Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,105)

Search Parameters:
Keywords = H5 subtypes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2547 KiB  
Article
A Host Cell Vector Model for Analyzing Viral Protective Antigens and Host Immunity
by Sun-Min Ahn, Jin-Ha Song, Seung-Eun Son, Ho-Won Kim, Gun Kim, Seung-Min Hong, Kang-Seuk Choi and Hyuk-Joon Kwon
Int. J. Mol. Sci. 2025, 26(15), 7492; https://doi.org/10.3390/ijms26157492 (registering DOI) - 2 Aug 2025
Abstract
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to [...] Read more.
Avian influenza A viruses (IAVs) pose a persistent threat to the poultry industry, causing substantial economic losses. Although traditional vaccines have helped reduce the disease burden, they typically rely on multivalent antigens, emphasize humoral immunity, and require intensive production. This study aimed to establish a genetically matched host–cell system to evaluate antigen-specific immune responses and identify conserved CD8+ T cell epitopes in avian influenza viruses. To this end, we developed an MHC class I genotype (B21)-matched host (Lohmann VALO SPF chicken) and cell vector (DF-1 cell line) model. DF-1 cells were engineered to express the hemagglutinin (HA) gene of clade 2.3.4.4b H5N1 either transiently or stably, and to stably express the matrix 1 (M1) and nucleoprotein (NP) genes of A/chicken/South Korea/SL20/2020 (H9N2, Y280-lineage). Following prime-boost immunization with HA-expressing DF-1 cells, only live cells induced strong hemagglutination inhibition (HI) and virus-neutralizing (VN) antibody titers in haplotype-matched chickens. Importantly, immunization with DF-1 cells transiently expressing NP induced stronger IFN-γ production than those expressing M1, demonstrating the platform’s potential for differentiating antigen-specific cellular responses. CD8+ T cell epitope mapping by mass spectrometry identified one distinct MHC class I-bound peptide from each of the HA-, M1-, and NP-expressing DF-1 cell lines. Notably, the identified HA epitope was conserved in 97.6% of H5-subtype IAVs, and the NP epitope in 98.5% of pan-subtype IAVs. These findings highlight the platform’s utility for antigen dissection and rational vaccine design. While limited by MHC compatibility, this approach enables identification of naturally presented epitopes and provides insight into conserved, functionally constrained viral targets. Full article
(This article belongs to the Special Issue Molecular Research on Immune Response to Virus Infection and Vaccines)
Show Figures

