Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = HCPro

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1121 KiB  
Review
Molecular Mechanisms of Potato Plant–Virus–Vector Interactions
by Roza Kenzhebekova, Alexandr Pozharskiy, Kamila Adilbayeva and Dilyara Gritsenko
Plants 2025, 14(15), 2282; https://doi.org/10.3390/plants14152282 - 24 Jul 2025
Viewed by 313
Abstract
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y [...] Read more.
Viral infections and their vector dynamics pose a major threat to potatoes (Solanum tuberosum L.) worldwide, urgently needing an integrated understanding of the molecular and ecological interactions in this tripartite system. This review describes the major potato viruses, namely potato virus Y (PVY), the potato leafroll virus (PLRV), and potato virus X (PVX), with an emphasis on their infection and replication strategies in plants, as well as their movement within them. It also discusses plant responses to these viruses by uncovering RNA silencing, resistance (R) genes, and hormonal signaling. The complex dynamics of virus–vector interactions are discussed, considering the modes of transmission-persistent, non-persistent and semi-persistent—the role of viral proteins such as HC-Pro in determining vector specificity and adaptations in vectors that facilitate virus dissemination. This article discusses how vectors select potato plants, with an emphasis on the role played by plant-excreted volatiles and vector-applied saliva in plant defense. It also discusses host genes that contribute to vector resistance. This review provides an overview of the interactions between potato plants, viruses, and vectors and shows how viruses influence plant–vector interactions, the molecular pathways shared, and the altered gene expression profiles due to these interactions. The review offers an integrated perspective essential for developing sustainable and precise control strategies against potato viral pathogens under changing climatic conditions. Full article
(This article belongs to the Special Issue Plant–Microbe Interaction)
Show Figures

Figure 1

16 pages, 2495 KiB  
Article
A Comprehensive Screening of the Interactors of Areca Palm Necrotic Ringspot Virus (ANRSV) HCPro2 Highlights the Proviral Roles of eIF4A and PGK in Viral Infection
by Li Qin, Peilan Liu, Wentao Shen, Zhaoji Dai and Hongguang Cui
Plants 2025, 14(11), 1673; https://doi.org/10.3390/plants14111673 - 30 May 2025
Viewed by 466
Abstract
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature [...] Read more.
The areca palm (Areca catechu L.), a medicinal tropical crop, hosts three novel viruses, areca palm necrotic ringspot virus (ANRSV), areca palm necrotic spindle-spot virus (ANSSV), and ANRSV2, which form a new genus Arepavirus in the family Potyviridae. Both viruses feature a unique tandem leader protease arrangement (HCPro1-HCPro2). To elucidate HCPro2’s role, this study identified its interaction partners in infected cells using affinity purification coupled with liquid chromatography-tandem mass spectrometry, a yeast two-hybrid system, and co-immunoprecipitation. Thirteen host proteins and five viral factors (HCPro1, 6K2, VPg, NIa-Pro, NIb) were validated as HCPro2 interactors. Among the host proteins interacting with HCPro2, the expression of five genes (NbeIF4A, NbSAMS1α, NbTEF1α, NbUEP1, and NbRan2) was upregulated under the condition of viral infection, while the expression of another five genes (NbpsbS1, NbPGK, NbchIP, NbClpC1A, and NbCysPrx) was downregulated. Functional assays showed that silencing NbeIF4A or NbPGK significantly reduced viral accumulation in Nicotiana benthamiana. These findings reveal HCPro2’s network of virus-host interaction, highlighting its critical role in viral pathogenesis. Further exploration of these interactions may clarify the evolutionary significance of tandem leader proteases and inform novel plant antiviral strategies. Full article
Show Figures

