Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering
Abstract
1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suri, A.K.; Subramanian, C.; Sonber, J.K.; Murthy, T.S.R.C. Synthesis and consolidation of boron carbide: A review. Int. Mater. Rev. 2010, 55, 4–40. [Google Scholar] [CrossRef]
- Li, P.; Ma, M.; Wu, Y.; Zhang, X.; Chang, Y.; Zhuge, Z.; Sun, L.; Hu, W.; Yu, D.; Xu, B.; et al. Preparation of dense B4C ceramics by spark plasma sintering of high-purity nanoparticles. J. Eur. Ceram. Soc. 2021, 41, 3929–3936. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, X.; Li, Z.; Wang, W.; Zhang, J.; Fu, Z. Microstructures and mechanical properties of B4C-SiC intergranular/intragranular nanocomposite ceramics fabricated from B4C, Si, and graphite powders. J. Eur. Ceram. Soc. 2014, 34, 2153–2161. [Google Scholar] [CrossRef]
- Fan, J.; Shen, W.; Zhang, Z.; Fang, C.; Zhang, Y.; Chen, L.; Wang, Q.; Wan, B.; Jia, X. Properties of B4C-TiB2 ceramics prepared by spark plasma sintering*. Chin. Phys. B 2021, 30, 038105. [Google Scholar] [CrossRef]
- Zorzi, J.E.; Perottoni, C.A.; da Jornada, J.A.H. Hardness and wear resistance of B4C ceramics prepared with several additives. Mater. Lett. 2005, 59, 2932–2935. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049. [Google Scholar] [CrossRef]
- Sedlák, R.; Kovalčíková, A.; Balko, J.; Rutkowski, P.; Dubiel, A.; Zientara, D.; Girman, V.; Múdra, E.; Dusza, J. Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 2017, 65, 57–63. [Google Scholar] [CrossRef]
- Kovalčíková, A.; Sedlák, R.; Rutkowski, P.; Dusza, J. Mechanical properties of boron carbide+graphene platelet composites. Ceram. Int. 2016, 42, 2094–2098. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Zhang, H.B.; Peng, S.M. Electrically conductive graphene nanoplatelet/boron carbide composites with high hardness and toughness. Scr. Mater. 2016, 114, 98–102. [Google Scholar] [CrossRef]
- Li, M.; Wang, W.M.; He, Q.L.; Wang, A.; Hu, L.; Fu, Z. Reduced-graphene-oxide-reinforced boron carbide ceramics fabricated by spark plasma sintering from powder mixtures obtained by heterogeneous co-precipitation. Ceram. Int. 2019, 45, 16496–16503. [Google Scholar] [CrossRef]
- Wang, A.Y.; He, Q.L.; Liu, C.; Hu, L.; Tian, T.; Zhang, J.; Zhang, Z.; Wang, H.; Fu, Z.; Wang, W.; et al. Enhanced toughness and strength of boron carbide ceramics with reduced graphene oxide fabricated by hot pressing. Ceram. Int. 2020, 46, 26511–26520. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Jiang, X.S.; Shi, J.L.; Luo, Y.; Tang, Y.; Wu, Q.; Luo, Z. Research on the interface properties and strengthening-toughening mechanism of nanocar-bon-toughened ceramic matrix composites. Nanotechnol. Rev. 2020, 9, 190–208. [Google Scholar] [CrossRef]
- Ahmad, I.; Yazdani, B.; Zhu, Y. Recent Advances on Carbon Nanotubes and Graphene Reinforced Ceramics Nanocomposites. Nanomaterials 2015, 5, 90–114. [Google Scholar] [CrossRef]
- Ramirez, C.; Miranzo, P.; Belmonte, M.; Osendi, M.I.; Poza, P.; Vega-Diaz, S.M.; Terrones, M. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 2014, 34, 161–169. [Google Scholar] [CrossRef]
- Ju, B.Y.; Yu, Z.H.; Gou, H.S.; Yang, W.; Chen, G.; Wu, G. Coordinated matrix deformation induced ductility in multilayer graphene/ aluminum compo-sites. Carbon 2023, 202, 31–40. [Google Scholar] [CrossRef]
- Alexander, R.; Murthy, T.S.R.C.; Ravikanth, K.V.; Prakash, J.; Mahata, T.; Bakshi, S.R.; Krishnan, M.; Dasgupta, K. Effect of graphene nano-platelet reinforcement on the mechanical properties of hot pressed boron carbide based composite. Ceram. Int. 2018, 44, 9830–9838. [Google Scholar] [CrossRef]
