Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = H1N1pdm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1758 KiB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

16 pages, 1182 KiB  
Article
Machine Learning-Based Identification of Risk Factors for ICU Mortality in 8902 Critically Ill Patients with Pandemic Viral Infection
by Elisabeth Papiol, Ricard Ferrer, Juan C. Ruiz-Rodríguez, Emili Díaz, Rafael Zaragoza, Marcio Borges-Sa, Julen Berrueta, Josep Gómez, María Bodí, Susana Sancho, Borja Suberviola, Sandra Trefler and Alejandro Rodríguez
J. Clin. Med. 2025, 14(15), 5383; https://doi.org/10.3390/jcm14155383 - 30 Jul 2025
Viewed by 199
Abstract
Background/Objectives: The SARS-CoV-2 and influenza A (H1N1)pdm09 pandemics have resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors for ICU mortality at the time of admission can help optimize clinical decision making. However, the risk factors identified may [...] Read more.
Background/Objectives: The SARS-CoV-2 and influenza A (H1N1)pdm09 pandemics have resulted in high numbers of ICU admissions, with high mortality. Identifying risk factors for ICU mortality at the time of admission can help optimize clinical decision making. However, the risk factors identified may differ, depending on the type of analysis used. Our aim is to compare the risk factors and performance of a linear model (multivariable logistic regression, GLM) with a non-linear model (random forest, RF) in a large national cohort. Methods: A retrospective analysis was performed on a multicenter database including 8902 critically ill patients with influenza A (H1N1)pdm09 or COVID-19 admitted to 184 Spanish ICUs. Demographic, clinical, laboratory, and microbiological data from the first 24 h were used. Prediction models were built using GLM and RF. The performance of the GLM was evaluated by area under the ROC curve (AUC), precision, sensitivity, and specificity, while the RF by out-of-bag (OOB) error and accuracy. In addition, in the RF, the im-portance of the variables in terms of accuracy reduction (AR) and Gini index reduction (GI) was determined. Results: Overall mortality in the ICU was 25.8%. Model performance was similar, with AUC = 76% for GLM, and AUC = 75.6% for RF. GLM identified 17 independent risk factors, while RF identified 19 for AR and 23 for GI. Thirteen variables were found to be important in both models. Laboratory variables such as procalcitonin, white blood cells, lactate, or D-dimer levels were not significant in GLM but were significant in RF. On the contrary, acute kidney injury and the presence of Acinetobacter spp. were important variables in the GLM but not in the RF. Conclusions: Although the performance of linear and non-linear models was similar, different risk factors were determined, depending on the model used. This alerts clinicians to the limitations and usefulness of studies limited to a single type of model. Full article
(This article belongs to the Special Issue Current Trends and Prospects of Critical Emergency Medicine)
Show Figures

Figure 1

11 pages, 1528 KiB  
Brief Report
End-of-Season Influenza Vaccine Effectiveness Against Laboratory-Confirmed Influenza in Outpatient Settings, Beijing, China: A Test-Negative Design
by Jiaojiao Zhang, Zhaomin Feng, Ying Shen, Weixian Shi, Ying Sun, Jiachen Zhao, Dan Wu, Jia Li, Chunna Ma, Wei Duan, Jiaxin Ma, Yingying Wang, Lu Zhang, Xiaodi Hu, Quanyi Wang, Daitao Zhang and Peng Yang
Vaccines 2025, 13(8), 809; https://doi.org/10.3390/vaccines13080809 - 30 Jul 2025
Viewed by 252
Abstract
This study aimed to estimate the end-of-season influenza vaccine effectiveness (VE) for the 2024/25 season in Beijing, China. Methods: We used a test-negative design (TND) to assess influenza VE among outpatients with influenza-like illness (ILI) enrolled through the influenza virological surveillance in sentinel [...] Read more.
This study aimed to estimate the end-of-season influenza vaccine effectiveness (VE) for the 2024/25 season in Beijing, China. Methods: We used a test-negative design (TND) to assess influenza VE among outpatients with influenza-like illness (ILI) enrolled through the influenza virological surveillance in sentinel hospitals in Beijing from week 44, 2024 to week 14, 2025. Cases were ILI patients who tested positive for influenza; controls were those who tested negative. Results: Among 18,405 ILI patients tested, 3690 (20.0%) were positive for influenza, with A(H1N1)pdm09 as the predominant strain (98.9%). The overall influenza vaccination coverage was 12.4%. Adjusted VE was 48.3% (95%CI: 40.4%–55.3%) against any influenza and 48.2% (95%CI: 40.3%–55.1%) against A(H1N1)pdm09, with the highest VE observed in adults aged 18–59 years (79.0%). The adjusted VE was similar for those vaccinated in 2023/24 only (53.1%) or both 2023/24 and 2024/25 seasons (50.8%), but lower for those vaccinated only in the 2024/25 season (48.5%). The adjusted VE was higher during the epidemic period (52.5%) than in the pre-epidemic (48.1%) and post-epidemic (35.3%) periods. Conclusions: Our findings indicate moderate VE against laboratory-confirmed influenza, especially A(H1N1)pdm09, during the end of the 2024/25 season in Beijing, China. Influenza vaccination provided protective effects across different epidemic periods. These timely estimates support ongoing public health communication and immunization strategies. Full article
(This article belongs to the Section Vaccine Advancement, Efficacy and Safety)
Show Figures