Figure 1

18 pages, 10644 KiB  
Article
Investigation of HCPro-Mediated Ethylene Synthesis Pathway Through RNA-Seq Approaches
by Xinpeng Jiang, Lan Dong, Renjing Wan, Changli Zeng and Ting Yang
Viruses 2025, 17(5), 602; https://doi.org/10.3390/v17050602 - 23 Apr 2025
Viewed by 381
Abstract
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. [...] Read more.
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. In this study, HCPro-overexpressing (HCPro-OX) and wild-type (WT) plants were inoculated with ChiVMV to monitor the physiological and molecular changes. Transcriptome analysis identified 11,815 differentially expressed genes (DEGs) under viral infection, among which 1115 genes were specifically regulated by HCPro. KEGG enrichment analysis revealed that the DEGs were significantly associated with plant hormone signal transduction pathways, indicating their crucial role in host–virus interactions. Furthermore, functional clustering of HCPro-regulated DEGs specifically identified key components in ethylene biosynthesis pathways. GO analysis of DEGs between virus-inoculated WT and HCPro-OX plants annotated ethylene biosynthesis-related genes NtACO and NtACS. qPCR validation confirmed that the expression of ethylene biosynthesis-related genes was suppressed by HCPro. Exogenous treatments with the ethylene precursor ACC demonstrated that ethylene suppressed viral accumulation, enhanced POD activity, and reduced the ROS accumulation induced by viral infection. In conclusion, our results demonstrate that HCPro promotes viral infection by suppressing ethylene biosynthesis, which in turn attenuates peroxidase activity, leading to ROS accumulation. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 4817 KiB  
Article
Role of Bean Yellow Mosaic Virus P1 and HC-Pro in Enhancing Gene Expression and Suppressing RNA Silencing in Nicotiana benthamiana
by Sunmee Choi, Suk Hyun Kwon, Gi Seok Kwon, Ho Seong Choi, Hyo Hyun Seo, Young Soon Kim, Jeong Hun Lee, Won Kyong Cho and Sang Hyun Moh
Life 2025, 15(3), 472; https://doi.org/10.3390/life15030472 - 15 Mar 2025
Viewed by 716
Abstract
Potyviruses, a major group of plant viruses, utilize HC-Pro, a multifunctional protein, to suppress RNA silencing, a crucial plant defense mechanism. While HC-Pro’s role in RNA silencing suppression has been studied in several potyviruses, the specific mechanisms and interactions of HC-Pro from bean [...] Read more.
Potyviruses, a major group of plant viruses, utilize HC-Pro, a multifunctional protein, to suppress RNA silencing, a crucial plant defense mechanism. While HC-Pro’s role in RNA silencing suppression has been studied in several potyviruses, the specific mechanisms and interactions of HC-Pro from bean yellow mosaic virus (BYMV), a potyvirus with a broad host range, remain poorly understood. To address this knowledge gap, this study aimed to investigate the role of P1 and HC-Pro from BYMV in enhancing gene expression and suppressing RNA silencing in Nicotiana benthamiana. The findings revealed that BYMV HC-Pro significantly enhanced reporter transgene expression, likely through the suppression of RNA silencing pathways. This effect was further amplified by the presence of the P1 protein, another viral component. Analysis of HC-Pro mutants revealed that the conserved FRNK box within HC-Pro is crucial for its suppression activity and its ability to enhance gene expression. Furthermore, HC-Pro significantly downregulated the expression of key RNA silencing-related genes, including DCL2, DCL4, RDR6, AGO1-1, AGO1-2, and AGO2. These findings demonstrate that the BYMV P1::HC-Pro complex serves as a potent suppressor of RNA silencing and a promising tool for enhancing gene expression in plants. The results have significant implications for developing novel strategies in plant biotechnology, particularly for the production of high-value recombinant proteins. Full article
(This article belongs to the Special Issue Strategies for Enchancing the Production in Plant)
Show Figures