- Chen, M.D.; Yin, Z.B.; Yuan, J.T.; Xu, W.; Ye, J.; Yan, S. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceram. Int. 2018, 44, 15370–15377. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.; Zhang, H.B.; Peng, S. Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity. J. Eur. Ceram. Soc. 2016, 36, 2679–2687. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Wang, H.K.; Tang, Y.; Wang, C.; Xu, C.; Wu, J.; Zhang, Z.; Wan, S.; Yang, H.; Qin, Y.; et al. Sintering pure polycrystalline boron carbide bulks with enhanced hardness and toughness under high pressure. Ceram. Int. 2023, 49, 28813–28823. [Google Scholar] [CrossRef]
- Liu, L.X.; Li, X.H.; He, Q.; Xu, L.; Cao, X.; Peng, X.; Meng, C.; Wang, W.; Zhu, W.; Wang, Y. Sintering dense boron carbide without grain growth under high pressure. J. Am. Ceram. Soc. 2018, 101, 1289–1297. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Zheng, J.C.; Su, M.Y.; Deng, M.; Shi, Y.; Chen, R.; Wang, Q.; Wang, Z.; Qi, J.; Li, R.; et al. Rapid densification and mechanical properties of ultra-high-pressure sintered transition metal carbide ceramics. Ceram. Int. 2023, 49, 39850–39861. [Google Scholar] [CrossRef]
- Sekimoto, Y.; Ohtani, R.; Nakamura, M.; Koinuma, M.; Lindoy, L.F.; Hayami, S. Tuneable pressure effects in graphene oxide layers. Sci. Rep. 2017, 7, 12159. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhang, Z.X.; Liu, Y.M.; Wang, A.; Tian, S.; Wang, W.; Wang, J. High-performance B4C-TiB2-SiC composites with tuneable properties fabricated by reactive hot pressing. J. Eur. Ceram. Soc. 2019, 39, 2995–3002. [Google Scholar] [CrossRef]
- Song, K.; Xu, Y.; Zhao, N.; Zhong, L.; Shang, Z.; Shen, L.; Wang, J. Evaluation of fracture toughness of tantalum carbide ceramic layer: A Vickers indentation method. J. Mater. Eng. Perform. 2016, 25, 3057–3064. [Google Scholar] [CrossRef]
- Lai, S.L.; Zang, J.H.; Shen, W.X.; Huang, G.; Fang, C.; Zhang, Y.; Chen, L.; Wang, Q.; Wan, B.; Jia, X.; et al. High hardness and high fracture toughness B4C-diamond ceramics obtained by high-pressure sintering. J. Eur. Ceram. Soc. 2023, 43, 3090–3095. [Google Scholar] [CrossRef]
- Sun, J.L.; Zhao, J.; Chen, Y.; Wang, L.; Yun, X.; Huang, Z. Macro-micro-nano multistage toughening in nano-laminated graphene ceramic composites. Mater. Today Phys. 2021, 22, 100595. [Google Scholar] [CrossRef]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Graphene-based composite materials. Nature 2006, 442, 282–286. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.M.; Guo, J.J.; Shinoda, Y.; Fujita, T.; Hirata, A.; Singh, J.P.; McCauley, J.W.; Chen, M.W. Enhanced Mechanical Properties of Nanocrystalline Boron Carbide by Nanoporosity and Interface Phases. Nat. Commun. 2012, 3, 1052. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Li, X.; Xu, L.; Cao, X.; Wang, Z.; Meng, C.; Zhu, W.; Ouyang, X. Enhancing Toughness in Boron Carbide with Reduced Graphene Oxide. J. Am. Ceram. Soc. 2015, 99, 257–264. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Jiang, K. Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Zhou, W.W.; Fan, Y.C.; Feng, X.P.; Kikuchi, K.; Nomura, N.; Kawasaki, A. Creation of individual few-layer graphene incorporated in an aluminum matrix. Compos. Part A Appl. Sci. Manuf. 2018, 112, 168–177. [Google Scholar] [CrossRef]
- Proctor, J.E.; Gregoryanz, E.; Novoselov, K.S.; Lotya, M.; Coleman, J.N.; Halsall, M.P. High-pressure Raman spectroscopy of graphene. Phys. Rev. B 2009, 80, 073408. [Google Scholar] [CrossRef]
