Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = HMSIW

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4261 KiB  
Article
Design of a Half-Mode Substrate-Integrated Waveguide (HMSIW) Multimode Resonator Bandpass Filter Using the Minkowski Fractal for C-Band Applications
by Nitin Muchhal, Abhay Kumar, Nidhi Tewari, Samriti Kalia and Shweta Srivastava
Micromachines 2024, 15(12), 1440; https://doi.org/10.3390/mi15121440 - 28 Nov 2024
Cited by 1 | Viewed by 1219
Abstract
A substrate-integrated waveguide (SIW) bandpass filter (BPF) with extraordinary selectivity and an adequate upper stopband for C-band Satellite Communication (SATCOM) applications is proposed in this paper. The design comprises comb-shaped slots engraved on a half-mode SIW (HMSIW) that constitute a multimode resonator (MMR). [...] Read more.
A substrate-integrated waveguide (SIW) bandpass filter (BPF) with extraordinary selectivity and an adequate upper stopband for C-band Satellite Communication (SATCOM) applications is proposed in this paper. The design comprises comb-shaped slots engraved on a half-mode SIW (HMSIW) that constitute a multimode resonator (MMR). Its performance is further ameliorated by applying the first and second iterations of the Minkowski fractal curve in the ground plane as a defected ground structure (DGS). The Minkowski fractal has advantages in terms of better bandwidth and miniaturization. The filter is first simulated using the commercial full-wave electromagnetic simulator HFSS v19 and then fabricated on a 0.062′′ (1.6 mm) FR4 with dielectric constant εr = 4.4. The measured results are comparable with the simulated ones and demonstrate that the BPF has a resonant frequency (f0) of 4.75 GHz, a 3 dB bandwidth of 770 MHz (fractional bandwidth of 21.4%), an insertion loss of 1.05 dB, and an out-of-band rejection (in the stopband) of more than 28 dB up to 8 GHz, demonstrating a wide and deep stopband. Using the multimode resonator (MMR) technique, a wide bandwidth has been achieved, and by virtue of using half-mode SIW (HMSIW), the proposed BPF is compact in size. Also, the fractal DGS aids in better stopband performance. Full article
Show Figures

Figure 1

27 pages, 5970 KiB  
Article
Machine Learning-Aided Dual-Function Microfluidic SIW Sensor Antenna for Frost and Wildfire Detection Applications
by Amjaad T. Altakhaineh, Rula Alrawashdeh and Jiafeng Zhou
Energies 2024, 17(20), 5208; https://doi.org/10.3390/en17205208 - 19 Oct 2024
Cited by 1 | Viewed by 1806
Abstract
In this paper, which represents a fundamental step in ongoing research, a new smart low-energy dual-function half-mode substrate integrated waveguide cavity-interdigital capacitor (HMSIWC-DIC) antenna-based sensor is developed and investigated for remote frost and wildfire detection applications at 5.7 GHz. The proposed methodology exploits [...] Read more.
In this paper, which represents a fundamental step in ongoing research, a new smart low-energy dual-function half-mode substrate integrated waveguide cavity-interdigital capacitor (HMSIWC-DIC) antenna-based sensor is developed and investigated for remote frost and wildfire detection applications at 5.7 GHz. The proposed methodology exploits the HMSIW antenna-based sensor, a microfluidic channel (microliter water channel (50 μL)), interdigital capacitor technologies, and the resonance frequency parameters combined with machine learning algorithms. This allows for superior interaction between the water channel and the TE101 mode, resulting in high sensitivity (∆f/∆ε = 5.5 MHz/ε (F/m) and ∆f/∆°C = 1.83 MHz/°C) within the sensing range. Additionally, it exhibits high decision-making ability and immunity to interference, demonstrating a best-in-class sensory response to weather temperature across two ranges: positive (≥0 °C, including frost and wildfire) and negative (<0 °C, including ice accumulation). To address the challenges posed by the non-linear, unpredictable behavior of resonance frequency results, even when dealing with weak sensor antenna responses, an innovative sensory intelligent system was proposed. This system utilizes resonance frequency results as features to classify and predict weather temperature ranges into three environmental states: Early Frost, Normal, and Early Wildfire, achieving an accuracy of 96.4%. Several machine learning techniques are employed, including artificial neural networks (ANNs), random forests (RF), decision trees (DT), support vector machines (SVMs), and Gaussian processes (GPs). This sensor serves as an ideal solution for energy management through its utilization in RF-based weather temperature sensing applications. It boasts stable performance, minimal energy consumption, and real-time sensitivity, eliminating the necessity for manual data recording. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