Figure 1

16 pages, 11435 KiB  
Article
Prevalence of Aphid-Transmitted Potyviruses in Pumpkin and Winter Squash in Georgia, USA
by Nirmala Acharya, Manish Kumar, Sudeep Bag, David G. Riley, Juan C. Diaz-Perez, Alvin M. Simmons, Timothy Coolong and Theodore McAvoy
Viruses 2025, 17(2), 233; https://doi.org/10.3390/v17020233 - 8 Feb 2025
Cited by 1 | Viewed by 1266
Abstract
Viruses are a major pathogen challenging the sustainable production of cucurbits worldwide. Pumpkin and winter squash showed severe virus-like symptoms during the fall of 2022 and 2023 in Georgia, USA. Symptomatic leaves were collected from the field and processed for small RNA sequencing [...] Read more.
Viruses are a major pathogen challenging the sustainable production of cucurbits worldwide. Pumpkin and winter squash showed severe virus-like symptoms during the fall of 2022 and 2023 in Georgia, USA. Symptomatic leaves were collected from the field and processed for small RNA sequencing for virus identification using high-throughput sequencing (HTS). HTS analysis revealed the presence of two aphid-transmitted viruses (ATVs), zucchini yellow mosaic virus (ZYMV) and papaya ringspot virus (PRSV), along with three whitefly-transmitted viruses, cucurbit chlorotic yellows virus, cucurbit yellow stunting disorder virus, and cucurbit leaf crumple virus. The results of our study suggest a significant shift in ATV’s abundance in these two crops between 2022 and 2023. According to the qPCR data in the fall of 2022, pumpkins experience an incidence of 56.25% and 31.25% of PRSV and ZYMV, respectively. Similarly, winter squash shows an incidence of 50% and 32.14% of PRSV and ZYMV, respectively. Mixed infection of both viruses was also observed in these two crops. In 2023, we observed a predominance of ZYMV in pumpkin and winter squash (61.25% and 42.50%, respectively). However, PRSV was not detected in pumpkins, and it was detected at a negligible level (0.62%) in winter squash using qPCR. Phylogenetic analysis of ZYMV-encoded coat protein (CP) and helper component-protease (HC-Pro) from Georgia suggests a close relationship with the European isolates. Conversely, PRSV-encoded CP and NIa-VPg show a more diverse evolutionary history. Overall, this research will provide valuable insights into the dynamics of ZYMV and PRSV in pumpkin and winter squash crops within the southeastern United States. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

14 pages, 6411 KiB  
Article
The Generation of Attenuated Mutants of East Asian Passiflora Virus via Deletion and Mutation in the N-Terminal Region of the HC-Pro Gene for Control through Cross-Protection
by Duy-Hung Do, Xuan-Tung Ngo and Shyi-Dong Yeh
Viruses 2024, 16(8), 1231; https://doi.org/10.3390/v16081231 - 31 Jul 2024
Viewed by 1349
Abstract
East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) [...] Read more.
East Asian Passiflora virus (EAPV) causes passionfruit woodiness disease, a major threat limiting passionfruit production in eastern Asia, including Taiwan and Vietnam. In this study, an infectious cDNA clone of a Taiwanese severe isolate EAPV-TW was tagged with a green fluorescent protein (GFP) reporter to monitor the virus in plants. Nicotiana benthamiana and yellow passionfruit plants inoculated with the construct showed typical symptoms of EAPV-TW. Based on our previous studies on pathogenicity determinants of potyviral HC-Pros, a deletion of six amino acids (d6) alone and its association with a point mutation (F8I, simplified as I8) were conducted in the N-terminal region of the HC-Pro gene of EAPV-TW to generate mutants of EAPV-d6 and EAPV-d6I8, respectively. The mutant EAPV-d6I8 caused infection without conspicuous symptoms in N. benthamiana and yellow passionfruit plants, while EAPV-d6 still induced slight leaf mottling. EAPV-d6I8 was stable after six passages under greenhouse conditions and displayed a zigzag pattern of virus accumulation, typical of a beneficial protective virus. The cross-protection effectiveness of EAPV-d6I8 was evaluated in both N. benthamiana and yellow passionfruit plants under greenhouse conditions. EAPV-d6I8 conferred complete cross-protection (100%) against the wild-type EAPV-TW-GFP in both N. benthamiana and yellow passionfruit plants, as verified by no severe symptoms, no fluorescent signals, and PCR-negative status for GFP. Furthermore, EAPV-d6I8 also provided complete protection against Vietnam’s severe strain EAPV-GL1 in yellow passionfruit plants. Our results indicate that the attenuated mutant EAPV-d6I8 has great potential to control EAPV in Taiwan and Vietnam via cross-protection. Full article
(This article belongs to the Special Issue Crop Resistance to Viral Infections)
Show Figures

