Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (273)

Search Parameters:
Keywords = H-abstraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
44 pages, 984 KB  
Article
Adaptive Hybrid Consensus Engine for V2X Blockchain: Real-Time Entropy-Driven Control for High Energy Efficiency and Sub-100 ms Latency
by Rubén Juárez and Fernando Rodríguez-Sela
Electronics 2026, 15(2), 417; https://doi.org/10.3390/electronics15020417 - 17 Jan 2026
Viewed by 58
Abstract
We present an adaptive governance engine for blockchain-enabled Vehicular Ad Hoc Networks (VANETs) that regulates the latency–energy–coherence trade-off under rapid topology changes. The core contribution is an Ideal Information Cycle (an operational abstraction of information injection/validation) and a modular VANET Engine implemented as [...] Read more.
We present an adaptive governance engine for blockchain-enabled Vehicular Ad Hoc Networks (VANETs) that regulates the latency–energy–coherence trade-off under rapid topology changes. The core contribution is an Ideal Information Cycle (an operational abstraction of information injection/validation) and a modular VANET Engine implemented as a real-time control loop in NS-3.35. At runtime, the Engine monitors normalized Shannon entropies—informational entropy S over active transactions and spatial entropy Hspatial over occupancy bins (both on [0,1])—and adapts the consensus mode (latency-feasible PoW versus signature/quorum-based modes such as PoS/FBA) together with rigor parameters via calibrated policy maps. Governance is formulated as a constrained operational objective that trades per-block resource expenditure (radio + cryptography) against a Quality-of-Information (QoI) proxy derived from delay/error tiers, while maintaining timeliness and ledger-coherence pressure. Cryptographic cost is traced through counted operations, Ecrypto=ehnhash+esignsig, and coherence is tracked using the LCP-normalized definition Dledger(t) computed from the longest common prefix (LCP) length across nodes. We evaluate the framework under urban/highway mobility, scheduled partitions, and bounded adversarial stressors (Sybil identities and Byzantine proposers), using 600 s runs with 30 matched random seeds per configuration and 95% bias-corrected and accelerated (BCa) bootstrap confidence intervals. In high-disorder regimes (S0.8), the Engine reduces total per-block energy (radio + cryptography) by more than 90% relative to a fixed-parameter PoW baseline tuned to the same agreement latency target. A consensus-first triggering policy further lowers agreement latency and improves throughput compared with broadcast-first baselines. In the emphasized urban setting under high mobility (v=30 m/s), the Engine keeps agreement/commit latency in the sub-100 ms range while maintaining finality typically within sub-150 ms ranges, bounds orphaning (≤10%), and reduces average ledger divergence below 0.07 at high spatial disorder. The main evaluation is limited to N100 vehicles under full PHY/MAC fidelity. PoW targets are intentionally latency-feasible and are not intended to provide cryptocurrency-grade majority-hash security; operational security assumptions and mode transition safeguards are discussed in the manuscript. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks, 2nd Edition)
19 pages, 3762 KB  
Article
Understanding Aging Mechanism of SBS/CR Composite Modified Asphalt Based on ATR-FTIR: Chemical Degradation and Aging Deterioration
by Lin Li, Chen Yang, Lingwen Li, Weiwen Quan, Yuanxiang Wang, Yiqiu Tan, Yunliang Li and Zhenyu Zhang
Materials 2026, 19(1), 167; https://doi.org/10.3390/ma19010167 - 2 Jan 2026
Viewed by 341
Abstract
To explore the aging mechanism of (Styrene Butadiene Styrene) and CR (Crumb Rubber) composite-modified asphalt in a multi-source environment, the characteristics of functional group changes in the infrared spectroscopy of SBS and CR modifiers as well as their single and composite modified asphalts [...] Read more.
To explore the aging mechanism of (Styrene Butadiene Styrene) and CR (Crumb Rubber) composite-modified asphalt in a multi-source environment, the characteristics of functional group changes in the infrared spectroscopy of SBS and CR modifiers as well as their single and composite modified asphalts under thermal, UV, and coupled aging were tested using Attenuated Total Reflection–Fourier Transform Infrared Spectroscopy (ATR-FTIR) technology. It was found that SBS and CR modifiers exhibited significant yellowing degradation after aging due to high-energy effects, causing abstraction of α-hydrogen from polybutadiene via oxidation, initiating radical chain reactions. The addition of SBS and CR to asphalt significantly increased the absorption peaks of 966 cm−1 polybutadiene and 699 cm−1 polystyrene. However, certain labile bonds in the modified asphalt, such as the C-H bond, C-C bond, and C=C double bond in polycyclic aromatic hydrocarbons, were easily broken to produce reactive free radicals under aging, which reacted chemically with other components to produce new sulfoxide and carbonyl groups. Overall, the aging reaction of the asphalt was a dual sequential oxidation process. Under normal temperature conditions in the early stage, a large number of sulfoxides were oxidized. In the later stage of the reaction, as the concentration and persistence of active free radicals increased, the oxidation reaction of the asphalt benzyl carbon also enhanced significantly, ultimately generating carbonyls. Full article
Show Figures