17 pages, 13601 KiB  
Article
A Multi-Aperture Technique for Longitudinal Miniaturization of UWB 3 dB Dual-Layer SIW Coupler
by Ahmad Bilal, Abdul Hadee, Yash H. Shah, Sohom Bhattacharjee and Choon Sik Cho
Sensors 2024, 24(11), 3376; https://doi.org/10.3390/s24113376 - 24 May 2024
Cited by 1 | Viewed by 1195
Abstract
Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in [...] Read more.
Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in the literature, there is minimal to no information on reducing coupler length. This is because of the trade-off between aperture length, bandwidth and coupling strength. The Bethe–Hole theory requires adding multiple apertures in the longitudinal direction for wide bandwidth, thus increasing the device length. Another factor is the aperture size, which determines the coupling strength and puts additional strain on the compactness of a 3 dB coupler. Contrariwise, this paper proposes to merge two weak (and hence compact) coupling mechanisms to design a wideband 3 dB coupler. This is achieved by using a longitudinal rectangular slot and three cross-slots in the transverse direction. Because of weak coupling, the slot sizes are smaller than a conventional 3 dB coupler, hence yielding a device whose length is less than one guided wavelength (λg) without compromising the bandwidth. The presented coupler is 0.63 λg in length, which is smaller than the state-of-the-art while maintaining a fractional bandwidth of 37% that is comparable to half-mode substrate integrated waveguide (HMSIW) couplers. Full article
Show Figures

Figure 1

12 pages, 9658 KiB  
Article
Broadband Balanced-to-Balanced Filtering Power Divider Using HMSIW-SSPP Transmission Line
by Hao Liu, Bing Xue and Jun Xu
Micromachines 2024, 15(3), 358; https://doi.org/10.3390/mi15030358 - 29 Feb 2024
Cited by 1 | Viewed by 1903
Abstract
In this paper, a novel broadband balanced-to-balanced (BTB) filtering power divider (FPD) utilizing the half-mode substrate-integrated waveguide and spoof surface plasmon polariton (HMSIW-SSPP) hybrid transmission line is introduced. Initially, a new HMSIW-SSPP unit cell is proposed, demonstrating a lower upper cut-off frequency compared [...] Read more.
In this paper, a novel broadband balanced-to-balanced (BTB) filtering power divider (FPD) utilizing the half-mode substrate-integrated waveguide and spoof surface plasmon polariton (HMSIW-SSPP) hybrid transmission line is introduced. Initially, a new HMSIW-SSPP unit cell is proposed, demonstrating a lower upper cut-off frequency compared to the classical HMSIW-SSPP unit cell. Building upon this unit cell, a bandpass BTB FPD is devised employing dual-layer stacked substrates, enabling independent control over the passband’s lower and upper cut-off frequencies through specific physical dimensions. Additionally, the incorporation of isolation resistors and defected ground structures in the BTB FPD enhances differential-mode isolation and common-mode (CM) suppression between output ports. A manufactured and tested BTB FPD prototype validates this design method, showcasing a broad fractional bandwidth of 52.31% (6.72–11.48 GHz), output port isolation surpassing 14.25 dB, and transmitted CM suppression exceeding 34.05 dB. Full article
Show Figures

Figure 1

12 pages, 19873 KiB  
Communication
A Compact Aperture-Sharing Sub-6 GHz/Millimeter-Wave Dual-Band Antenna
by Qinghu Zhang, Bitian Chai, Jianxin Chen and Wenwen Yang
Sensors 2023, 23(9), 4400; https://doi.org/10.3390/s23094400 - 30 Apr 2023
Cited by 6 | Viewed by 2692
Abstract
In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to create two sets of 1 [...] Read more.
In this article, a microwave (MW)/millimeter wave (MMW) aperture-sharing antenna is proposed. The antenna is constructed using two orthogonal columns of grounded vias from a 3.5 GHz slot-loaded half-mode substrate-integrated waveguide (HMSIW) antenna. These vias are reused to create two sets of 1 × 4 MMW substrate-integrated dielectric resonator antenna (SIDRA) arrays. With this proposed partial structure reuse strategy, the MW antenna and MMW arrays can be integrated in a shared-aperture manner, improving space utilization and enabling dual-polarized beam steering capability in the MMW band, which is highly desirable for multiple-input multipleoutput (MIMO) applications. The integrated antenna prototype was manufactured and measured for verification. The 3.5 GHz antenna has a relative bandwidth of 3.4% (3.44–3.56 GHz) with a peak antenna gain of 5.34 dBi, and the 28 GHz antenna arrays cover the frequency range of 26.5–29.8 GHz (11.8%) and attain a measured peak antenna gain of 11.0 dBi. Specifically, the 28 GHz antenna arrays can realize dual-polarization and ±45° beam steering capability. The dual-band antenna has a very compact structure, and it is applicable for 5G mobile communication terminals. Full article
(This article belongs to the Special Issue MIMO Technologies in Sensors and Wireless Communication Applications)
Show Figures