Figure 1

22 pages, 4670 KiB  
Article
3,3′-Diindolylmethane Improves the Viral Pneumonia Outcomes After Influenza and SARS-CoV-2 Infection in Animal Models
by Vsevolod Kiselev, Irina Leneva, Anna Ivanina, Artem Poromov, Irina Falynskova, Nadezhda Kartashova, Ekaterina Glubokova, Galina Trunova, Sergey Sudakov, Vadim Drukh, Vitaly Zverev and Oleg Kiselev
Viruses 2025, 17(7), 964; https://doi.org/10.3390/v17070964 - 9 Jul 2025
Viewed by 442
Abstract
Influenza and SARS-CoV-2 are often associated with viral pneumonia, resulting from direct exposure of the virus to lung tissue. 3,3′-Diindolylmethane (DIM) is a naturally occurring substance with multi-target activity, including anti-inflammatory and epigenetic modulation. In this study, we evaluated the therapeutic efficacy in [...] Read more.
Influenza and SARS-CoV-2 are often associated with viral pneumonia, resulting from direct exposure of the virus to lung tissue. 3,3′-Diindolylmethane (DIM) is a naturally occurring substance with multi-target activity, including anti-inflammatory and epigenetic modulation. In this study, we evaluated the therapeutic efficacy in vivo of a DIM formulation with fish oil (Cesarox Epi) against influenza A (H1N1) infection in mice and against SARS-CoV-2 infection in Syrian hamsters. In a model of lethal influenza pneumonia induced by A/California/04/2009 (H1N1)pdm09 virus, we showed that 5 days’ treatment with DIM Epi at 10, 20, and 60 mg/kg/day delayed the time to death, prevented body weight loss, and resulted in significant improvements in survival. DIM Epi tested in hamsters infected with SARS-CoV2 Dubrovka (Wuhan-like) strain at doses 50 and 100 mg/kg/day reduced clinical signs, weight loss, temperature elevation, and lung pathology. In both models of infections, treatment with DIM Epi did not significantly decrease viral titer in the animals’ lungs. DIM Epi and Oseltamivir were more effective against influenza infection when given in combination than given singly, while co-administration of DIM Epi with Molnupiravir did not yield an additive benefit against SARS-CoV-2 infection. These findings support DIM Epi as a promising host-directed adjunct therapy for viral pneumonia with potential to enhance outcomes in respiratory infections. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 707 KiB  
Article
Incidence of Circulating Antibodies Against Hemagglutinin of Influenza Viruses in Epidemic Season 2023/2024 in Poland
by Katarzyna Kondratiuk, Aleksander Masny, Anna Poznańska, Karol Szymański, Katarzyna Łuniewska, Emilia Czajkowska, Bartosz Mańkowski and Lidia B. Brydak
Biomolecules 2025, 15(7), 977; https://doi.org/10.3390/biom15070977 - 7 Jul 2025
Viewed by 402
Abstract
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population [...] Read more.
The aim of this study was to determine the level of anti-hemagglutinin antibodies using the hemagglutination inhibition test (HAI) in the blood sera of patients collected during the 2023/2024 epidemic season in Poland. This data is valuable for assessing the level of population immunity to influenza viruses circulating in Poland during this epidemic season. The study material consisted of serum samples collected across the country and divided into seven age groups. The test results confirmed the presence of anti-hemagglutinin antibodies for the antigens included in the quadrivalent influenza vaccine recommended by the World Health Organization (WHO) for the 2023/2024 epidemic season: A/Victoria/4897/2022 (H1N1)pdm09, A/Darwin/9/2021 (H3N2), B/Austria/1359417/2021 (B/Victoria lineage) and B/Phuket/3073/2013 (B/Yamagata lineage). The highest values of the geometric mean (GMT = 121.0 [95% CI: 108.5–134.9]) and protective factor (70 [95% CI: 67–74]%) were recorded for the A/H3N2/influenza virus antigen. In Poland, the vaccination rate of the general population in the discussed season was only 5.52%. The obtained results can therefore be interpreted as a response of the immune system, consisting of the production of anti-hemagglutinin antibodies in patients who had previously had an infection caused by the influenza virus. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viral Infections)
Show Figures