Graphical abstract

20 pages, 2290 KB  
Article
Raman-Validated Macromolecular Model of SG Coking Coal: ESP–FMO Mapping Unravels Site-Selective Oxidation in Combustion
by Xiaoxu Gao, Lu Du, Jinzhang Jia, Hao Tian and Xiaoqi Huang
Appl. Sci. 2025, 15(23), 12540; https://doi.org/10.3390/app152312540 - 26 Nov 2025
Viewed by 307
Abstract
Based on comprehensive experimental datasets—proximate/ultimate analyses, XPS, solid-state 13C NMR, and Raman spectroscopy—we constructed and optimized a compositionally faithful macromolecular model of SG coking coal. Using density-functional theory (DFT) calculations, we simulated electrostatic-potential (ESP) fields and frontier molecular orbitals (FMO) to probe [...] Read more.
Based on comprehensive experimental datasets—proximate/ultimate analyses, XPS, solid-state 13C NMR, and Raman spectroscopy—we constructed and optimized a compositionally faithful macromolecular model of SG coking coal. Using density-functional theory (DFT) calculations, we simulated electrostatic-potential (ESP) fields and frontier molecular orbitals (FMO) to probe elementary oxidation steps relevant to combustion, and focused on how heteroatom speciation and carbon ordering govern site-selective reactivity. Employing multi-peak deconvolution and parameter synthesis, we obtained an aromatic fraction fa = 76.56%, a bridgehead-to-periphery ratio XBP = 0.215, and Raman indices ID1/IG ≈ 1.45 (area) with FWHM(G) ≈ 86.7 cm−1; the model composition C190H144N2O21S and its predicted 13C NMR envelope validated the structural assignment against experiment. ESP–FMO synergy revealed electron-rich hotspots at phenolic/ether/carboxyl and thiophenic domains and electron-poor belts at H-terminated edges/aliphatic bridges, rationalizing carbon-end oxidation of CO, weak electrostatic steering by O2/CO2, and a benzylic H-abstraction → edge addition → O-insertion/charge-transfer sequence toward CO2/H2O, with thiophenic sulfur comparatively robust. We quantified surface functionalities (C–O 65.46%, O–C=O 24.51%, C=O 10.03%; pyrrolic/pyridinic N dominant; thiophenic-S with minor oxidized S) and determined a naphthalene-dominant, stacked-polyaromatic architecture with sparse alkyl side chains after Materials Studio optimization. The findings are significant for mechanistic understanding and control of coking-coal oxidation, providing actionable hotspots and a reproducible workflow (multi-probe constraints → model building/optimization → DFT reactivity mapping → spectral back-validation) for blend design and targeted oxidation-inhibition strategies. Full article
Show Figures