Figure 1

21 pages, 2567 KiB  
Review
Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins
by Veronika Hýsková, Kateřina Bělonožníková, Josef Chmelík, Hana Hoffmeisterová, Noemi Čeřovská, Tomáš Moravec and Helena Ryšlavá
Plants 2024, 13(9), 1236; https://doi.org/10.3390/plants13091236 - 29 Apr 2024
Cited by 6 | Viewed by 2352
Abstract
The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The [...] Read more.
The best-characterized functional motifs of the potyviral Helper-Component protease (HC-Pro) responding for aphid transmission, RNA silencing suppression, movement, symptom development, and replication are gathered in this review. The potential cellular protein targets of plant virus proteases remain largely unknown despite their multifunctionality. The HC-Pro catalytic domain, as a cysteine protease, autoproteolytically cleaves the potyviral polyproteins in the sequence motif YXVG/G and is not expected to act on host targets; however, 146 plant proteins in the Viridiplantae clade containing this motif were searched in the UniProtKB database and are discussed. On the other hand, more than 20 interactions within the entire HC-Pro structure are known. Most of these interactions with host targets (such as the 20S proteasome, methyltransferase, transcription factor eIF4E, and microtubule-associated protein HIP2) modulate the cellular environments for the benefit of virus accumulation or contribute to symptom severity (interactions with MinD, Rubisco, ferredoxin) or participate in the suppression of RNA silencing (host protein VARICOSE, calmodulin-like protein). On the contrary, the interaction of HC-Pro with triacylglycerol lipase, calreticulin, and violaxanthin deepoxidase seems to be beneficial for the host plant. The strength of these interactions between HC-Pro and the corresponding host protein vary with the plant species. Therefore, these interactions may explain the species-specific sensitivity to potyviruses. Full article
(This article belongs to the Special Issue New Horizons in Plant–Microbe Interactions)
Show Figures

Figure 1

15 pages, 3164 KiB  
Article
P3 and NIa-Pro of Turnip Mosaic Virus Are Independent Elicitors of Superinfection Exclusion
by Haritha Nunna, Feng Qu and Satyanarayana Tatineni
Viruses 2023, 15(7), 1459; https://doi.org/10.3390/v15071459 - 28 Jun 2023
Cited by 6 | Viewed by 2896
Abstract
Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, [...] Read more.
Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, we tested this hypothesis using Turnip mosaic virus (TuMV), a member of the genus Potyvirus of the family Potyviridae, with significant economic consequences. To this end, individual TuMV-encoded proteins were transiently expressed in the cells of Nicotiana benthamiana leaves, followed by challenging them with a modified TuMV expressing the green fluorescent protein (TuMV-GFP). Three days after TuMV-GFP delivery, these cells were examined for the replication-dependent expression of GFP. Cells expressing TuMV P1, HC-Pro, 6K1, CI, 6K2, NIa-VPg, NIb, or CP proteins permitted an efficient expression of GFP, suggesting that these proteins failed to block the replication of a superinfecting TuMV-GFP. By contrast, N. benthamiana cells expressing TuMV P3 or NIa-Pro did not express visible GFP fluorescence, suggesting that both of them could elicit potent SIE against TuMV-GFP. The SIE elicitor activity of P3 and NIa-Pro was further confirmed by their heterologous expression from a different potyvirus, potato virus A (PVA). Plants systemically infected with PVA variants expressing TuMV P3 or NIa-Pro blocked subsequent infection by TuMV-GFP. A +1-frameshift mutation in P3 and NIa-Pro cistrons facilitated superinfection by TuMV-GFP, suggesting that the P3 and NIa-Pro proteins, but not the RNA, are involved in SIE activity. Additionally, deletion mutagenesis identified P3 amino acids 3 to 200 of 352 and NIa-Pro amino acids 3 to 40 and 181 to 242 of 242 as essential for SIE elicitation. Collectively, our study demonstrates that TuMV encodes two spatially separated proteins that act independently to exert SIE on superinfecting TuMV. These results lay the foundation for further mechanistic interrogations of SIE in this virus. Full article
(This article belongs to the Special Issue Crop Resistance to Viral Infections)
Show Figures