Graphical abstract

11 pages, 231 KiB  
Review
The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma
by Emma Vallee, Alyssa Steller, Ashley Childress, Alayna Koch and Scott Raskin
J. Mol. Pathol. 2025, 6(3), 17; https://doi.org/10.3390/jmp6030017 (registering DOI) - 1 Aug 2025
Abstract
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular [...] Read more.
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular tumor profiling, these tumors have been recategorized based on specific molecular findings that better lend themselves to prediction of treatment response and prognosis. pHGG is now categorized into four subtypes: H3K27-altered, H3G34-mutant, H3/IDH-WT, and infant-type high-grade glioma (iHGG). Molecular profiling has not only increased the specificity of diagnosis but also improved prognostication. Additionally, these molecular findings provide novel targets for individual tumor-directed therapy. While these therapies are largely still under investigation, continued investigation of distinct molecular markers in these tumors is imperative to extending event-free survival (EFS) and overall survival (OS) for patients with pHGG. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
14 pages, 1096 KiB  
Article
Unveiling the Spectrum: Clinical and Molecular Insights from a Spanish Pediatric Cohort with Hypermobility Disorders and Ehlers-Danlos Syndrome
by David Foz Felipe, Dídac Casas-Alba, Sara H. Sadok, Marina Toral Fernández, Lourdes Vega-Hanna, Laura Plaza, Asunción Vicente Villa, Judith Armstrong, Encarna Guillén-Navarro and Antonio F. Martínez-Monseny
Genes 2025, 16(8), 925; https://doi.org/10.3390/genes16080925 (registering DOI) - 31 Jul 2025
Abstract
Diagnosing hypermobility disorders and Ehlers-Danlos syndrome (EDS) in children is challenging due to overlapping features with generalized joint hypermobility (GJH) and the lack of biomarkers. Background/Objectives: This study aims to describe the clinical and genetic features of pediatric EDS patients and identify [...] Read more.
Diagnosing hypermobility disorders and Ehlers-Danlos syndrome (EDS) in children is challenging due to overlapping features with generalized joint hypermobility (GJH) and the lack of biomarkers. Background/Objectives: This study aims to describe the clinical and genetic features of pediatric EDS patients and identify key comorbidities and correlations. Methods: This is a single-center observational study of patients under 18 diagnosed with suspicion of EDS (2018–2024) at a tertiary pediatric hospital. Diagnoses were made using 2017 criteria. Results: Forty-one patients (46% female; mean age 11.1 ± 2.8 years) were included. Based on 2017 criteria, 61% had hypermobile EDS (hEDS)/hypermobility spectrum disorder (HSD), 22% classical EDS, 7.3% vascular, and 9.7% other subtypes. Musculoskeletal (90.2%), cutaneous (68.3%), and psychiatric (56.1%) symptoms were most frequent. Significant associations included older age with psychiatric symptoms (p = 0.029), Beighton score with dislocations (p = 0.026), and less atrophic scarring in hEDS (p < 0.008). Genetic testing (73% performed) confirmed pathogenic variants (11 novel) in EDS with a known molecular cause. Conclusions: This study proposes a clinically guided approach and diagnostic algorithm for youth hypermobility, emphasizing precision medicine principles, while highlighting the urgent need for further research to identify hEDS biomarkers. Full article
(This article belongs to the Special Issue Pediatric Rare Diseases: Genetics and Diagnosis)
Show Figures

Figure 1

13 pages, 1323 KiB  
Article
Genotypic and Phenotypic Characterization of Axonal Charcot–Marie–Tooth Disease in Childhood: Identification of One Novel and Four Known Mutations
by Rojan İpek, Büşra Eser Çavdartepe, Sevcan Tuğ Bozdoğan, Erman Altunışık, Akçahan Akalın, Mahmut Yaman, Alper Akın and Sefer Kumandaş
Genes 2025, 16(8), 917; https://doi.org/10.3390/genes16080917 - 30 Jul 2025
Viewed by 161
Abstract
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients [...] Read more.
Background: Charcot–Marie–Tooth disease (CMT) is a genetically and phenotypically heterogeneous hereditary neuropathy. Axonal CMT type 2 (CMT2) subtypes often exhibit overlapping clinical features, which makes molecular genetic analysis essential for accurate diagnosis and subtype differentiation. Methods: This retrospective study included five pediatric patients who presented with gait disturbance, muscle weakness, and foot deformities and were subsequently diagnosed with axonal forms of CMT. Clinical data, electrophysiological studies, neuroimaging, and genetic analyses were evaluated. Whole exome sequencing (WES) was performed in three sporadic cases, while targeted CMT gene panel testing was used for two siblings. Variants were interpreted using ACMG guidelines, supported by public databases (ClinVar, HGMD, and VarSome), and confirmed by Sanger sequencing when available. Results: All had absent deep tendon reflexes and distal muscle weakness; three had intellectual disability. One patient was found to carry a novel homozygous frameshift variant (c.2568_2569del) in the IGHMBP2 gene, consistent with CMT2S. Other variants were identified in the NEFH (CMT2CC), DYNC1H1 (CMT2O), and MPV17 (CMT2EE) genes. Notably, a previously unreported co-occurrence of MPV17 mutation and congenital heart disease was observed in one case. Conclusions: This study expands the clinical and genetic spectrum of pediatric axonal CMT and highlights the role of early physical examination and molecular diagnostics in detecting rare variants. Identification of a novel IGHMBP2 variant and unique phenotypic associations provides new insights for future genotype–phenotype correlation studies. Full article
(This article belongs to the Special Issue Genetics of Neuromuscular and Metabolic Diseases)
Show Figures

