Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, D.; Zhang, L.; Ruther, R.E.; Hamers, R.J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef]
- Marchal, C.; Saoudi, L.; Girard, H.A.; Keller, V.; Arnault, J. Oxidized Detonation Nanodiamonds Act as an Efficient Metal-Free Photocatalyst to Produce Hydrogen Under Solar Irradiation. Adv. Energy Sustain. Res. 2023, 5, 2300260. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, K.; Zhang, J.; Zhu, Y.; Ma, Y.; Zhang, H.; Song, D.; Shi, X.; Zhang, L.; Ding, Y. Synergistic effects of nanodiamond modified separators toward highly stable and safe lithium metal batteries. J. Mater. Chem. A 2021, 9, 16046–16055. [Google Scholar] [CrossRef]
- Miliaieva, D.; Djoumessi, A.S.; Čermák, J.; Kolářová, K.; Schaal, M.; Otto, F.; Shagieva, E.; Romanyuk, O.; Pangrác, J.; Kuliček, J.; et al. Absolute energy levels in nanodiamonds of different origins and surface chemistries. Nanoscale Adv. 2023, 5, 4402–4414. [Google Scholar] [CrossRef]
- Afandi, A.; Howkins, A.; Boyd, I.W.; Jackman, R.B. Nanodiamonds for device applications: An investigation of the properties of boron-doped detonation nanodiamonds. Sci. Rep. 2018, 8, 3270. [Google Scholar] [CrossRef]
- Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Liu, K.-K.; Zang, J.-H.; Yang, X.; Dong, L.; Shan, C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Turner, S.; Shenderova, O.; Da Pieve, F.; Lu, Y.; Yücelen, E.; Verbeeck, J.; Lamoen, D.; Van Tendeloo, G. Aberration-corrected microscopy and spectroscopy analysis of pristine, nitrogen containing detonation nanodiamond: Microscopy and spectroscopy analysis of pristine, nitrogen containing DND. Phys. Status Solidi A 2013, 210, 1976–1984. [Google Scholar] [CrossRef]
- Shenderova, O.; Nunn, N. Production and purification of nanodiamonds. In Nanodiamonds; Elsevier: Amsterdam, The Netherlands, 2017; pp. 25–56. [Google Scholar] [CrossRef]
- Stehlik, S.; Mermoux, M.; Schummer, B.; Vanek, O.; Kolarova, K.; Stenclova, P.; Vlk, A.; Ledinsky, M.; Pfeifer, R.; Romanyuk, O.; et al. Size Effects on Surface Chemistry and Raman Spectra of Sub-5 nm Oxidized High-Pressure High-Temperature and Detonation Nanodiamonds. J. Phys. Chem. C 2021, 125, 5647–5669. [Google Scholar] [CrossRef]
- Arnault, J.C.; Girard, H.A. Hydrogenated nanodiamonds: Synthesis and surface properties. Curr. Opin. Solid State Mater. Sci. 2017, 21, 10–16. [Google Scholar] [CrossRef]
- Maier, F.; Ristein, J.; Ley, L. Electron. affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Phys. Rev. B 2001, 64, 165411. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Aleksenskii, A.E.; Baidakova, M.V.; Brunkov, P.N.; Brzhezinskaya, M.; Davydov, V.Y.; Levitskii, V.S.; Kidalov, S.V.; Kukushkina, Y.A.; Kirilenko, D.A.; et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual particles. Carbon 2017, 122, 737–745. [Google Scholar] [CrossRef]
- Arnault, J.C. X-ray Photoemission Spectroscopy applied to nanodiamonds: From surface chemistry to in situ reactivity. Diam. Relat. Mater. 2018, 84, 157–168. [Google Scholar] [CrossRef]
- Yeganeh, M.; Coxon, P.R.; Brieva, A.C.; Dhanak, V.R.; Šiller, L.; Butenko, Y.V. Atomic hydrogen treatment of nanodiamond powder studied with photoemission spectroscopy. Phys. Rev. B 2007, 75, 155404. [Google Scholar] [CrossRef]
- Saoudi, L.; Girard, H.A.; Larquet, E.; Mermoux, M.; Leroy, J.; Arnault, J.-C. Colloidal stability over months of highly crystalline high-pressure high-temperature hydrogenated nanodiamonds in water. Carbon 2023, 202, 438–449. [Google Scholar] [CrossRef]
- Kono, S.; Kageura, T.; Hayashi, Y.; Ri, S.-G.; Teraji, T.; Takeuchi, D.; Ogura, M.; Kodama, H.; Sawabe, A.; Inaba, M.; et al. Carbon 1s X-ray photoelectron spectra of realistic samples of hydrogen-terminated and oxygen-terminated CVD diamond (111) and (001). Diam. Relat. Mater. 2019, 93, 105–130. [Google Scholar] [CrossRef]