Figure 1

17 pages, 7817 KiB  
Article
Miniaturized Compact Reconfigurable Half-Mode SIW Phase Shifter with PIN Diodes
by Franky Dakam Wappi, Bilel Mnasri, Alireza Ghayekhloo, Larbi Talbi and Halim Boutayeb
Technologies 2023, 11(3), 63; https://doi.org/10.3390/technologies11030063 - 23 Apr 2023
Cited by 1 | Viewed by 3577
Abstract
In this work, a novel electrically reconfigurable phase shifter based on a half-mode substrate integrated waveguide (HM-SIW) is proposed. SIW is a guided transmission line topology, and by using half-mode excitation, a smaller size can be achieved. Phase shifters are electronic devices that [...] Read more.
In this work, a novel electrically reconfigurable phase shifter based on a half-mode substrate integrated waveguide (HM-SIW) is proposed. SIW is a guided transmission line topology, and by using half-mode excitation, a smaller size can be achieved. Phase shifters are electronic devices that change the phase of transmission for a wide range of applications, including inverse scattering and sensing. The tunability of PIN diodes is applied here to achieve a reconfigurable design. The proposed single-layer structure does not require extra wiring layers for the bias circuit on the suggested printed circuit board. Its principle consists in the integration, in the HM-SIW, of three parallel lines, each connecting the edge of the HM-SIW and linked to a PIN diode and a radial stub. Here we present the results of measurements for a frequency band from 4.5 to 7 GHz that demonstrate how the experiment agrees with simulations. Insertion loss was less than −10 dB, and port coupling was less than −2 dB for both simulation and measurement solutions. The proposed half-mode structure is around half the size of a typical SIW line. With the proposed design, the seven states of the PIN diodes can be validated (ON and OFF), with a wide band adaptation and a relatively constant phase difference across a broad frequency range (44%). A key benefit of the proposed design for a microwave component is the reduction of extra biasing layers for the PIN diodes. This is in addition to the reduced size of the transmission line compared to a commercial SIW. In the annexed section, simulation software is used for a more comprehensive analysis involving more phase shift values and parametric studies. Full article
(This article belongs to the Special Issue Perpetual Sensor Nodes for Sustainable Wireless Network Applications)
Show Figures

Figure 1

13 pages, 5292 KiB  
Article
Beamwidth-Reconfigurable Circularly Polarized Slot Antenna Based on Half-Mode Substrate-Integrated Waveguide
by Jeong-Hun Park and Moon-Que Lee
Electronics 2023, 12(2), 363; https://doi.org/10.3390/electronics12020363 - 10 Jan 2023
Cited by 1 | Viewed by 2503
Abstract
Beamwidth-reconfigurable antennas are useful for the intersatellite link of low earth orbit formation flying and constellation, as they prevent unauthorized satellites from eavesdropping. In this article, a circularly polarized slot array antenna based on a half-mode substrate-integrated waveguide (HMSIW) for the K-band beamwidth [...] Read more.
Beamwidth-reconfigurable antennas are useful for the intersatellite link of low earth orbit formation flying and constellation, as they prevent unauthorized satellites from eavesdropping. In this article, a circularly polarized slot array antenna based on a half-mode substrate-integrated waveguide (HMSIW) for the K-band beamwidth reconfiguration is proposed using a new radio frequency (RF) switch structure and a pair of modified −45° and +45° linearly polarized HMSIW slot arrays for the dual operation of a single-pole double-throw (SPDT)/a power divider (PD) and easy integration with other components, respectively. The RF switch structure consists of a T-junction PD, λ/4 lines, and beam lead PIN diodes with current control resistors and without a DC block circuit for low DC power consumption and size reduction. The −45°/+45° linearly polarized HMSIW slot arrays providing linear and circular polarizations (LP and CP, respectively) are operated for CP. The use of a short-circuited termination instead of dissipative termination results in easier integration with other components because the 16 radiating slots consume most of the input power. The dimension of the beamwidth-reconfigurable antenna including the bottom metal layer is 157.2 × 23.3 × 0.254 mm3 (12.5λ0 × 1.86λ0 × 0.0202λ0). The RF switch for the SPDT shows the insertion losses of 1.8–2.3 and 16.7–24.2 dB and an isolation of 20.9–33.4 dB for both outputs within the 10-dB bandwidth. The RF switch for the PD has an insertion loss of 3.9–4.8 dB. The one- and two-antenna operation modes of the CP antenna provide the gains of 9.44 and 6.99 dBic, the axial ratios of 2.24 and 3.47 dB, and the horizontal beamwidths of 35.8° and 78.2°, respectively. Full article
Show Figures