Figure 1

14 pages, 895 KiB  
Article
Integrated In Silico, In Vitro, and In Vivo Studies Reveal Mangiferin as a Promising Antiviral Agent Against H1N1/pdm2009 Influenza Virus
by Yinde Gan, Fucheng Guo, Ayan Roy, Xiao Wang and Yongyi Shen
Viruses 2025, 17(7), 873; https://doi.org/10.3390/v17070873 - 21 Jun 2025
Viewed by 472
Abstract
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the [...] Read more.
The ongoing global threat posed by the influenza A virus, exacerbated by antigenic drift and the emergence of antiviral resistance, accentuates the urgent need for innovative therapeutic strategies. Through molecular docking, this study revealed that mangiferin has a strong binding affinity for the active site of the neuraminidase (NA) protein of influenza virus A(H1N1)pdm09, with a binding energy of −8.1 kcal/mol. In vitro assays confirmed a dose-dependent inhibition of NA, with an IC50 of 88.65 μM, and minimal cytotoxicity, as indicated by a CC50 of 328.1 μM in MDCK cells. In murine models, the administration of mangiferin at a dosage of 25 mg/kg significantly mitigated weight loss, decreased viral loads in nasal turbinates and lungs by over 1 log10 TCID50, and enhanced survival rates from 0% in control groups to 20% in mangiferin-treated group at 14 days post-infection. In addition, mangiferin was found to modulate host immune responses by simultaneously inhibiting pro-inflammatory cytokines, IL-6 and TNF-α, and upregulating the expression of anti-inflammatory IL-10 and antiviral IFN-γ, thus mitigating infection-induced inflammation. Our findings elucidate the dual mechanism of mangiferin involving the direct inhibition of NA and immunomodulation, thereby providing experimental evidence for exploring dual-mechanism-based anti-influenza strategies against resistant strains of influenza. Full article
(This article belongs to the Special Issue Antiviral Development for Emerging and Re-Emerging Viruses)
Show Figures

Figure 1

26 pages, 1815 KiB  
Article
A High-Yield Recombinant Inactivated Whole-Virion Nasal Influenza A(H1N1)pdm09 Virus Vaccine with an Attenuated PB2 Gene
by Seung-Eun Son, Jin-Ha Song, Ho-Won Kim, Se-Hee An, Seung-Ji Kim, Chung-Young Lee, Hyuk-Joon Kwon and Kang-Seuk Choi
Int. J. Mol. Sci. 2025, 26(12), 5489; https://doi.org/10.3390/ijms26125489 - 7 Jun 2025
Viewed by 789
Abstract
During the 2009 H1N1 pandemic (pdm09), the poor replication of PR8-derived vaccine strains in embryonated chicken eggs (ECEs) delayed vaccine production, necessitating costly adjuvants. To improve egg-based yield, we generated PB2-substituted H1N1 strains via reverse genetics, replacing PR8 PB2 with a PB2 lacking [...] Read more.
During the 2009 H1N1 pandemic (pdm09), the poor replication of PR8-derived vaccine strains in embryonated chicken eggs (ECEs) delayed vaccine production, necessitating costly adjuvants. To improve egg-based yield, we generated PB2-substituted H1N1 strains via reverse genetics, replacing PR8 PB2 with a PB2 lacking mammalian-adaptive mutations (dtxPB2), cognate pdm09 PB2 (19PB2), or avian PB2. All PB2-substituted strains achieved over tenfold higher titers than the conventional PR8 PB2-containing strain (rGD19), with rGD19/dtxPB2 and rGD19/19PB2 exhibiting significantly higher titers and reduced murine virulence. Among these, rGD19/19PB2 produced the highest hemagglutinin (HA) yield and, when administered intranasally as a binary ethyleneimine (BEI)-inactivated whole-virion vaccine, elicited a significantly stronger broncho-alveolar IgA response than rGD19. Both rGD19 and rGD19/19PB2 provided comparable protection against a homologous H1N1 challenge, yet only rGD19/19PB2 conferred full survival protection after a lethal heterologous H3N2 challenge. These findings show that incorporation of cognate PB2 enhances H1N1 replication in ECEs and antigen yield, reduces murine virulence, and confers robust homo- and heterosubtypic protection via intranasal immunization, underscoring the promise of PB2-modified H1N1 strains as inactivated mucosal whole-virion vaccines for future vaccine development. Full article
(This article belongs to the Special Issue Current Advances in Antivirals and Vaccines)
Show Figures