- Baer, D.R.; Artyushkova, K.; Cohen, H.; Easton, C.D.; Engelhard, M.; Gengenbach, T.R.; Greczynski, G.; Mack, P.; Morgan, D.J.; Roberts, A. XPS guide: Charge neutralization and binding energy referencing for insulating samples. J. Vac. Sci. Technol. A Vac. Surf. Film. 2020, 38, 031204. [Google Scholar] [CrossRef]
- Kozak, H.; Artemenko, A.; Čermák, J.; Švrček, V.; Kromka, A.; Rezek, B. Oxidation and reduction of nanodiamond particles in colloidal solutions by laser irradiation or radio-frequency plasma treatment. Vib. Spectrosc. 2016, 83, 108–114. [Google Scholar] [CrossRef]
- Romanyuk, O.; Zemek, J.; Houdková, J.; Babčenko, O.; Shagieva, E.; Beranová, K.; Kromka, A.; Jiříček, P. Effects of monoatomic and cluster bombardment with Ar ion beam on the surface of hydrogenated nanocrystalline diamond. Diam. Relat. Mater. 2023, 133, 109748. [Google Scholar] [CrossRef]
- Cuenca, J.A.; Thomas, E.L.H.; Mandal, S.; Morgan, D.J.; Lloret, F.; Araujo, D.; Williams, O.A.; Porch, A. Microwave Permittivity of Trace sp2 Carbon Impurities in Sub-Micron Diamond Powders. ACS Omega 2018, 3, 2183–2192. [Google Scholar] [CrossRef]
- Fujimoto, A.; Yamada, Y.; Koinuma, M.; Sato, S. Origins of sp3C peaks in C 1s X-ray Photoelectron Spectra of Carbon Materials. Anal. Chem. 2016, 88, 6110–6114. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-Q.; Yang, Y.-G.; Tai, L.; Lau, L.W.-M.; Zhou, D. Mitigating surface charging in XPS using an in-situ sub-nanometer gold coating technique. Mater. Charact. 2023, 196, 112663. [Google Scholar] [CrossRef]
- Filippi, M.; Calliari, L.; Pucella, G.; Verona-Rinati, G. Temperature evolution of the surface region of CVD diamond: An electron spectroscopy study. Surf. Sci. 2004, 573, 225–236. [Google Scholar] [CrossRef]
- Haerle, R.; Riedo, E.; Pasquarello, A.; Baldereschi, A. sp2/sp3 hybridization ratio in amorphous carbon from C 1 s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 2001, 65, 045101. [Google Scholar] [CrossRef]
- Titantah, J.T.; Lamoen, D. sp3/sp2 characterization of carbon materials from first-principles calculations: X-ray photoelectron versus high energy electron energy-loss spectroscopy techniques. Carbon 2005, 43, 1311–1316. [Google Scholar] [CrossRef]
- Kumaragurubaran, S.; Yamada, T.; Shikata, S. Core Level Photoelectron. Spectroscopic Study on Oxidized Phosphorus-Doped (100) Diamond Surfaces after Vacuum Annealing. Jpn. J. Appl. Phys. 2009, 48, 011602. [Google Scholar] [CrossRef]
- Lau, W.M.; Huang, L.J.; Bello, I.; Yiu, Y.M.; Lee, S.-T. Modification of surface band bending of diamond by low energy argon and carbon ion bombardment. J. Appl. Phys. 1994, 75, 3385–3391. [Google Scholar] [CrossRef]
- Ley, L.; Graupner, R.; Cui, J.B.; Ristein, J. Electronic properties of single crystalline diamond surfaces. Carbon 1999, 37, 793–799. [Google Scholar] [CrossRef]
- Petit, T.; Arnault, J.-C.; Girard, H.A.; Sennour, M.; Bergonzo, P. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 2011, 84, 233407. [Google Scholar] [CrossRef]
- Petit, T.; Arnault, J.-C.; Girard, H.A.; Sennour, M.; Kang, T.-Y.; Cheng, C.-L.; Bergonzo, P. Oxygen hole doping of nanodiamond. Nanoscale 2012, 4, 6792–6799. [Google Scholar] [CrossRef]
- Graupner, R.; Maier, F.; Ristein, J.; Ley, L.; Jung, C. High-resolution surface-sensitive C 1 s core-level spectra of clean and hydrogen-terminated diamond (100) and (111) surfaces. Phys. Rev. B 1998, 57, 12397–12409. [Google Scholar] [CrossRef]
- Liu, J.W.; Liao, M.Y.; Imura, M.; Koide, Y. Band offsets of Al2O3 and HfO2 oxides deposited by atomic layer deposition technique on hydrogenated diamond. Appl. Phys. Lett. 2012, 101, 252108. [Google Scholar] [CrossRef]