Figure 1

29 pages, 73139 KB  
Article
Hydrogeological Characterization and Water Quality Evaluation of Amman-Wadi as Sir Aquifer, Northeastern Jordan
by Ibraheem Hamdan, Falk Lindenmaier, Paul Koeniger, Mu’ayyad Al Hseinat, Mathias Toll, Armin Margane, Omed Al-Kurdi, Mohammad Alqadi, Mohammad Al-Hyari, Florian Brückner, Rebecca Bahls and Ahmad AlShdaifat
Water 2025, 17(23), 3353; https://doi.org/10.3390/w17233353 - 23 Nov 2025
Viewed by 893
Abstract
Groundwater resources in Jordan are under severe stress due to rapidly increasing water demand and over-abstraction that far exceeds natural replenishment. In addition, water quality is threatened by pollution from the misuse of fertilizers and pesticides, leakage from septic tanks, and illegal waste [...] Read more.
Groundwater resources in Jordan are under severe stress due to rapidly increasing water demand and over-abstraction that far exceeds natural replenishment. In addition, water quality is threatened by pollution from the misuse of fertilizers and pesticides, leakage from septic tanks, and illegal waste disposal. This study focuses on the Aqeb, Corridor, and Special Economic Zone wellfields, where hydrological and hydrochemical investigations were carried out. A total of 36 groundwater samples were collected and analyzed for hydrochemical composition, stable isotopes of oxygen (δ18O) and hydrogen (δ2H), and trace elements. In addition, two exploration 2D seismic profiles crossing the study area were interpreted, providing critical insights into the activity of the subsurface Fuluk Fault zone and its relationship with the wellfields. The hydrochemical results reveal elevated total dissolved solids and nitrate concentrations, accompanied by more depleted δ18O and δ2H values in wells located in the central part of the study area. Three distinct hydrochemical groups were identified within the same aquifer, indicating heterogeneity in groundwater chemistry that reflects variations in recharge conditions, flow paths, and geochemical processes. The first group (high Na/Cl with low salinity) likely represents recently recharged waters with limited rock–water interaction. The second group (intermediate Na/Cl and moderate salinity) may be influenced by evaporation, irrigation return flow, or cation exchange. The third group (low Na/Cl with high salinity) suggests the dissolution of sulfate minerals or mixing with deeper mineralized groundwater, possibly facilitated by structural features such as the Fuluk Fault. Seismic interpretation indicates several active near-surface fault systems that are likely to serve as preferential pathways for salinity and nitrate enrichment, linked to intensive agricultural activities and wastewater leakage from nearby septic tanks. The findings emphasize the combined influence of geochemical processes, excessive groundwater abstraction, and structural features in controlling water quality in the region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 2666 KB  
Article
Experimental and Theoretical Studies on the Kinetics and Mechanism of the C3H8/C3D8 + Cl Reaction
by Łukasz Fojcik, Grzegorz Mierzwa, Zdzisław Latajka and Dariusz Stanisław Sarzyński
Molecules 2025, 30(22), 4406; https://doi.org/10.3390/molecules30224406 - 14 Nov 2025
Viewed by 792
Abstract
An experimental and theoretical investigation of the reaction between chlorine atoms and propane/deuterated propane (C3H8/C3D8) was performed. The experimental work aimed to determine absolute and site-specific rate constants for hydrogen and deuterium abstraction in the [...] Read more.
An experimental and theoretical investigation of the reaction between chlorine atoms and propane/deuterated propane (C3H8/C3D8) was performed. The experimental work aimed to determine absolute and site-specific rate constants for hydrogen and deuterium abstraction in the Cl + C3H8/C3D8 system. Measurements were conducted using the relative rate method at three temperatures between 298 and 387 K. Total rate constants for H/D abstraction by chlorine, as well as individual rate constants for abstraction from primary and secondary carbon sites, were obtained. The kinetic data for H abstraction agree well with previously reported literature values, confirming the reliability of the experimental approach. Notably, rate constants for the C3D8 + Cl reaction were determined for the first time, and the consistency of these results supports the reliability of the newly derived kinetic parameters. In the theoretical part of the study, hydrogen/deuterium abstraction from propane by atomic chlorine was analyzed within an atmospheric-chemistry context to clarify temperature dependence and site selectivity. Stationary points (SC, TS, PC, reactants, products) were optimized at MP2/aug-cc-pVDZ and verified by harmonic frequencies and intrinsic reaction-coordinate analyses. Eyring transition-state theory yielded 298–550 K rate constants with activation free energies referenced to SC. Our calculations indicate entrance-channel complex formation and effectively barrierless progress for most pathways; a small barrier appears only for RD1′. L-parameter evaluation classifies TS2 as reactant-like, and branching ratios identify –CH2– abstraction (RX2) as dominant. These findings align with the experimental data. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