Graphical abstract

16 pages, 4152 KiB  
Article
Analysis of Epidemiological and Evolutionary Characteristics of Seasonal Influenza Viruses in Shenzhen City from 2018 to 2024
by Weiyu Peng, Hui Liu, Xin Wang, Chao Li, Shunwu Huang, Shiyu Qi, Zhongnan Hu, Xiaoying Xu, Haihai Jiang, Jinyu Duan, Hui Chen, Manyu Huang, Ying Sun, Weihua Wu, Min Jiang, Xuan Zou and Shisong Fang
Viruses 2025, 17(6), 798; https://doi.org/10.3390/v17060798 - 30 May 2025
Viewed by 641
Abstract
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly [...] Read more.
The SARS-CoV-2 pandemic and the implementation of associated non-pharmaceutical interventions (NPIs) profoundly altered the epidemiology of seasonal influenza viruses. To investigate these changes, we analyzed influenza-like illness samples in Shenzhen, China, across six influenza seasons spanning 2018 to 2024. Influenza activity declined markedly during the SARS-CoV-2 pandemic compared with the pre-pandemic period but returned to or even exceeded pre-pandemic levels in the post-pandemic era. Phylogenetic analysis of hemagglutinin (HA) and neuraminidase (NA) genes from 58 H1N1pdm09, 78 H3N2, and 97 B/Victoria isolates revealed substantial genetic divergence from the WHO-recommended vaccine strains. Notably, key mutations in the HA genes of H1N1pdm09, H3N2, and B/Victoria viruses were concentrated in the receptor-binding site (RBS) and adjacent antigenic sites. Hemagglutination inhibition (HI) assays demonstrated that most circulating viruses remained antigenically matched to their corresponding vaccine strains. However, significant antigenic drift was observed in H3N2 clade 3C.2a1b.1b viruses during the 2018–2019 season and in B/Victoria clade V1A.3a.2 viruses during the 2023–2024 season. These findings highlight the impact of NPIs and pandemic-related disruptions on influenza virus circulation and evolution, providing critical insights for future surveillance and public health preparedness. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

17 pages, 630 KiB  
Article
Acute Respiratory and Influenza Viruses Circulating in Kazakhstan During 2018–2024
by Tatyana Glebova, Nailya Klivleyeva, Assem Baimukhametova, Galina Lukmanova, Nurbol Saktaganov, Nuray Ongarbayeva, Baiken Baimakhanova, Gulmira Kassymova, Madisha Sagatova, Almagul Rachimbayeva, Nazgul Zhanuzakova, Tatyana Naidenova, Nigina Rakhmonova and Richard Webby
Pathogens 2025, 14(5), 493; https://doi.org/10.3390/pathogens14050493 - 16 May 2025
Viewed by 691
Abstract
Respiratory tract infections cause serious morbidity and mortality and are a major public health problem. The objective of our study was detection of the prevalence of viral respiratory diseases in the territory of Kazakhstan during the epidemic period of 2018–2024. The presence of [...] Read more.
Respiratory tract infections cause serious morbidity and mortality and are a major public health problem. The objective of our study was detection of the prevalence of viral respiratory diseases in the territory of Kazakhstan during the epidemic period of 2018–2024. The presence of respiratory viruses in nasopharyngeal swabs was analyzed using real-time polymerase chain reaction. The level of specific antibodies in the blood serum was determined by hemagglutination inhibition assay and enzyme-linked immunosorbent assay. In rtRT-PCR, patients were diagnosed with non-influenza viral respiratory tract infections as well as influenza viruses A(H1N1), A(H3N2), and B. Antibodies were detected against A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses and with simultaneous detection of both viruses. The circulation of influenza A(H3N2) viruses belonging to the 3C.2a1b.2a.2a.3a.1 clade was confirmed by whole-genome sequencing. According to the results, in the period 2018–2024, the spread of influenza A and B viruses and non-influenza respiratory tract infections was observed. The data of this study confirm the role of known causative agents of epidemic infection and indicate the need to continue monitoring their spread in Kazakhstan, which may add to the general quality of the health system. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