Figure 1

11 pages, 3063 KiB  
Article
Design of Hybrid Fractal Integrated Half Mode SIW Band Pass Filter with CSRR and Minkowski Defected Ground Structure for Sub-6 GHz 5G Applications
by Nitin Muchhal, Mostafa Elkhouly, Renato Zea Vintimilla, Arnab Chakraborty and Shweta Srivastava
Photonics 2022, 9(12), 898; https://doi.org/10.3390/photonics9120898 - 24 Nov 2022
Cited by 7 | Viewed by 2135
Abstract
A compact and wide-stop band half mode substrate integrated waveguide (HMSIW) filter, incorporated with a hybrid fractal on the upper plane and a complementary split ring resonator (CSRR), along with a defected ground structure (DGS) etched on the bottom plane, is proposed for [...] Read more.
A compact and wide-stop band half mode substrate integrated waveguide (HMSIW) filter, incorporated with a hybrid fractal on the upper plane and a complementary split ring resonator (CSRR), along with a defected ground structure (DGS) etched on the bottom plane, is proposed for 5G sub-6 GHz application. A CSRR reduces the resonant frequency causing size miniaturisation by approximately 40% by augmenting the equivalent inductance and capacitance of the CSRR. Further, the low-pass characteristics of the DGS aid in suppressing out-of-band spurious harmonics. A two-pole band pass filter (BPF) is fabricated using FR4 (flame retardant) to validate the design. The results confirm that the proposed filter has a pass band from 3.75 GHz–5.12 GHz with spurious response below −20 dB > 4f0. Full article
Show Figures

Figure 1

14 pages, 5499 KiB  
Article
Design of Filtering Magic-T with Wideband and Wide Stopband Based on HMSIW and Spoof Surface Plasmon Polaritons
by Hao Liu, Bing Xue and Jun Xu
Electronics 2022, 11(17), 2699; https://doi.org/10.3390/electronics11172699 - 28 Aug 2022
Cited by 2 | Viewed by 2103
Abstract
A novel filtering magic-T (FMT) with a compact size, a broad bandwidth, and a wide stopband rejection based on the dielectric-covered L-shaped groove (DCLSG) half-mode substrate integrated waveguide and the spoof surface plasmon polariton (HMSIW-SSPP) structure is proposed for the first time. A [...] Read more.
A novel filtering magic-T (FMT) with a compact size, a broad bandwidth, and a wide stopband rejection based on the dielectric-covered L-shaped groove (DCLSG) half-mode substrate integrated waveguide and the spoof surface plasmon polariton (HMSIW-SSPP) structure is proposed for the first time. A HMSIW magic-T (HMT) based on dual-layer substrates is first designed. Then, we construct the proposed FMT by periodically etching the subwavelength DCLSG SSPP structure into the HMT. The proposed FMT achieves a bandpass filtering response and a nearly 50% reduction of longitudinal dimension attributed to the bandpass characteristics and strong slow-wave property of the DCLSG HMSIW-SSPP structure. In addition, beneficial from the regulable cut-off frequencies of the DCLSG HMSIW-SSPP structure, the proposed FMT provides a wide impedance bandwidth and independently adjustable lower and upper cut-off frequencies of the passband. Finally, a prototype of the proposed FMT is fabricated to validate this design idea. The measured results illustrate that the FMT has a 3-dB fractional bandwidth of 40.23% and a 20-dB stopband rejection up to 2.12 f0 (f0: center frequency of the passband). Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 27058 KiB  
Article
Polarization-Flexible and Frequency-Scanning Leaky-Wave HMSIW Antenna for Vehicular Applications
by Aixin Chen, Xuedong Fu, Weiwei Jiang and Kang An
Electronics 2022, 11(13), 2103; https://doi.org/10.3390/electronics11132103 - 5 Jul 2022
Cited by 5 | Viewed by 2469
Abstract
To achieve multifunctional communication and safe driving of a vehicle, a half-mode substrate-integrated waveguide (HMSIW) leaky-wave frequency-scanning antenna with flexible polarization is proposed in this article. It includes two linearly polarized interdigital slot antennas, a compact directional coupler, and microstrip transition lines. It [...] Read more.
To achieve multifunctional communication and safe driving of a vehicle, a half-mode substrate-integrated waveguide (HMSIW) leaky-wave frequency-scanning antenna with flexible polarization is proposed in this article. It includes two linearly polarized interdigital slot antennas, a compact directional coupler, and microstrip transition lines. It can generate either linear polarization (LP) for base station communication or circular polarization (CP) for satellite navigation by configuring the means of excitation. Its radiation beam can be continuously steered with varying frequency in either the LP or the CP state, which is of benefit to safe vehicular driving. In addition, the use of the HMSIW structure reduces the size of the antenna by almost one-half in comparison with the full SIW structure. Measurements were performed on antenna scattering parameters, radiation patterns, gain, and axial ratio (for CP states); the results show good agreement with the simulated results. With its low profile, low weight, low cost, and capability for continuous frequency scanning and variable polarization states, the multifunctional antenna could be extensively used for adapting to changes in environmental conditions or system requirements. Full article
Show Figures