Figure 1

17 pages, 720 KiB  
Article
Involvement of Hormone Receptors, Membrane Receptors and Signaling Pathways in European Gastric Cancers Regarding Subtypes and Epigenetic Alterations: A Pilot Study
by Cynthia Pimpie, Anne Schninzler, Marc Pocard, Véronique Baud and Martine Perrot-Applanat
Biomedicines 2025, 13(8), 1815; https://doi.org/10.3390/biomedicines13081815 - 24 Jul 2025
Viewed by 304
Abstract
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and [...] Read more.
Background: Gastric cancer (GC) is a highly heterogeneous disease and remains one of the major causes of cancer-related mortality worldwide. The vast majority of GC cases are adenocarcinomas including diffuse and intestinal GC that may differ in their incidence between Asian and non-Asian cohorts. The intestinal-subtype GC has declined over the past 50 years. In contrast to the intestinal-subtype adenocarcinoma, the incidence of diffuse-subtype GC, often associated with poor overall survival, has constantly increased in the USA and Europe. The aim of this study was to analyze the expression and clinical significance of steroid hormone receptors, two membrane-bound receptors (ERRγ and GPER), and several genes involved in epigenetic alterations. The findings may contribute to revealing events driving tumorigenesis and may aid prognosis. Methods: Using mRNA from diffuse and intestinal GC tumor samples, the expression level of 11 genes, including those coding for sex hormone receptors (estrogen receptors ERα and ERβ), progesterone receptor (PR) and androgen receptor (AR), and the putative relevant ERRγ and GPER receptor were determined by RT-qPCR. Results: In diffuse GC, the expression of ERα, ERβ, PR and AR differed from their expression in the intestinal subtype. The expression of ERα and ERβ was strongly increased in the diffuse subtype compared to the intestinal subtype (×1.90, p = 0.001 and ×2.68, p = 0.002, respectively). Overexpression of ERα and ERβ was observed in diffuse GC (15 and 42%, respectively). The expression levels of PR and AR were strongly decreased in the intestinal subtype as compared to diffuse GC (×0.48, p = 0.005 and ×0.25, p = 0.003, respectively; 37.5% and 56% underexpression). ERα, ERβ, PR and AR showed notable differences for clinicopathological correlation in the diffuse and intestinal GC. A significant decrease of ERα, ERβ, PR and AR in intestinal GC correlated with the absence of lymphatic invasion and lower TNM (I-II). In diffuse GC, among the hormone receptors, increases of ERs and PR mainly correlated with expression of growth factors and receptors (IGF1, FGF7 and FGFR1), and with genes involved in epithelial-mesenchymal transition (VIM and ZEB2) or cell migration (MMP2). Our results also report the strong decreased expression of ERRγ and GPER (two receptors that bind estrogen or xenoestrogens) in diffuse and intestinal subtypes. Conclusions: Our study identified new target genes, namely hormone receptors and membrane receptors (ERRγ and GPER), whose expression is associated with an aggressive phenotype of diffuse GC, and revealed the importance of epigenetic factors (EZH2, HOTAIR, H19 and DNMT1) in gastric cancers. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

20 pages, 3742 KiB  
Review
Predictive Biomarkers for Immunotherapy in Endometrial Carcinoma
by Cristina Pizzimenti, Vincenzo Fiorentino, Ludovica Pepe, Mariausilia Franchina, Chiara Ruggeri, Alfredo Ercoli, Giuliana Ciappina, Massimiliano Berretta, Giovanni Tuccari and Antonio Ieni
Cancers 2025, 17(15), 2420; https://doi.org/10.3390/cancers17152420 - 22 Jul 2025
Viewed by 295
Abstract
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which [...] Read more.
Endometrial carcinoma (EC) is the most common gynaecological malignancy in developed nations, exhibiting significant molecular heterogeneity that impacts prognosis and treatment response, particularly in advanced or recurrent settings. Traditional classification is increasingly supplemented by molecular subtyping (POLE-ultramutated, MSI-high/dMMR, NSMP, p53-mutated/CNH), which provides crucial prognostic information and predicts benefit from immunotherapy. This review summarizes the landscape of predictive biomarkers for immune checkpoint inhibitor (ICI) therapy in EC, emphasizing a new therapeutic scenario for advanced and recurrent EC. Mismatch repair deficiency (dMMR) or high microsatellite instability (MSI-H), leading to high tumor mutational burden (TMB) and increased neoantigen production, is the most established predictor, resulting in FDA approvals for pembrolizumab and dostarlimab in this subgroup. POLE mutations also confer hypermutation and high immunogenicity, predicting a favorable ICI response. Other biomarkers, including PD-L1 expression and TMB, show variable correlation with response and require further standardization. The tumor immune microenvironment, including tumor-infiltrating lymphocytes (TILs), also influences treatment outcomes. Clinical trials have demonstrated significant survival benefits for ICIs combined with chemotherapy (e.g., dostarlimab/pembrolizumab + carboplatin/paclitaxel) in first-line settings, especially for dMMR/MSI-H EC, and for ICI combinations with targeted agents (e.g., lenvatinib + pembrolizumab) in previously treated patients. Integrating molecular classification and validated biomarkers is essential for optimizing patient selection and developing personalized immunotherapy strategies for EC. Full article
Show Figures