16 pages, 1014 KiB  
Article
Characterization of a Novel 2018 Influenza Virus Outbreak on the Yucatan Peninsula, Mexico, in the Summer
by Lumumba Arriaga-Nieto, David Alejandro Cabrera-Gaytán, Alfonso Vallejos-Parás, Porfirio Felipe Hernández-Bautista, Clara Esperanza Santacruz-Tinoco, Julio Elías Alvarado-Yaah, Yu-Mei Anguiano-Hernández, Bernardo Martínez-Miguel, María Erandhí Prieto-Torres, Concepción Grajales-Muñiz, Nancy Sandoval-Gutiérrez and Horacia Celina Velarde-Scull
Microorganisms 2025, 13(5), 1086; https://doi.org/10.3390/microorganisms13051086 - 7 May 2025
Viewed by 442
Abstract
During the 2017–2018 influenza season, there was high influenza activity, with a predominance of influenza A(H1N1)pdm09 circulation in the country. The influenza circulation pattern in the area of the Yucatan Peninsula was different from that of the rest of the country. However, in [...] Read more.
During the 2017–2018 influenza season, there was high influenza activity, with a predominance of influenza A(H1N1)pdm09 circulation in the country. The influenza circulation pattern in the area of the Yucatan Peninsula was different from that of the rest of the country. However, in the summer of 2018, there was a sudden increase in the number of identified cases. A retrospective analysis was performed using data generated by four molecular diagnostic laboratories of the Mexican Social Security Institute. Demographics, influenza positivity, seasonality and case fatality rates were recorded. We used odds ratios to compare outpatients who were confirmed by laboratory tests to be positive with those who were confirmed to be negative. The Kaplan–Meier method and Cox multivariate analysis were used to calculate cumulative risk. There were 4460 cases of ILI/SARI between Yucatan and Quintana Roo, which represented 53.1% of the total number of cases reported. Compared with that in 2009, the epidemic wave in 2018 was shorter and more expansive, with a greater number of reported cases, as well as a greater number of people who required hospitalization. The dominant pattern of A(H1N1)pdm09 influenza activity on the Yucatan Peninsula in the summer of 2018 has not been observed since the influenza pandemic of 2009. Full article
(This article belongs to the Special Issue Pandemics and Infectious Diseases)
Show Figures

Figure 1

12 pages, 763 KiB  
Article
Circulation and Spillover of pdmH1N1 Influenza A Virus at an Educational Swine Farm in Chile, 2019–2023
by Soledad Ruiz, Constanza Díaz-Gavidia, María Antonieta González, Pablo Galdames, Cristóbal Oyarzún, Cecilia Baumberger, Camila Rojas, Christopher Hamilton-West, Bridgett Sharp, Shaoyuan Tan, Stacey Schultz-Cherry and Pedro Jimenez-Bluhm
Viruses 2025, 17(5), 635; https://doi.org/10.3390/v17050635 - 28 Apr 2025
Viewed by 703
Abstract
Educational farms provide students with hands-on experience in agricultural and animal practices. However, the close contact between humans and farm animals creates a significant interface for zoonotic disease transmission, yet research on infectious diseases in such settings remains limited. This study investigates the [...] Read more.
Educational farms provide students with hands-on experience in agricultural and animal practices. However, the close contact between humans and farm animals creates a significant interface for zoonotic disease transmission, yet research on infectious diseases in such settings remains limited. This study investigates the ongoing spillovers of human-origin influenza A virus (IAV) into swine at an educational farm in central Chile, describing IAV prevalence, outbreak dynamics, and the genomic characterization of detected strains. The Menesianos educational farm, located in Melipilla, central Chile, houses approximately 40 swine alongside other domestic animals, such as horses and cows. As part of an active IAV surveillance project, monthly nasal swab samples were collected from pigs between June 2019 and September 2023 for IAV detection via RT-qPCR targeting the M gene, with positive samples subsequently sequenced. During the study period, monthly IAV prevalence ranged from 0% to 52.5%, with a notable outbreak detected between May and June 2023. The outbreak lasted 5 weeks, peaking at 52.5% prevalence during week 3. Nine IAV strains were isolated over the study period, eight of which were obtained during weeks 2 and 3 of the outbreak. Phylogenetic analysis revealed that all strains were closely related to the pandemic H1N1 2009 influenza virus, with the closest related strains being those circulating in humans in Chile during the same years. These findings highlight the importance of conducting regular IAV surveillance on educational farms, where close interactions between animals and individuals—particularly children and young people—can facilitate viral spillovers and potential reverse zoonosis events. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