13 pages, 1060 KB  
Article
Reaction Mechanisms of Aqueous Methane Reforming by Continuous Flow Two-Phase Plasma Discharge
by Ekow Agyekum-Oduro, Md. Mokter Hossain, Ahmad Mukhtar and Sarah Wu
Catalysts 2025, 15(10), 980; https://doi.org/10.3390/catal15100980 - 14 Oct 2025
Viewed by 890
Abstract
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and [...] Read more.
This study explores nonthermal plasma reactions of methane and water in a two-phase system to produce methanol, examining reaction pathways, kinetics, and product distribution over time. The results show that methanol is the dominant liquid phase product among other oxygenates, including ethanol and acetic acid, with hydrogen as the largest fraction among gas-phase products comprising carbon monoxide, carbon dioxide, ethylene, and acetylene. Conductivity and pH trends of reactant water and their influence on reaction products were also analyzed. Methanol was found to be formed principally from the reactive coupling of methyl and hydroxyl radicals, as well as from methoxy and hydrogen radical combinations. Hydrogen was produced from three pathways: stepwise dehydrogenation of methane through electron-mediated hydrogen abstraction, sequential hydrogenation of ethane to acetylene, and water splitting. The methanol-yielding reactions proceeded at different rates in the liquid and gas phases, with gas-phase reactions occurring approximately nine times faster than the liquid-phase reactions. This work provides valuable insights into reaction pathways for direct methane conversion to oxygenates and value-added gas products under mild conditions using water as an environmentally friendly oxidant. Full article
Show Figures

Graphical abstract

24 pages, 1249 KB  
Systematic Review
Evaluation of Factors Affecting Fluoride Release from Fluoride Varnishes: A Systematic Review
by Maciej Dobrzyński, Agnieszka Kotela, Sylwia Klimas, Zuzanna Majchrzak, Julia Kensy, Marzena Laszczyńska, Mateusz Michalak, Zbigniew Rybak, Magdalena Fast and Jacek Matys
Materials 2025, 18(19), 4603; https://doi.org/10.3390/ma18194603 - 4 Oct 2025
Cited by 1 | Viewed by 2088
Abstract
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors [...] Read more.
Introduction: Fluoride varnishes are widely used in caries prevention, but the rate and duration of fluoride ion release differ depending on material composition and environmental factors. Objectives: This systematic review synthesized evidence from in vitro studies on human teeth to identify key factors influencing fluoride release. Methods: A systematic literature search was conducted in July 2025 in PubMed, Scopus, Web of Science, Embase, and the Cochrane Library using the terms “fluoride release” AND “varnish” in titles and abstracts. Study selection followed PRISMA 2020 guidelines, predefined eligibility criteria, and was structured according to the PICO framework. Of 484 retrieved records, 15 studies met the inclusion criteria and were analyzed qualitatively. Results: The primary outcome was the magnitude and duration of fluoride release from varnishes. Most studies reported peak release within the first 24 h, followed by a marked decline, although some formulations (e.g., Clinpro XT and Duraphat) maintained more stable long-term release. Substantial methodological heterogeneity was observed across studies, including differences in sample type, storage medium, pH, temperature, and measurement protocols, which influenced fluoride release dynamics. Reported secondary outcomes included enamel remineralization, changes in surface properties, and antibacterial activity, with bioactive additives such as CPP–ACP and TCP enhancing preventive effects. Acidic conditions consistently increased fluoride release. Conclusions: The magnitude and persistence of fluoride release from varnishes depend on both intrinsic material properties and external environmental conditions. Bioactive additives may prolong fluoride availability and provide additional preventive benefits. Full article
(This article belongs to the Special Issue Advanced Dental Materials: From Design to Application, Third Edition)
Show Figures