- Alexander, R.; Ravikanth, K.V.; Srivastava, A.P.; Krishnan, M.; Dasgupta, K. Synergistic effect of carbon nanotubes on the properties of hot pressed boron carbide. Mater. Today Commun. 2018, 17, 450–457. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.L.; Zhang, H.B.; Zhou, X.; Peng, S. Fabrication of toughened B4C composites with high electrical conductivity using MAX phase as a novel sintering aid. Ceram. Int. 2016, 42, 7347–7352. [Google Scholar] [CrossRef]
- Sun, L.; Li, P.H.; Ma, M.D.; Luo, K.; Liu, B.; Li, B.; Wu, Y.; Ying, P.; Zhang, Y.; Li, Z.; et al. Hard and tough ultrafine-grained B4C-cBN composites prepared by high-pressure sintering. J. Eur. Ceram. Soc. 2022, 42, 2015–2020. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, C.P.; Ru, H.Q.; Huang, H.; Zhu, J.H.; Xu, H.B.; Xia, Q. Effect of Forming Pressure on Microstructure and Mechanical Properties of B4C-SiC-Si Ceramic Composites. Key Eng. Mater. 2018, 768, 152–158. [Google Scholar] [CrossRef]
- Ji, W.; Todd, R.I.; Wang, W.; Wang, H.; Zhang, J.; Fu, Z. Transient liquid phase spark plasma sintering of B4C-based ceramics using Ti-Al intermetallics as sintering aid. J. Eur. Ceram. Soc. 2016, 36, 2419–2426. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Xing, P.; Nie, D.; Yan, S.; Zhuang, Y. Pressureless liquid-phase sintering of B4C with MoSi2 as a sintering aid. Ceram. Int. 2019, 45, 13502–13508. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wu, X.S.; Liu, M.; Huang, Y.; Huang, Z. Microstructure and mechanical properties of B4C-TiB2-SiC composites fabricated by spark plasma sintering. Ceram. Int. 2020, 46, 3793–3800. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, C.J.; Li, Q.G.; Liu, Z.; Ran, S. B4C-TiB2 composites fabricated by hot pressing TiC-B mixtures: The effect of B excess. Ceram. Int. 2022, 48, 11981–11987. [Google Scholar] [CrossRef]
- Zhu, Y.; Cheng, H.W.; Wang, Y.W.; An, R. Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B4C/TiB2 composites. J. Alloys Compd. 2018, 772, 537–545. [Google Scholar] [CrossRef]
- Liu, Z.T.; Deng, X.G.; Li, J.M.; Sun, Y.; Ran, S. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C-TiB2 composites. Ceram. Int. 2018, 44, 21415–21420. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, J.T.; Han, W.C.; Yin, Z. Microstructure and mechanical properties of B4C-TiB2 composite ceramic fabricated by reactive spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2020, 92, 105307. [Google Scholar] [CrossRef]
- Wang, A.Y.; Hu, L.X.; Guo, W.C.; Zhao, X.; Shi, Y.; He, Q.; Wang, W.; Wang, H.; Fu, Z. Synergistic effects of TiB2 and graphene nanoplatelets on the mechanical and electrical properties of B4C ceramic. J. Eur. Ceram. Soc. 2021, 42, 869–876. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, H.; Zhou, Y.B.; Sha, W.; Huang, Y.; Huang, Z. Enhancement mechanical properties of in-situ preparated B4C-based composites with small amount of (Ti3SiC2+Si). Ceram. Int. 2022, 48, 12006–12013. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.H.; Zhang, S.; Zhang, W. Mechanical properties and toughening mechanism of B4C–Al2O3 composite ceramics prepared by hot-press sintering. Ceram. Int. 2024, 50, 24499–24507. [Google Scholar] [CrossRef]
- Liao, Z.L.; He, Q.L.; Zhang, W.; Zhang, F.; Wang, W.; Fu, Z. B4C ceramics with increased dislocation density fabricated by reactive spark plasma sintering via carbon nanotubes–boron mixture. Ceram. Int. 2024, 50, 22443–22455. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, H.B.; Sun, S.H.; Xu, Y.; Zhang, C.; Ru, H. The reinforcement of reaction-bonded boron carbide via adjusting SiC morphology controlled by carbon sources. J. Eur. Ceram. Soc. 2024, 44, 116725. [Google Scholar] [CrossRef]