27 pages, 326 KiB  
Review
Improving Influenza Nomenclature Based on Transmission Dynamics
by Jwee Chiek Er
Viruses 2025, 17(5), 633; https://doi.org/10.3390/v17050633 - 28 Apr 2025
Viewed by 640
Abstract
Influenza A viruses (IAVs) evolve rapidly, exhibit zoonotic potential, and frequently adapt to new hosts, often establishing long-term reservoirs. Despite advancements in genetic sequencing and phylogenetic classification, current influenza nomenclature systems remain static, failing to capture evolving epidemiological patterns. This rigidity has led [...] Read more.
Influenza A viruses (IAVs) evolve rapidly, exhibit zoonotic potential, and frequently adapt to new hosts, often establishing long-term reservoirs. Despite advancements in genetic sequencing and phylogenetic classification, current influenza nomenclature systems remain static, failing to capture evolving epidemiological patterns. This rigidity has led to delays or misinterpretations in public health responses, economic disruptions, and confusion in scientific communication. The existing nomenclature does not adequately reflect real-time transmission dynamics or host adaptations, limiting its usefulness for public health management. The 2009 H1N1 pandemic exemplified these limitations, as it was mischaracterized as “swine flu” despite sustained human-to-human transmission and no direct pig-to-human transmission reported. This review proposes a real-time, transmission-informed nomenclature system that prioritizes host adaptation and sustained transmissibility (R0 > 1) to align influenza classification with epidemiological realities and risk management. Through case studies of H1N1pdm09, H5N1, and H7N9, alongside a historical overview of influenza naming, we demonstrate the advantages of integrating transmission dynamics into naming conventions. Adopting a real-time, transmission-informed approach will improve pandemic preparedness, strengthen global surveillance, and enhance influenza classification for scientists, policymakers, and public health agencies. Full article
23 pages, 4664 KiB  
Article
Dynamic Interaction Between SARS-CoV-2 and Influenza A Virus Infection in Human Respiratory Tissues and Cells
by John C. W. Ho, Kachun Ng, Rachel H. H. Ching, Malik Peiris, John M. Nicholls, Michael C. W. Chan and Kenrie P. Y. Hui
Microorganisms 2025, 13(5), 988; https://doi.org/10.3390/microorganisms13050988 - 25 Apr 2025
Viewed by 656
Abstract
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The [...] Read more.
With the concurrent circulations of SARS-CoV-2 omicron and influenza A viruses in the community, there is evidence showing co-infection with both viruses. However, disease severity may vary due to the complex immunity landscape of the patients and the neutralizing antibody waning status. The intrinsic dynamic relationship and pathological significance for such co-infections remain largely unknown. The replication kinetics and innate immune responses from the co-infections of SARS-CoV-2 (Omicron BA.1 and D614G variant) and influenza A viruses (pandemic H1N1, seasonal H3N2 and highly pathogenic avian H5N1) were characterized in human respiratory tissue explants, human airway, and alveolar epithelial cells. SARS-CoV-2 reduced the replication of influenza A viruses, but not vice versa, during co-infections in human bronchial tissues and airway epithelial cells. In lung tissues, the co-infections showed minimal effects on each other, but the viral replications of the two viruses were mutually reduced except for H1N1pdm in the alveolar epithelial cells irrespective of the enhancement of the ACE2 receptor. Notably, the co-infections showed a significant upregulation of the innate immune responses of SARS-CoV-2 in comparison to single infections in both respiratory epithelial cells, suggesting that co-infections of influenza A viruses potentially lead to more severe damage to the host than SARS-CoV-2 single infections. Full article
(This article belongs to the Special Issue Infections, Immune Mechanisms and Host-Pathogen Interactions)
Show Figures