Figure 1

28 pages, 1528 KiB  
Review
Is Human Chorionic Gonadotropin a Reliable Marker for Testicular Germ Cell Tumor? New Perspectives for a More Accurate Diagnosis
by Nunzio Marroncelli, Giulia Ambrosini, Andrea Errico, Sara Vinco, Elisa Dalla Pozza, Giulia Cogo, Ilaria Cristanini, Filippo Migliorini, Nicola Zampieri and Ilaria Dando
Cancers 2025, 17(14), 2409; https://doi.org/10.3390/cancers17142409 - 21 Jul 2025
Viewed by 320
Abstract
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high [...] Read more.
Testicular germ cell tumors (TGCTs) are the most common malignancies affecting young men between the ages of 14 and 44, accounting for about 95% of all testicular cancers. Despite being relatively rare compared to other cancers (~3.0 cases per 100,000 population, with high worldwide variability), TGCTs’ incidence is increasing, particularly in industrialized countries. The initial phase of TGCT diagnosis is performed by detecting in the blood the presence of three proteins, i.e., alpha-fetoprotein (AFP), lactate dehydrogenase (LDH), and human chorionic gonadotropin (hCG). Despite these proteins being defined as markers of TGCTs, they present limitations in specificity. Indeed, AFP is not elevated in pure seminomas; LDH serum levels can be elevated in other conditions, such as liver disease or tissue damage, and hCG can be elevated in both seminomas and non-seminomas, reducing its ability to differentiate between tumor types. However, the existence of hCG variants, characterized by distinct glycosylation profiles that are differentially expressed in TGCT types and subtypes, may increase the diagnostic and prognostic potential of this hormone. Furthermore, emerging molecular biomarkers, including miRNAs and tumor cells-related epigenetic status, may offer new promising alternatives to improve diagnostic accuracy. Nonetheless, standardized diagnostic protocols still need to be implemented. Finally, understanding the biological roles of hCG isoforms and their “canonical” (e.g., LHCGR) and “non-canonical” (e.g., TGF-βR) receptor interactions may help in understanding tumor biology and therapeutic targeting. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 359
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