Figure 1

14 pages, 9977 KiB  
Article
A Novel Isolate of Bean Common Mosaic Virus Isolated from Crownvetch (Securigera varia L. Lassen)
by Daniel Mihálik, Simona Grešíková, Richard Hančinský, Pavel Cejnar, Michaela Havrlentová and Ján Kraic
Agronomy 2023, 13(7), 1677; https://doi.org/10.3390/agronomy13071677 - 22 Jun 2023
Cited by 1 | Viewed by 1803
Abstract
Bean common mosaic virus from the genus Potyvirus has a wide range of hosts and a very negative impact on cultivated crops from the genus Phaseolus. The risk of viral infection of economically important crops increases even if the carriers of the [...] Read more.
Bean common mosaic virus from the genus Potyvirus has a wide range of hosts and a very negative impact on cultivated crops from the genus Phaseolus. The risk of viral infection of economically important crops increases even if the carriers of the virus are related plant species growing on agroecological interfaces. Such plant species have emerged as new hosts for BCMV, usually harboring novel genetic variants of the virus. A novel genetic variant of BCMV was isolated from a symptomatic crownvetch plant, where the presence of this virus was confirmed via Western blot analysis and via amino acid identities in peptide fragments of CI, HC-pro, and CP proteins using the nanoLC-ESI-Q-TOF. The novel BCMV SVK isolate differed from the most genetically similar one in 0.91% of nucleotides and 1.55% of amino acids. The highest number of amino acid substitutions (8.8% of amino acids) was in the P1 protein, followed by CP (2.44% of amino acids). Minor substitutions were in Hc-pro, CI, and Nib proteins. The symptomatic crownvetch plant was confirmed as a new host and carrier of the novel BCMV isolate. Full article
(This article belongs to the Special Issue Molecular Evolution of Plant RNA Viruses)
Show Figures