- Yaşar, Z.A.; Haber, R.A. The role of carbon addition on properties of boron carbide- silicon carbide composites. Ceram. Int. 2024, 50, 11451–11457. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Zou, J.; Liu, J.J.; Ji, W.; Wang, W.; Fu, Z. Boron carbide based composites densified via Ti3SiC2 boronizing with excellent mechanical properties and amorphization tolerance. Compos. Part B Eng. 2024, 273, 111264. [Google Scholar] [CrossRef]
- Xia, Q.; Sun, S.H.; Ye, J.; Zhang, C.; Ru, H. Continuous SiC Skeleton-Reinforced Reaction-Bonded Boron Carbide Composites with High Flexural Strength. Materials 2023, 16, 5153. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.C.; Wang, Z.J. Residual stress effects on toughening of ultrafine-grained B4C-SiC ceramics. Mater. Today Commun. 2023, 36, 106649. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, Z.Y.; Jin, X.; Wang, D.; Ding, X.; Ran, S. B4C-TiB2 composite with modified microstructure and enhanced properties from optimal size coupling of raw powders. J. Am. Ceram. Soc. 2023, 106, 4911–4920. [Google Scholar] [CrossRef]
- Yaşar, Z.A.; Celik, A.M.; Haber, R.A. Improving fracture toughness of B4C–SiC composites by TiB2 addition. Int. J. Refract. Met. Hard Mater. 2022, 108, 105930. [Google Scholar] [CrossRef]
- Zhang, W.W.; Cao, X.C.; Zhang, J.Y.; Zou, J.; Wang, W.; He, Q.; Ren, L.; Zhang, F.; Fu, Z. B4C-based hard and tough ceramics densified via spark plasma sintering using a novel Mg2Si sintering aid. Ceram. Int. 2022, 49, 145–153. [Google Scholar] [CrossRef]
- Yang, M.S.; Wang, L.J.; Li, H.Q.; Wang, S.; Wang, L.; Xing, P.; Zhuang, Y. Microstructure and mechanical properties of B4C matrix composites prepared via hot-pressing sintering with Pr6O11 as additive. Ceram. Int. 2021, 48, 7897–7904. [Google Scholar] [CrossRef]
- Wang, S.; Yang, M.S.; Li, H.Q.; Wang, L.; Wang, H.; Xing, P.; Zhuang, Y. High-performance B4C matrix composites fabricated from the B4C-Si-CeO2 system via reactive hot pressing. Ceram. Int. 2022, 48, 18811–18820. [Google Scholar] [CrossRef]
- Liu, G.Q.; Chen, S.X.; Zhao, Y.W.; Fu, Y.; Wang, Y. Effect of Ti and its compounds on the mechanical properties and microstructure of B4C ceramics fabricated via pressureless sintering. Ceram. Int. 2021, 47, 13756–13761. [Google Scholar] [CrossRef]
- Yao, W.K.; Yan, J.B.; Chen, P.A.; Li, X.; Zhu, Y.; Zhu, B. The improvement mechanism of mechanical properties of B4C ceramics by constructing core-shell powders. J. Am. Ceram. Soc. 2023, 106, 3163–3174. [Google Scholar] [CrossRef]
Elastic Constant (GPa) | 0 GPa | 1 GPa | 2 GPa | 3 GPa |
---|---|---|---|---|
Bulk modulus | 224.1 | 226.7 | 269.7 | 271.3 |
Shear modulus | 180.3 | 204.3 | 214.6 | 218.1 |
Young’s modulus | 426.7 | 484.0 | 509.0 | 516.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, D.; Rong, K.; Tao, Q.; Zhu, P. Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials 2024, 17, 5838. https://doi.org/10.3390/ma17235838
Wang X, Wang D, Rong K, Tao Q, Zhu P. Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials. 2024; 17(23):5838. https://doi.org/10.3390/ma17235838
Chicago/Turabian StyleWang, Xiaonan, Dianzhen Wang, Kaixuan Rong, Qiang Tao, and Pinwen Zhu. 2024. "Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering" Materials 17, no. 23: 5838. https://doi.org/10.3390/ma17235838
APA StyleWang, X., Wang, D., Rong, K., Tao, Q., & Zhu, P. (2024). Reduced Graphene Oxide Reinforces Boron Carbide with High-Pressure and High-Temperature Sintering. Materials, 17(23), 5838. https://doi.org/10.3390/ma17235838