20 pages, 12298 KiB  
Article
Impact of Metastatic Microenvironment on Physiology and Metabolism of Small Cell Neuroendocrine Prostate Cancer Patient-Derived Xenografts
by Shubhangi Agarwal, Deepti Upadhyay, Jinny Sun, Emilie Decavel-Bueff, Robert A. Bok, Romelyn Delos Santos, Said Al Muzhahimi, Rosalie Nolley, Jason Crane, John Kurhanewicz, Donna M. Peehl and Renuka Sriram
Cancers 2025, 17(14), 2385; https://doi.org/10.3390/cancers17142385 - 18 Jul 2025
Viewed by 393
Abstract
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative [...] Read more.
Background: Potent androgen receptor pathway inhibitors induce small cell neuroendocrine prostate cancer (SCNC), a highly aggressive subtype of metastatic androgen deprivation-resistant prostate cancer (ARPC) with limited treatment options and poor survival rates. Patients with metastases in the liver have a poor prognosis relative to those with bone metastases alone. The mechanisms that underlie the different behavior of ARPC in bone vs. liver may involve factors intrinsic to the tumor cell, tumor microenvironment, and/or systemic factors, and identifying these factors is critical to improved diagnosis and treatment of SCNC. Metabolic reprogramming is a fundamental strategy of tumor cells to colonize and proliferate in microenvironments distinct from the primary site. Understanding the metabolic plasticity of cancer cells may reveal novel approaches to imaging and treating metastases more effectively. Methods: Using magnetic resonance (MR) imaging and spectroscopy, we interrogated the physiological and metabolic characteristics of SCNC patient-derived xenografts (PDXs) propagated in the bone and liver, and used correlative biochemical, immunohistochemical, and transcriptomic measures to understand the biological underpinnings of the observed imaging metrics. Results: We found that the influence of the microenvironment on physiologic measures using MRI was variable among PDXs. However, the MR measure of glycolytic capacity in the liver using hyperpolarized 13C pyruvic acid recapitulated the enzyme activity (lactate dehydrogenase), cofactor (nicotinamide adenine dinucleotide), and stable isotope measures of fractional enrichment of lactate. While in the bone, the congruence of the glycolytic components was lost and potentially weighted by the interaction of cancer cells with osteoclasts/osteoblasts. Conclusion: While there was little impact of microenvironmental factors on metabolism, the physiological measures (cellularity and perfusion) are highly variable and necessitate the use of combined hyperpolarized 13C MRI and multiparametric (anatomic, diffusion-, and perfusion- weighted) 1H MRI to better characterize pre-treatment tumor characteristics, which will be crucial to evaluate treatment response. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

16 pages, 2363 KiB  
Article
BUB1 an Overexpressed Kinase in Sarcoma: Finding New Target Therapy for Osteosarcoma, Liposarcoma, Synovial Sarcoma, and Leiomyosarcoma
by Mercedes Olvera-Valencia, Fernando Luna-Maldonado, Joselyn Juarez-Reyes, Alejandro Lopez-Saavedra, Jossimar Coronel-Hernandez, Oliver Millan-Catalan, Daniel Guzman-Gomez, Frida Rodríguez-Izquierdo, Luis A. Herrera, David Francisco Cantú-De León, Carlos Perez-Plasencia and Eloy-Andres Pérez-Yepez
Biomolecules 2025, 15(7), 1046; https://doi.org/10.3390/biom15071046 - 18 Jul 2025
Viewed by 720
Abstract
Sarcomas are heterogeneous mesenchymal tumors, and their pharmacological treatment remains challenging due to the high toxicity and poor efficacy of current therapies. This study aimed to identify common overexpressed kinases in the four most frequent sarcoma subtypes to establish novel therapeutic targets. A [...] Read more.
Sarcomas are heterogeneous mesenchymal tumors, and their pharmacological treatment remains challenging due to the high toxicity and poor efficacy of current therapies. This study aimed to identify common overexpressed kinases in the four most frequent sarcoma subtypes to establish novel therapeutic targets. A bioinformatics approach using patient-derived gene expression data sets identified overexpressed kinases shared across these sarcoma types. Later, BUB1 was determined as the kinase consistently overexpressed across the osteosarcoma, liposarcoma, leiomyosarcoma, and synovial sarcoma. Moreover, the role of this kinase was further validated through molecular and functional assays, including pharmacological inhibition in cell lines derived from the four sarcoma subtypes. BUB1 inhibition reduced the phosphorylation of AKT and H2A proteins, precluded cell proliferation, and inhibited colony formation in sarcoma cells. Finally, overall survival analysis highlighted a strong correlation between high BUB1 expression and poorer survival rates in sarcoma patients. Altogether, these findings underscore the potential of BUB1 as a therapeutic target and prognostic marker in sarcomas. Targeted inhibition of BUB1 may provide a novel strategy to reduce tumor growth and improve outcomes for patients with bone and soft tissue sarcomas. Full article
(This article belongs to the Special Issue Signaling Pathways as Therapeutic Targets for Cancer)
Show Figures