Graphical abstract

14 pages, 2101 KB  
Article
Molecular Design of H2 Storage/Release Devices: A Direct Ab Initio MD Study
by Hiroto Tachikawa
Nanomaterials 2025, 15(19), 1498; https://doi.org/10.3390/nano15191498 - 1 Oct 2025
Viewed by 651
Abstract
To advance a hydrogen-based energy society, the development of efficient hydrogen storage materials is essential. In particular, such materials are expected to be lightweight and chemically stable. Moreover, they must allow for easy storage and release of hydrogen. In this study, we theoretically [...] Read more.
To advance a hydrogen-based energy society, the development of efficient hydrogen storage materials is essential. In particular, such materials are expected to be lightweight and chemically stable. Moreover, they must allow for easy storage and release of hydrogen. In this study, we theoretically designed hydrogen storage and release devices based on graphene (GR)—a lightweight and chemically stable material—using a direct ab initio molecular dynamics (AIMD) approach. The target reaction in this study is the hydrogen abstraction from hydrogenated graphene, H-(GR)-H, by hydrogen atom, resulting in molecular hydrogen formation: H-(GR)-H + H → GR-H + H2. Hydrogen atom (H) can be readily generated through the discharge of H2 gas. The calculated activation energy was −0.3 kcal/mol. The direct AIMD calculations showed that the hydrogen abstraction reaction proceeds without the activation barrier, and H2 is easily formed by the collision of H atom with the H-(GR)-H surface. For comparison, the addition reaction of hydrogen atom to the graphene surface was investigated: GR + H → GR–H. The activation energies were calculated to be 5–7 kcal/mol. These energetic profiles indicate that both hydrogen storage and release proceed with low and negative activation energies, respectively. On the basis of these calculations, H2-storage/release device was theoretically designed. Full article
(This article belongs to the Special Issue 2D Materials for Energy Conversion and Storage)
Show Figures

Figure 1

31 pages, 921 KB  
Review
Self-Management of Medications During Sick Days for Chronic Conditions: A Scoping Review
by Mimi Truong, Kamal Sud, Connie Van, Wubshet Tesfaye, Vani Nayak and Ronald L. Castelino
Medicina 2025, 61(10), 1742; https://doi.org/10.3390/medicina61101742 - 25 Sep 2025
Viewed by 1188
Abstract
Background and Objectives: Sick-day medication guidance involves patients self-adjusting medications during sick days to prevent adverse events and minimise exacerbation of their disease states. This review aimed to summarise and synthesise all sick-day interventions provided by healthcare professionals (HCPs) for patients with [...] Read more.
Background and Objectives: Sick-day medication guidance involves patients self-adjusting medications during sick days to prevent adverse events and minimise exacerbation of their disease states. This review aimed to summarise and synthesise all sick-day interventions provided by healthcare professionals (HCPs) for patients with chronic illnesses, including diabetes, cardiovascular disease, chronic kidney disease (CKD), adrenal insufficiency (AI), rheumatoid arthritis, chronic obstructive pulmonary disease (COPD), and asthma. Materials and Methods: A search of Embase, Medline, International Pharmaceutical Abstract, Scopus, Google Scholar, and the grey literature was conducted until July 2025. The review followed the methodological framework according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews. Data were extracted using a modified TIDieR checklist, and the findings were summarised descriptively and presented thematically. Results: The search included 6932 documents, and 97 met the inclusion criteria: 57 published guidelines/education resources and 40 pieces of original research. Seventy-four interventions were identified for diabetes (18), asthma (32), AI (8), CKD (6), AKI prevention (4), COPD (4), and mixed conditions (2). The most common type of intervention was written information (action plans and information sheets), with education mostly provided by multidisciplinary teams. Novel interventions included 24h phone support and an educational mobile application. Participants showed interest in sick-day interventions and HCPs viewed these interventions as effective, important, and easy to provide. However, interventions did not always translate to improved clinical outcomes, with studies reporting mixed outcomes regarding healthcare utilisation. Nonetheless, some interventions showed improved patient knowledge and satisfaction with care. Conclusions: Multiple interventions are available for asthma and diabetes, with fewer targeting CKD or acute kidney injury (AKI) prevention. While demand for these interventions from consumers and HCPs is high, implementation challenges and inconsistent benefits remain. Further primary research is needed to clarify which intervention features are most effective in yielding meaningful clinical outcomes. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

