, the catalyst contributed to the desulfurization of crude oil, reducing the content of sulfur in crude oil from 5.55 wt% to 4.51 wt% The destructive hydrogenation of resins and asphaltenes was supported by the results of gas chromatography-mass spectroscopy (GC-MS) and Fourier-transform infrared (FT-IR) spectroscopy analysis methods. The obtained experimental results showed that using water-soluble catalysts is effective in promoting the aquathermolytic reactions of heavy oil and has a great potential for industrial-scale applications. Full article
Show Figures

Figure 1

15 pages, 1498 KB  
Review
Studies of Dislocations in Type Ib, Type IIa HPHT and CVD Single Crystal Diamonds
by Devi Shanker Misra
Crystals 2023, 13(4), 657; https://doi.org/10.3390/cryst13040657 - 11 Apr 2023
Cited by 7 | Viewed by 4470
Abstract
In this review, the X-ray topography results of various types of single crystal diamonds (SCDs) are reported. Dislocations and dislocation bundles are present in all types of SCDs, the only exception being type IIa high-pressure, high-temperature (HPHT) SCDs. The technology of growing HPHT [...] Read more.
In this review, the X-ray topography results of various types of single crystal diamonds (SCDs) are reported. Dislocations and dislocation bundles are present in all types of SCDs, the only exception being type IIa high-pressure, high-temperature (HPHT) SCDs. The technology of growing HPHT type IIa SCDs has advanced to a level where the samples show almost no dislocations or dislocation bundles. However, very few groups appear to have perfected the process of HPHT growth of type IIa SCDs. There appears to be a characteristic difference in the dislocations present in type Ib HPHT and chemical vapor deposited (CVD) SCDs. The dislocations in CVD SCDs are mostly in aggregate form, while in HPHT type Ib diamonds there are line dislocations which propagate in <111> or <112> directions. The CVD SCDs growth appears to be in the early stage in terms of the control of dislocations and dislocation bundles, compared to other semiconductor wafers. The dislocations and dislocation bundles and aggregates in SCDs limit their applications in electronic and optical devices. For instance, high-power laser windows must have low dislocations and dislocation bundles. For electronic devices such as high-power diodes, dislocations reduce the breakdown voltage of SCDs, limiting their applications. The knowledge of dislocations, their identification and their origin are, therefore, of utmost importance for the applications of SCDs, be they HPHT or CVD grown. Full article
(This article belongs to the Special Issue Diamonds: Growth, Properties and Applications)
Show Figures

Figure 1

Back to TopTop