Figure 1

13 pages, 5767 KiB  
Article
Triangular Cavity Multi-Passband HMSIW Filter Based on Odd-Even Mode Analysis
by Luhua Zhang, Aiting Wu, Pengquan Zhang and Zhonghai Zhang
Electronics 2021, 10(23), 2927; https://doi.org/10.3390/electronics10232927 - 25 Nov 2021
Cited by 2 | Viewed by 1967
Abstract
This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode [...] Read more.
This letter proposes a multi-passband half-mode substrate integrated waveguide (HMSIW) filter based on the theory of odd and even mode analysis. The filter adopts a triangular HMSIW cavity cut along the diagonal of the rectangle. By etching two dual-mode resonators, the resonant mode of the HMSIW resonator is coupled with the odd-even mode of the dual-mode resonator to achieve multiple passbands. The defected ground structure (DGS) of the filter can reduce the resonance frequency of the HMSIW cavity without increasing the volume of the HMSIW cavity, making it easier to couple with the odd and even mode frequencies of the resonator. The input and output ports are directly coupled through a microstrip line. In this way, it adds an additional coupling path to the filter, which increases the out-of-band suppression without changing the performance in the passband, and improves the overall performance of the filter. To prove the feasibility of the above method, a multi-passband HMSIW filter was fabricated and tested. The center frequencies of the three passbands of the filter are 2.98 GHz, 4.78 GHz, and 6.62 GHz, respectively. The return loss in the passband is better than −15 dB, and the insertion loss is better than 2 dB. The measured results have a good agreement with the simulation results. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

12 pages, 10339 KiB  
Article
Quad Sector HMSIW Tapered Slot Antenna Array for Millimeter-Wave Applications
by Iftikhar Ahmed, Sultan Shoaib and Raza Ali Shah
Electronics 2021, 10(14), 1645; https://doi.org/10.3390/electronics10141645 - 10 Jul 2021
Cited by 2 | Viewed by 2883
Abstract
In this paper, a slot antenna array based on a half-mode substrate integrated waveguide (HMSIW) is presented, integrating a series of linearly tapered slots for wireless broadband applications in millimeter-wave frequencies. The slots are etched on the upper layer of HMSIW, which radiates [...] Read more.
In this paper, a slot antenna array based on a half-mode substrate integrated waveguide (HMSIW) is presented, integrating a series of linearly tapered slots for wireless broadband applications in millimeter-wave frequencies. The slots are etched on the upper layer of HMSIW, which radiates the energy from the open side of HMSIW, exhibiting a near broadside radiation pattern. Two identical sets of back-to-back printed antenna arrays are cross-lap joined to form a quad sector antenna providing 360° coverage. The proposed antenna occupies a volume of 20 × 20 × 70 mm3. The measured bandwidth is 1.81 GHz (6.53%) for Voltage to Standing Wave Ratio (VSWR) 3:1 from 26.8 to 28.6 GHz, while the peak measured gain and efficiency of single antenna array were 14.2 dB and 71.3%, respectively, at 27.5 GHz. Furthermore, the sidelobe level in the azimuth plane was observed to be 17.75 dB. The performance of the proposed antenna is measured, and a good agreement between simulation and measured results is observed over the frequency range of 27.5–28.35 GHz for millimeter-wave 5G applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