Figure 1

24 pages, 13076 KiB  
Article
Three-Chamber Actuated Humanoid Joint-Inspired Soft Gripper: Design, Modeling, and Experimental Validation
by Yinlong Zhu, Qin Bao, Hu Zhao and Xu Wang
Sensors 2025, 25(8), 2363; https://doi.org/10.3390/s25082363 - 8 Apr 2025
Viewed by 455
Abstract
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising [...] Read more.
To address the limitations of single-chamber soft grippers, such as constant curvature, insufficient motion flexibility, and restricted fingertip movement, this study proposes a soft gripper inspired by the structure of the human hand. The designed soft gripper consists of three fingers, each comprising three soft joints and four phalanges. The air chambers in each joint are independently actuated, enabling flexible grasping by adjusting the joint air pressure. The constraint layer is composed of a composite material with a mass ratio of 5:1:0.75 of PDMS base, PDMS curing agent, and PTFE, which enhances the overall finger stiffness and fingertip load capacity. A nonlinear mathematical model is established to describe the relationship between the joint bending angle and actuation pressure based on the constant curvature assumption. Additionally, the kinematic model of the finger is developed using the D–H parameter method. Finite element simulations using ABAQUS analyze the effects of different joint pressures and phalange lengths on the grasping range, as well as the fingertip force under varying actuation pressures. Bending performance and fingertip force tests were conducted on the soft finger actuator, with the maximum fingertip force reaching 2.21 N. The experimental results show good agreement with theoretical and simulation results. Grasping experiments with variously sized fruits and everyday objects demonstrate that, compared to traditional single-chamber soft grippers, the proposed humanoid joint-inspired soft gripper significantly expands the grasping range and improves grasping force by four times, achieving a maximum grasp weight of 0.92 kg. These findings validate its superior grasping performance and potential for practical applications. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

11 pages, 1692 KiB  
Article
Patterns of the Circulation of Influenza in a Targeted Jordanian Subpopulation from November 2021 to April 2023
by Ashraf I. Khasawneh, Nisreen M. Himsawi, Jumana A. Abu-Raideh, Ashraf Sammour, Hazem Abu Safieh, Mohammad Al Qudah, Ali Obeidat, Moureq R. Alotaibi, Hafez Al-Momani, Rame Khasawneh, Sofian Al Shboul and Tareq Saleh
Pathogens 2025, 14(4), 365; https://doi.org/10.3390/pathogens14040365 - 8 Apr 2025
Viewed by 793
Abstract
Background: Influenza remains a global health challenge, causing significant morbidity and mortality. This study explores the epidemiology of influenza A (IAV) and B (IBV) during the 2021–2023 winter seasons within a targeted Jordanian subpopulation to inform public health strategies. Methods: Nasopharyngeal swabs from [...] Read more.
Background: Influenza remains a global health challenge, causing significant morbidity and mortality. This study explores the epidemiology of influenza A (IAV) and B (IBV) during the 2021–2023 winter seasons within a targeted Jordanian subpopulation to inform public health strategies. Methods: Nasopharyngeal swabs from patients with acute respiratory tract infections (ARTIs) in three major Jordanian cities were analyzed. RT-PCR was utilized to detect common respiratory pathogens, and specific primers identified IAV (H1N1) pdm09, H3N2, and IBV subtypes. Statistical analyses examined influenza subtype frequencies and their association with demographics and coinfection patterns. Results: IAV, IBV, and ICV were detected in 9.4%, 13.5%, and 5.5% of cases, respectively. Predominant strains were IAV (H1N1) pdm09 (55.8%), H3N2 (30.2%), and IBV Victoria lineage (98.4%). Coinfections with IAV frequently involved Bordetella spp., Staphylococcus aureus, and IBV, while IBV also showed coinfections with Haemophilus influenzae type B and IAV. Conclusions: The predominance of IAV (H1N1) pdm09 and IBV Victoria lineage highlights the need for strain-specific vaccination. Frequent coinfections underscore the importance of comprehensive diagnostics. Local public health strategies should focus on increasing vaccine coverage and preventive education, especially for adults and urban populations. Full article
Show Figures

Figure 1

Back to TopTop