- Bydzovska, I.; Shagieva, E.; Gordeev, I.; Romanyuk, O.; Nemeckova, Z.; Henych, J.; Ondic, L.; Kromka, A.; Stehlik, S. Laser-Induced Modification of Hydrogenated Detonation Nanodiamonds in Ethanol. Nanomaterials 2021, 11, 2251. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Yamada, T.; Ishizduka, S.; Yoshigoe, A.; Hasegawa, M.; Teraoka, Y.; Takakuwa, Y. Vacuum Annealing Formation of Graphene on Diamond C(111) Surfaces Studied by Real-Time Photoelectron Spectroscopy. Jpn. J. Appl. Phys. 2012, 51, 11PF02. [Google Scholar] [CrossRef]
- Romanyuk, O.; Varga, M.; Tulic, S.; Izak, T.; Jiricek, P.; Kromka, A.; Skakalova, V.; Rezek, B. Study of Ni-Catalyzed Graphitization Process of Diamond by in Situ X-ray Photoelectron Spectroscopy. J. Phys. Chem. C 2018, 122, 6629–6636. [Google Scholar] [CrossRef] [PubMed]
- Veyan, J.-F.; de Obaldia, E.; Alcantar-Peña, J.J.; Montes-Gutierrez, J.; Arellano-Jimenez, M.J.; Yacaman, M.J.; Auciello, O. Argon atoms insertion in diamond: New insights in the identification of carbon C 1s peak in X-ray photoelectron spectroscopy analysis. Carbon 2018, 134, 29–36. [Google Scholar] [CrossRef]
- Greczynski, G.; Hultman, L. Critical method evaluation refutes the Ar 2p signal of implanted Ar for referencing X-ray photoelectron spectra. Appl. Surf. Sci. 2023, 635, 157598. [Google Scholar] [CrossRef]
- Gaowei, M.; Muller, E.M.; Rumaiz, A.K.; Weiland, C.; Cockayne, E.; Jordan-Sweet, J.; Smedley, J.; Woicik, J.C. Annealing dependence of diamond-metal Schottky barrier heights probed by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2012, 100, 201606. [Google Scholar] [CrossRef]
- Kern, G.; Hafner, J.; Kresse, G. Atomic and electronic structure of diamond (111) surfaces I. Reconstruction and hydrogen-induced de-reconstruction of the one dangling-bond surface. Surf. Sci. 1996, 366, 445–463. [Google Scholar] [CrossRef]
- Wilson, J.I.B.; Walton, J.S.; Beamson, G. Analysis of chemical vapour deposited diamond films by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2001, 121, 183–201. [Google Scholar] [CrossRef]
- Kozakov, A.T.; Kochur, A.G.; Kumar, N.; Panda, K.; Nikolskii, A.V.; Sidashov, A.V. Determination of sp2 and sp3 phase fractions on the surface of diamond films from C1s, valence band X-ray photoelectron spectra and CKVV X-ray-excited Auger spectra. Appl. Surf. Sci. 2021, 536, 147807. [Google Scholar] [CrossRef]
- Seshan, V.; Murthy, D.H.K.; Castellanos-Gomez, A.; Sachdeva, S.; Ahmad, H.A.; Janssens, S.D.; Janssen, W.; Haenen, K.; van der Zant, H.S.J.; Sudhölter, E.J.R.; et al. Contactless Photoconductance Study on Undoped and Doped Nanocrystalline Diamond Films. ACS Appl. Mater. Interfaces 2014, 6, 11368–11375. [Google Scholar] [CrossRef]
- Speranza, G. Characterization of Carbon Nanostructures by Photoelectron Spectroscopies. Materials 2022, 15, 4434. [Google Scholar] [CrossRef]
- Speranza, G.; Calliari, L.; Laidani, N.; Anderle, M. Semi-quantitative description of C hybridization via s- and p-partial density of states probing: An electron spectroscopy study. Diam. Relat. Mater. 2000, 9, 1856–1861. [Google Scholar] [CrossRef]
- Mikesova, J.; Miliaieva, D.; Stenclova, P.; Kindermann, M.; Vuckova, T.; Madlikova, M.; Fabry, M.; Veverka, V.; Schimer, J.; Krejci, P.; et al. Nanodiamonds as traps for fibroblast growth factors: Parameters influencing the interaction. Carbon 2022, 195, 372–386. [Google Scholar] [CrossRef]
- Stehlik, S.; Henych, J.; Stenclova, P.; Kral, R.; Zemenova, P.; Pangrac, J.; Vanek, O.; Kromka, A.; Rezek, B. Size and nitrogen inhomogeneity in detonation and laser synthesized primary nanodiamond particles revealed via salt-assisted deaggregation. Carbon 2021, 171, 230–239. [Google Scholar] [CrossRef]
- KolXPD. Software for Spectroscopy Data Measurement and Processing. Available online: https://www.kolibrik.net/en/solutions-products/kolxpd (accessed on 23 March 2024).