Figure 1

25 pages, 3885 KiB  
Article
Survey, Detection, Characterization of Papaya Ringspot Virus from Southern India and Management of Papaya Ringspot Disease
by Udavatha Premchand, Raghavendra K. Mesta, Venkatappa Devappa, Mantapla Puttappa Basavarajappa, Venkataravanappa Venkataravanappa, Lakshminarayana Reddy C. Narasimha Reddy and Kodegandlu Subbanna Shankarappa
Pathogens 2023, 12(6), 824; https://doi.org/10.3390/pathogens12060824 - 11 Jun 2023
Cited by 13 | Viewed by 10478
Abstract
Papaya ringspot virus (PRSV) is a significant threat to global papaya cultivation, causing ringspot disease, and it belongs to the species Papaya ringspot virus, genus Potyvirus, and family Potyviridae. This study aimed to assess the occurrence and severity of papaya ringspot [...] Read more.
Papaya ringspot virus (PRSV) is a significant threat to global papaya cultivation, causing ringspot disease, and it belongs to the species Papaya ringspot virus, genus Potyvirus, and family Potyviridae. This study aimed to assess the occurrence and severity of papaya ringspot disease (PRSD) in major papaya-growing districts of Karnataka, India, from 2019 to 2021. The incidence of disease in the surveyed districts ranged from 50.5 to 100.0 percent, exhibiting typical PRSV symptoms. 74 PRSV infected samples were tested using specific primers in RT-PCR, confirming the presence of the virus. The complete genome sequence of a representative isolate (PRSV-BGK: OL677454) was determined, showing the highest nucleotide identity (nt) (95.8%) with the PRSV-HYD (KP743981) isolate from Telangana, India. It also shared an amino acid (aa) identity (96.5%) with the PRSV-Pune VC (MF405299) isolate from Maharashtra, India. Based on phylogenetic and species demarcation criteria, the PRSV-BGK isolate was considered a variant of the reported species and designated as PRSV-[IN:Kar:Bgk:Pap:21]. Furthermore, recombination analysis revealed four unique recombination breakpoint events in the genomic region, except for the region from HC-Pro to VPg, which is highly conserved. Interestingly, more recombination events were detected within the first 1710 nt, suggesting that the 5’ UTR and P1 regions play an essential role in shaping the PRSV genome. To manage PRSD, a field experiment was conducted over two seasons, testing various treatments, including insecticides, biorationals, and a seaweed extract with micronutrients, alone or in combination. The best treatment involved eight sprays of insecticides and micronutrients at 30-day intervals, resulting in no PRSD incidence up to 180 days after transplanting (DAT). This treatment also exhibited superior growth, yield, and yield parameters, with the highest cost–benefit ratio (1:3.54) and net return. Furthermore, a module comprising 12 sprays of insecticides and micronutrients at 20-day intervals proved to be the most effective in reducing disease incidence and enhancing plant growth, flowering, and fruiting attributes, resulting in a maximized yield of 192.56 t/ha. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 3506 KiB  
Article
Adaptation of a Potyvirus Chimera Increases Its Virulence in a Compatible Host through Changes in HCPro
by Hao Sun, Francisco del Toro, Mongia Makki, Francisco Tenllado and Tomas Canto
Plants 2022, 11(17), 2262; https://doi.org/10.3390/plants11172262 - 30 Aug 2022
Cited by 2 | Viewed by 2766
Abstract
A viral chimera in which the P1-HCPro bi-cistron of a plum pox virus construct (PPV-GFP) was replaced by that of potato virus Y (PVY) spread slowly systemically in Nicotiana benthamiana plants and accumulated to levels that were 5−10% those of parental PPV-GFP. We [...] Read more.
A viral chimera in which the P1-HCPro bi-cistron of a plum pox virus construct (PPV-GFP) was replaced by that of potato virus Y (PVY) spread slowly systemically in Nicotiana benthamiana plants and accumulated to levels that were 5−10% those of parental PPV-GFP. We tested whether consecutive mechanical passages could increase its virulence, and found that after several passages, chimera titers rose and symptoms increased. We sequenced over half the genome of passaged chimera lineages infecting two plants. The regions sequenced were 5′NCR-P1-HCPro-P3; Vpg/NIa; GFP-CP, because of being potential sites for mutations/deletions leading to adaptation. We found few substitutions, all non-synonymous: two in one chimera (nt 2053 HCPro, and 5733 Vpg/NIa), and three in the other (2359 HCPro, 5729 Vpg/NIa, 9466 CP). HCPro substitutions 2053 AUU(Ile)→ACU(Thr), and 2359 CUG(Leu)→CGG(Arg) occurred at positions where single nucleotide polymorphisms were observed in NGS libraries of sRNA reads from agroinfiltrated plants (generation 1). Remarkably, position 2053 was the only one in the sequenced protein-encoding genome in which polymorphisms were common to the four libraries, suggesting that selective pressure existed to alter that specific nucleotide, previous to any passage. Mutations 5729 and 5733 in the Vpg by contrast did not correlate with polymorphisms in generation 1 libraries. Reverse genetics showed that substitution 2053 alone increased several-fold viral local accumulation, speed of systemic spread, and systemic titers. Full article
(This article belongs to the Special Issue Advances in Plant Viral Diseases)
Show Figures