8 pages, 1756 KiB  
Article
A Bandpass Filter Using Half Mode SIW Structure with Step Impedance Resonator
by Min-Hang Weng, Chin-Yi Tsai, De-Li Chen, Yi-Chun Chung and Ru-Yuan Yang
Electronics 2021, 10(1), 51; https://doi.org/10.3390/electronics10010051 - 30 Dec 2020
Cited by 14 | Viewed by 3545
Abstract
This paper presents a miniaturized bandpass filter, which uses half mode substrate integrated waveguide (HMSIW) structure with embedded step impedance structure (SIS). By embedding the stepped impedance structure into the top metal of the waveguide cavity, the center frequency can be quickly shifted [...] Read more.
This paper presents a miniaturized bandpass filter, which uses half mode substrate integrated waveguide (HMSIW) structure with embedded step impedance structure (SIS). By embedding the stepped impedance structure into the top metal of the waveguide cavity, the center frequency can be quickly shifted to a lower frequency. The operating center frequency of the proposed bandpass filter (BPF) using HMSIW resonators with embedded SIS is tunable as functions of the parameters of the SIS. The design curve is provided. A filter example of the center frequency of the filter at 3.5 GHz is fabricated and measured, having the insertion loss |S21| less than 3 dB, and the return loss |S11| greater than 10 dB. The transmission zeros are located at 2.95 GHz and 3.95 GHz on both sides of the passband, both of which are lower than 30 dB. The simulation result and the measured response conform to the proposed design concept. The proposed HMSIW filter design is in line with the current 5G communication trend. Full article
(This article belongs to the Special Issue Microwave Devices Design and Application)
Show Figures

Figure 1

15 pages, 3718 KiB  
Letter
Multimode HMSIW-Based Bandpass Filter with Improved Selectivity for Fifth-Generation (5G) RF Front-Ends
by Amjad Iqbal, Jun Jiat Tiang, Sew Kin Wong, Mohammad Alibakhshikenari, Francisco Falcone and Ernesto Limiti
Sensors 2020, 20(24), 7320; https://doi.org/10.3390/s20247320 - 19 Dec 2020
Cited by 15 | Viewed by 3149
Abstract
This article presents the detailed theoretical, simulation, and experimental analysis of a half-mode substrate integrated waveguide (HMSIW)-based multimode wideband filter. A third-order, semicircular HMSIW filter is developed in this paper. A semicircular HMSIW cavity resonator is adopted to achieve wide band characteristics. A [...] Read more.
This article presents the detailed theoretical, simulation, and experimental analysis of a half-mode substrate integrated waveguide (HMSIW)-based multimode wideband filter. A third-order, semicircular HMSIW filter is developed in this paper. A semicircular HMSIW cavity resonator is adopted to achieve wide band characteristics. A U-shaped slot (acts as a λ/4 stub) in the center of a semicircular HMSIW cavity resonator and L-shaped open-circuited stubs are used to improve the out-of-band response by generating multiple transmission zeros (TZs) in the stop-band region of the filter. The TZs on either side of the passband can be controlled by adjusting dimensions of a U-shaped slot and L-shaped open-circuited stubs. The proposed filter covers a wide fractional bandwidth, has a lower insertion loss value, and has multiple TZs (which improves the selectivity). The simulated response of filter agrees well with the measured data. The proposed HMSIW bandpass filter can be integrated with any planar wideband communication system circuit, thanks to its planar structure. Full article
(This article belongs to the Special Issue Antenna Design for 5G and Beyond)
Show Figures

Figure 1

17 pages, 7758 KiB  
Article
Reconfigurable Coplanar Waveguide (CPW) and Half-Mode Substrate Integrated Waveguide (HMSIW) Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator
by Juan Hinojosa, Adrián Saura-Ródenas, Alejandro Alvarez-Melcon and Félix L. Martínez-Viviente
Materials 2018, 11(1), 39; https://doi.org/10.3390/ma11010039 - 28 Dec 2017
Cited by 14 | Viewed by 5883
Abstract
An open ring resonator (ORR) loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR) is versatile. It allows a shunt connection with different planar [...] Read more.
An open ring resonator (ORR) loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR) is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW) and a half-mode substrate integrated waveguide (HMSIW). As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals. Full article
Show Figures

Figure 1

Back to TopTop