12 pages, 2471 KB  
Article
A Priori Error Analysis of an Adaptive Splitting Scheme for Non-Autonomous Second-Order Systems
by Christian Budde
Math. Comput. Appl. 2025, 30(5), 103; https://doi.org/10.3390/mca30050103 - 20 Sep 2025
Viewed by 1457
Abstract
We present a fully discrete splitting-Galerkin scheme for second-order, non-autonomous abstract Cauchy problems with time-dependent perturbations. By reformulating the second-order equation as a first-order system in the product space, we apply a Galerkin semi-discretization in space of order O(hk) [...] Read more.
We present a fully discrete splitting-Galerkin scheme for second-order, non-autonomous abstract Cauchy problems with time-dependent perturbations. By reformulating the second-order equation as a first-order system in the product space, we apply a Galerkin semi-discretization in space of order O(hk) and a Strang splitting in time of order O(Δt2). An embedded Runge–Kutta controller provides adaptive time-stepping to handle rapid temporal variations in the perturbation operator B(t). Under standard regularity and commutator assumptions on A(t) and B(t), we establish a priori error estimates max0tnTu(tn)unZ=O(hk+Δt2). Numerical experiments for a 1D perturbed wave equation confirm the theoretical convergence rates, illustrate stability thresholds in the unstable regime, and demonstrate up to 40% savings in computational cost via adaptivity. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

13 pages, 393 KB  
Review
Agro-Industrial Residues as Additives in Tropical Grass Silage: An Integrative Review
by Isadora Osório Maciel Aguiar Freitas, Antonio Leandro Chaves Gurgel, Marcos Jácome de Araújo, Tairon Pannunzio Dias-Silva, Edy Vitória Fonseca Martins, Rafael de Souza Miranda, Luís Carlos Vinhas Ítavo, Gelson dos Santos Difante and João Virgínio Emerenciano Neto
Grasses 2025, 4(3), 38; https://doi.org/10.3390/grasses4030038 - 16 Sep 2025
Viewed by 1670
Abstract
Agro-industrial residues can improve the fermentation quality of tropical forage grass silages when used as additives, but a systematic synthesis of their effectiveness is limited. This integrative review aimed to identify the main residues used as additives in silages and assess their effects [...] Read more.
Agro-industrial residues can improve the fermentation quality of tropical forage grass silages when used as additives, but a systematic synthesis of their effectiveness is limited. This integrative review aimed to identify the main residues used as additives in silages and assess their effects on the fermentation process. Following the PVO (population, variable of interest, and outcome) protocol, searches were conducted in the Wiley Online Library, Web of Science, and SCOPUS databases, with no restrictions on language, time, or region. The guiding question was: “What are the main agro-industrial residues used as additives in the ensiling of tropical forage grasses?” Of the 1414 documents initially retrieved, 138 were selected after screening titles, abstracts, and keywords. After removing duplicates and full-text evaluation, 58 studies met the inclusion criteria. Brazil led in the number of studies (89.66%). Elephant grass (Pennisetum purpureum Schum.) was the most studied forage (34.21%). Citrus pulp (13.79%) and coffee husk (12.07%) were the most evaluated residues. The addition of residues promoted a reduction in pH (66.07%), ammonia nitrogen (71.74%), buffer capacity (57.14%), and the concentrations of acetic (52.17%), propionic (52.63%), and butyric (55.00%) acids. Lactic acid content increased in 32.76% of studies; gas and effluent losses decreased in 69.57% and 86.36% of cases, respectively. Citrus pulp and coffee husk are the most used residues, enhancing fermentation quality. It is concluded that the use of agro-industrial residues in the ensiling of tropical forage grasses has the potential to improve fermentation quality. Full article
Show Figures