Figure 1

20 pages, 4724 KiB  
Article
Interplay of HCPro and CP in the Regulation of Potato Virus A RNA Expression and Encapsidation
by Shreya Saha, Andres Lõhmus, Pinky Dutta, Maija Pollari and Kristiina Mäkinen
Viruses 2022, 14(6), 1233; https://doi.org/10.3390/v14061233 - 7 Jun 2022
Cited by 14 | Viewed by 3215
Abstract
Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a [...] Read more.
Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a heterologous viral suppressor of gene silencing both complemented HCPro-less potato virus A (PVA) expression, CP stabilization connected to particle formation could be complemented only by the cognate PVA HCPro. We found that HCPro relieves CP-mediated inhibition of PVA RNA expression likely by enabling HCPro-mediated sequestration of CPs to particles. We addressed the question about the role of replication in formation of PVA particles and gained evidence for encapsidation of non-replicating PVA RNA. The extreme instability of these particles substantiates the need for replication in the formation of stable particles. During replication, viral protein genome linked (VPg) becomes covalently attached to PVA RNA and can attract HCPro, cylindrical inclusion protein and host proteins. Based on the results of the current study and our previous findings we propose a model in which a large ribonucleoprotein complex formed around VPg at one end of PVA particles is essential for their integrity. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

13 pages, 1303 KiB  
Article
An Importin-β-like Protein from Nicotiana benthamiana Interacts with the RNA Silencing Suppressor P1b of the Cucumber Vein Yellowing Virus, Modulating Its Activity
by Beatriz García, Leonor Bedoya, Juan Antonio García and Bernardo Rodamilans
Viruses 2021, 13(12), 2406; https://doi.org/10.3390/v13122406 - 30 Nov 2021
Cited by 2 | Viewed by 2380
Abstract
During a plant viral infection, host–pathogen interactions are critical for successful replication and propagation of the virus through the plant. RNA silencing suppressors (RSSs) are key players of this interplay, and they often interact with different host proteins, developing multiple functions. In the [...] Read more.
During a plant viral infection, host–pathogen interactions are critical for successful replication and propagation of the virus through the plant. RNA silencing suppressors (RSSs) are key players of this interplay, and they often interact with different host proteins, developing multiple functions. In the Potyviridae family, viruses produce two main RSSs, HCPro and type B P1 proteins. We focused our efforts on the less known P1b of cucumber vein yellowing virus (CVYV), a type B P1 protein, to try to identify possible factors that could play a relevant role during viral infection. We used a chimeric expression system based on plum pox virus (PPV) encoding a tagged CVYV P1b in place of the canonical HCPro. We used that tag to purify P1b in Nicotiana-benthamiana-infected plants and identified by mass spectrometry an importin-β-like protein similar to importin 7 of Arabidopsis thaliana. We further confirmed the interaction by bimolecular fluorescence complementation assays and defined its nuclear localization in the cell. Further analyses showed a possible role of this N. benthamiana homolog of Importin 7 as a modulator of the RNA silencing suppression activity of P1b. Full article
(This article belongs to the Special Issue Host Factors in Plant Viral Infections)
Show Figures

Figure 1

26 pages, 43179 KiB  
Article
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches
by Yen-Hsin Chiu, Yu-Ling Hung, Hsin-Ping Wang, Wei-Lun Wei, Qian-Wen Shang, Thanh Ha Pham, Chien-Kang Huang, Zhao-Jun Pan and Shih-Shun Lin
Viruses 2021, 13(12), 2349; https://doi.org/10.3390/v13122349 - 23 Nov 2021
Cited by 7 | Viewed by 2849
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the [...] Read more.
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses. Full article
(This article belongs to the Special Issue State-of-the-Art Plant-Virus Interactions in Asia)
Show Figures

Figure 1

21 pages, 6704 KiB  
Article
Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte
by Neda Sanobar, Pin-Chun Lin, Zhao-Jun Pan, Ru-Ying Fang, Veny Tjita, Fang-Fang Chen, Hao-Ching Wang, Huang-Lung Tsai, Shu-Hsing Wu, Tang-Long Shen, Yan-Huey Chen and Shih-Shun Lin
Viruses 2021, 13(9), 1837; https://doi.org/10.3390/v13091837 - 15 Sep 2021
Cited by 21 | Viewed by 4440
Abstract
In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to [...] Read more.
In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1’s methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors. Full article
(This article belongs to the Special Issue State-of-the-Art Plant-Virus Interactions in Asia)
Show Figures

Figure 1

Back to TopTop