- Speranza, G.; Laidani, N. Measurement of the relative abundance of sp2 and sp3 hybridised atoms in carbon based materials by XPS: A critical approach. Part I. Diam. Relat. Mater. 2004, 13, 445–450. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Saveliev, S.D.; Stolyarova, D.Y.; Brzhezinskaya, M.; Kirilenko, D.A.; Baidakova, M.V.; Ryzhkov, S.A.; Shnitov, V.V.; Sysoev, V.V.; Brunkov, P.N. Modulating nitrogen species via N-doping and post annealing of graphene derivatives: XPS and XAS examination. Carbon 2021, 182, 593–604. [Google Scholar] [CrossRef]
- Ahmed, A.-I.; Mandal, S.; Gines, L.; Williams, O.A.; Cheng, C.-L. Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 2016, 110, 438–442. [Google Scholar] [CrossRef]
- Kondo, T.; Neitzel, I.; Mochalin, V.N.; Urai, J.; Yuasa, M.; Gogotsi, Y. Electrical conductivity of thermally hydrogenated nanodiamond powders. J. Appl. Phys. 2013, 113, 214307. [Google Scholar] [CrossRef]
- Kolarova, K.; Bydzovska, I.; Romanyuk, O.; Shagieva, E.; Ukraintsev, E.; Kromka, A.; Rezek, B.; Stehlik, S. Hydrogenation of HPHT nanodiamonds and their nanoscale interaction with chitosan. Diam. Relat. Mater. 2023, 134, 109754. [Google Scholar] [CrossRef]
- Mermoux, M.; Chang, S.; Girard, H.A.; Arnault, J.-C. Raman spectroscopy study of detonation nanodiamond. Diam. Relat. Mater. 2018, 87, 248–260. [Google Scholar] [CrossRef]
- Sorkin, A.; Tay, B.; Su, H. Three-Stage Transformation Pathway from Nanodiamonds to Fullerenes. J. Phys. Chem. A 2011, 115, 8327–8334. [Google Scholar] [CrossRef] [PubMed]
- Raty, J.-Y.; Galli, G.; Bostedt, C.; Van Buuren, T.; Terminello, L. Quantum Confinement and Fullerenelike Surface Reconstructions in Nanodiamonds. Phys. Rev. Lett. 2003, 90, 037401. [Google Scholar] [CrossRef] [PubMed]
- Dhanak, V.R.; Butenko, Y.V.; Brieva, A.C.; Coxon, P.R.; Alves, L.; Šiller, L. Chemical Functionalization of Nanodiamond by Amino Groups: An X-Ray Photoelectron Spectroscopy Study. J. Nanosci. Nanotech. 2012, 12, 3084–3090. [Google Scholar] [CrossRef]
- Moulder, J.F.; Chastain, J. (Eds.) Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Update; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Ducrozet, F.; Girard, H.A.; Jianu, T.; Peulon, S.; Brun, E.; Sicard-Roselli, C.; Arnault, J.-C. Unintentional formation of nitrate and nitrite ions during nanodiamonds sonication: A source of radical and electron scavengers. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131087. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanyuk, O.; Stehlík, Š.; Zemek, J.; Aubrechtová Dragounová, K.; Kromka, A. Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds. Nanomaterials 2024, 14, 590. https://doi.org/10.3390/nano14070590
Romanyuk O, Stehlík Š, Zemek J, Aubrechtová Dragounová K, Kromka A. Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds. Nanomaterials. 2024; 14(7):590. https://doi.org/10.3390/nano14070590
Chicago/Turabian StyleRomanyuk, Oleksandr, Štěpán Stehlík, Josef Zemek, Kateřina Aubrechtová Dragounová, and Alexander Kromka. 2024. "Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds" Nanomaterials 14, no. 7: 590. https://doi.org/10.3390/nano14070590
APA StyleRomanyuk, O., Stehlík, Š., Zemek, J., Aubrechtová Dragounová, K., & Kromka, A. (2024). Utilizing Constant Energy Difference between sp-Peak and C 1s Core Level in Photoelectron Spectra for Unambiguous Identification and Quantification of Diamond Phase in Nanodiamonds. Nanomaterials, 14(7), 590. https://doi.org/10.3390/nano14070590