Figure 1

20 pages, 1363 KB  
Article
Hydroxyl Radical-Initiated Reaction of Nerol: A Pathway to Secondary Pollutants in an Indoor Environment
by Angappan Mano Priya and Gisèle El Dib
Reactions 2025, 6(3), 49; https://doi.org/10.3390/reactions6030049 - 12 Sep 2025
Viewed by 1178
Abstract
Nerol ((Z)-3,7-dimethylocta-2,6-dien-1-ol), (C10H18O), is a monoterpene alcohol that belongs to the family of BVOCs emitted naturally by means of vegetation and is found in various medicinal plants. This species attracted attention in the field of atmospheric chemistry due to [...] Read more.
Nerol ((Z)-3,7-dimethylocta-2,6-dien-1-ol), (C10H18O), is a monoterpene alcohol that belongs to the family of BVOCs emitted naturally by means of vegetation and is found in various medicinal plants. This species attracted attention in the field of atmospheric chemistry due to its unique structural, chemical and environmental properties. In this work, OH-addition and H-abstraction reactions of Nerol by OH radical have been investigated using M06-2X, CBS-QB3 and CCSD(T) with 6-311++G(d,p) basis set. The OH addition at the C=C double bond of Nerol was shown to be the most favorable, with a small relative energy barrier of −6.86 kcal/mol and H-abstraction at the CH2 group exhibits a relative energy barrier of 0.08 kcal/mol at CCSD(T)/6-311++G(d,p) level of theory. The obtained overall rate coefficient at 298 K is 9.68 × 10−10 cm3 molecule−1 s−1 using canonical variational transition state theory with small curvature tunnelling method (CVT/SCT), which is in good agreement with the experimental rate coefficient determined by Mahecha et al. (kOH = (1.60 ± 0.2) × 10−10) at 296 ± 2 K. The obtained rate coefficient exhibits negative temperature dependence, and the atmospheric lifetime of Nerol is about 18 min. The predicted oxidation pathways reveal the formation of key products such as formaldehyde, glycolaldehyde and 6-Methyl-hept-5-en-2-ol, which is also observed in previous experimental studies, indicating good agreement between theoretical and experimental findings. This study constitutes the first theoretical study and its dependence on temperature exploration, offering detailed insights into the degradation pathways and environmental impact of Nerol initiated by hydroxyl radicals. Full article
Show Figures