Figure 1

8 pages, 764 KiB  
Communication
A Strand-Specific Quantitative RT-PCR Method for Detecting vRNA, cRNA, and mRNA of H7N9 Avian Influenza Virus in a Mouse Model
by Bo Wang, Guangwen Wang, Yi-han Wang, Xuwei Liu, Manman Li, Huihui Kong, Hualan Chen, Li Jiang and Chengjun Li
Viruses 2025, 17(7), 1007; https://doi.org/10.3390/v17071007 - 17 Jul 2025
Viewed by 350
Abstract
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on [...] Read more.
Avian influenza virus (AIV) remains a persistent threat to both the poultry industry and human health. Among the AIV subtypes posing public health threats, H7N9 AIV is responsible for five epidemic waves of human infection in China. Here, a detection system based on a mouse model was established, which can simultaneously and quantitatively analyze the dynamic changes in the viral genomic RNA (vRNA), complementary RNA (cRNA), and messenger RNA (mRNA) of H7N9 AIV by using reverse transcription primers with tag sequences to reverse transcribe the three species of RNAs into corresponding cDNA templates, which are then absolutely quantified using the TaqMan quantitative PCR method. This system specifically targets the PB2 and NA genes and, for the first time, enables a spatiotemporal analysis of all three viral RNA species within an animal model. Our results revealed that H7N9 AIV exhibits characteristic replication kinetics, with all three species of viral RNAs showing a rapid increase followed by a certain degree of decline. This system offers a powerful tool for us to further advance our understanding of the replication dynamics of AIV in mice. Full article
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 310
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

20 pages, 8199 KiB  
Article
Piezo-Type Mechanosensitive Ion Channel Component 1 (PIEZO1) as a Potential Prognostic Marker in Renal Clear Cell Carcinoma
by Paulina Antosik, Martyna Szachniewicz, Michał Baran, Klaudia Bonowicz, Dominika Jerka, Ewelina Motylewska, Maciej Kwiatkowski, Maciej Gagat and Dariusz Grzanka
Int. J. Mol. Sci. 2025, 26(14), 6598; https://doi.org/10.3390/ijms26146598 - 9 Jul 2025
Viewed by 349
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney cancer and is often diagnosed at advanced stages. PIEZO1, a mechanosensitive ion channel, has been implicated in cancer progression, but its prognostic relevance in ccRCC remains unclear. This study [...] Read more.
Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of kidney cancer and is often diagnosed at advanced stages. PIEZO1, a mechanosensitive ion channel, has been implicated in cancer progression, but its prognostic relevance in ccRCC remains unclear. This study aimed to evaluate the expression pattern of PIEZO1 in ccRCC and its association with clinicopathological characteristics and patient survival. Immunohistochemical analysis was performed on formalin-fixed, paraffin-embedded tumor tissues from 111 patients with ccRCC, along with 23 matched peritumoral non-cancerous tissues. Protein expression was quantified using the H-score system. Associations with tumor grade, staging, and overall survival (OS) were analyzed. mRNA expression data were retrieved from The Cancer Genome Atlas (TCGA) to validate the protein-level findings. Functional enrichment and pathway analyses were conducted to explore the biological context of PIEZO1-related gene expression. PIEZO1 showed predominantly cytoplasmic localization, with significantly lower expression in tumor tissues compared to adjacent non-malignant tissue (p < 0.0001). High PIEZO1 expression was correlated with higher tumor grade (p = 0.0147) and shorter OS (p = 0.0047). These findings were confirmed at the mRNA level in the TCGA cohort. Multivariate Cox regression analysis identified PIEZO1 as an independent prognostic factor for OS. In conclusion, PIEZO1 may serve as a clinically relevant biomarker in ccRCC. Its overexpression is associated with more aggressive tumor characteristics and poor prognosis, underscoring the need for further investigation into its functional role and potential as a therapeutic target. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 1966 KiB  
Article
Development of INER-PP-F11N as the Peptide-Radionuclide Conjugate Drug Against CCK2 Receptor-Overexpressing Tumors
by Ming-Cheng Chang, Chun-Tang Chen, Ping-Fang Chiang, I-Chung Tang, Cheng-Liang Peng, Yuh-Feng Wang, Yi-Jou Tai and Ying-Cheng Chiang
Int. J. Mol. Sci. 2025, 26(14), 6565; https://doi.org/10.3390/ijms26146565 - 8 Jul 2025
Viewed by 392
Abstract
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, [...] Read more.
This work aimed to evaluate two albumin affinity structure-containing peptide-radionuclide conjugate drugs, INER-PP-F11N-1 and INER-PP-F11N-2, for the diagnosis/treatment of cholecystokinin receptor subtype 2 (CCK2R)-overexpressing cancers. We developed In-111- and Lu-177-labeled INER-PP-F11N radiopharmaceuticals and compared them with the current PP-F11N to investigate metabolic stability, biodistribution, SPECT/CT imaging, and therapeutic responses in CCK2R-expressing tumor xenograft mice. The metabolic stability of [111In]In/[177Lu]Lu-INER-PP-F11N remained above 90% for up to 144 h after labeling, indicating that the compound is highly stable under in vitro conditions. INER-PP-F11N showed 27% and 11% higher cellular uptake and internalization than PP-F11N, respectively. In vivo SPECT/CT imaging confirmed that INER-PP-F11N could accumulate at the tumor site of mice 24 h after receiving the two radiopharmaceutical agents. Biodistribution analysis revealed a significantly greater tumor uptake and reduced accumulation of INER-PP-F11N in the kidneys compared with PP-F11N. Furthermore, INER-PP-F11N significantly inhibited the growth of the CCK2R-overexpressing tumors in mice. The INER-PP-F11N radiopharmaceutical was superior as a theragnostic agent compared with the current PP-F11N. Our study suggests that INER-PP-F11N may be an innovative radiopharmaceutical agent for CCK2R-overexpressing tumors. Full article
Show Figures

Graphical abstract

16 pages, 1564 KiB  
Article
Antiprotozoal Effects of Pediococcus acidilactici-Derived Postbiotic on Blastocystis Subtypes ST1/ST3
by Selahattin Aydemir, Yunus Emre Arvas, Mehmet Emin Aydemir, Fethi Barlık, Esra Gürbüz, Yener Yazgan and Abdurrahman Ekici
Pathogens 2025, 14(7), 664; https://doi.org/10.3390/pathogens14070664 - 5 Jul 2025
Viewed by 498
Abstract
Blastocystis, a common intestinal protozoan in humans, is associated with gastrointestinal disorders, irritable bowel syndrome, urticaria, and colorectal cancer. Its genetic diversity and potential for treatment resistance make it a focus of ongoing research. This study evaluated the in vitro antiprotozoal activity [...] Read more.
Blastocystis, a common intestinal protozoan in humans, is associated with gastrointestinal disorders, irritable bowel syndrome, urticaria, and colorectal cancer. Its genetic diversity and potential for treatment resistance make it a focus of ongoing research. This study evaluated the in vitro antiprotozoal activity of a postbiotic derived from Pediococcus acidilactici as a natural alternative treatment. P. acidilactici cultures were grown in MRS broth under anaerobic conditions, and the postbiotic was collected and characterized for pH, yield, organic acid composition, and phenolic compound content. Human isolates of Blastocystis subtypes ST1 and ST3 were cultured in Jones’ medium and exposed to varying postbiotic concentrations for 72 h. Viability was assessed microscopically. The cytotoxic effect of the postbiotic-derived P. acidilactici was evaluated by investigating its impact on the viability of HT-29 cells using the Cell Counting Kit 8. The postbiotic showed a 7% yield and a pH of 4.52 ± 0.11. It contained seven different organic acids, predominantly lactic acid, and eleven phenolic compounds, with naringin as the most abundant. At 4.38 mg/mL, the postbiotic achieved over 94% inhibition and 100% inhibition at 8.75 mg/mL and above. A pH analysis confirmed that the inhibition was independent of the culture medium acidity. Cell viability was not affected at the postbiotic concentration showing 100% antiprotozoal activity (8.75 mg/mL). These findings suggest that the P. acidilactici postbiotic is effective on a mixed culture of ST1 and ST3 subtypes and holds promise as a safe, natural antiprotozoal agent. Further in vivo studies are needed to confirm this. Full article
Show Figures

Figure 1

Back to TopTop