Graphical abstract

11 pages, 736 KB  
Article
Effluent-Dose Response of Continuous Haemofiltration Integrated into Veno-Venous ECMO for Septic Shock: A Retrospective Cohort Study
by Nicoleta Barbura, Tamara Mirela Porosnicu, Cristian Oancea, Dorel Sandesc, Marius Papurica, Ovidiu Bedreag, Ciprian Gîndac, Adelina Raluca Marinescu, Ruxandra Laza and Voichita Elena Lazureanu
Medicina 2025, 61(9), 1653; https://doi.org/10.3390/medicina61091653 - 11 Sep 2025
Viewed by 621
Abstract
Background and Objectives: The optimal effluent dose of continuous haemofiltration (CHF) when coupled to veno-venous extracorporeal membrane oxygenation (ECMO) for septic shock is unknown. We examined our 44-patient ECMO registry, contrasting a smaller high-dose subgroup (HDHF ≥ 45 mL kg−1 h [...] Read more.
Background and Objectives: The optimal effluent dose of continuous haemofiltration (CHF) when coupled to veno-venous extracorporeal membrane oxygenation (ECMO) for septic shock is unknown. We examined our 44-patient ECMO registry, contrasting a smaller high-dose subgroup (HDHF ≥ 45 mL kg−1 h−1; n = 13) with a larger standard-dose subgroup (SDHF 25–35 mL kg−1 h−1; n = 31). The primary endpoint was 72 h change in SOFA score (ΔSOFA). Materials and Methods: All adults cannulated for ECMO (January 2018–January 2025) and started on CHF within 2 h were eligible. Variables were abstracted at baseline, 24 h and 72 h. Continuous data were analysed by Student’s t or Mann–Whitney tests, categorical data by χ2/Fisher; and paired changes by Wilcoxon. Two-sided p < 0.05 signified significance. Results: Baseline characteristics were comparable (age 49.1 ± 15.2 vs. 50.4 ± 14.9 y; APACHE II 28.4 ± 5.3 vs. 27.5 ± 5.9). Median effluent reached 48.1 mL kg−1 h−1 (IQR 46.6–49.7) in HDHF and 29.7 mL kg−1 h−1 (27.5–31.9) in SDHF (p < 0.001). IL-6 fell by 1 061 ± 487 pg mL−1 with HDHF versus 637 ± 425 pg mL−1 with SDHF (p = 0.003). Mean arterial pressure rose 19.2 ± 8.1 vs. 12.7 ± 8.3 mmHg (p = 0.03), and norepinephrine declined 0.46 ± 0.22 vs. 0.30 ± 0.19 µg kg−1 min−1 (p = 0.04). ΔSOFA at 72 h was –4.4 ± 2.1 with HDHF and –2.6 ± 2.3 with SDHF (p = 0.01). Twenty-eight-day mortality was 38.5% (5/13) versus 45.2% (14/31), p = 0.64. Effluent dose correlated with ΔIL-6 (ρ = 0.53, p < 0.001) and ΔSOFA (ρ = 0.45, p = 0.003). Conclusions: In this ECMO cohort, high-dose haemofiltration, although applied in only 13 patients, appeared to achieve greater cytokine clearance, faster haemodynamic recovery and deeper early organ-failure improvement than standard dosing, without excess bleeding. Survival advantage was not demonstrable, underscoring the need for prospective randomised confirmation of the dose–response signal. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

24 pages, 603 KB  
Review
Dexamethasone Suppression Testing in Patients with Adrenal Incidentalomas with/Without Mild Autonomous Cortisol Secretion: Spectrum of Cortisol Cutoffs and Additional Assays (An Updated Analysis)
by Alexandra-Ioana Trandafir and Mara Carsote
Biomedicines 2025, 13(9), 2169; https://doi.org/10.3390/biomedicines13092169 - 5 Sep 2025
Viewed by 3595
Abstract
Background/Objective: The overnight 1-mg dexamethasone suppression test (DST) represents the conventional/standard tool for endogenous hypercortisolemia screening, typically in relationship with adrenal and pituitary masses. Nevertheless, an associated spectrum of challenges and pitfalls is found in daily practice. This analysis aimed to evaluate: [...] Read more.
Background/Objective: The overnight 1-mg dexamethasone suppression test (DST) represents the conventional/standard tool for endogenous hypercortisolemia screening, typically in relationship with adrenal and pituitary masses. Nevertheless, an associated spectrum of challenges and pitfalls is found in daily practice. This analysis aimed to evaluate: (I.) the diagnosis relevance of 1-mg DST in patients with adrenal incidentalomas (AIs) with/without mild autonomous cortisol secretion (MACS) exploring different cutoffs of the second-day plasma cortisol after dexamethasone administration (cs-DST) with respect to cardio-metabolic outcomes; (II.) the potential utility of adding other biomarkers to DST [plasma morning adrenocorticotropic hormone (ACTH), 24-h urinary free cortisol (UFC), late-night salivary cortisol (LNSC), dehydroepiandrosterone sulfate (DHEAS)]; and (III.) DST variability in time. Methods: This narrative analysis was based on searching full-text, English articles in PubMed (between January 2023 and April 2025) via using different term combinations: “dexamethasone suppression test” (n = 239), “diagnosis test for autonomous cortisol secretion” (n = 22), “diagnosis test for mild autonomous cortisol secretion” (n = 13) and “diagnosis test for Cushing Syndrome” (n = 61). We manually checked the title and abstract and finally included only the studies that provided hormonal testing results in adults with non-functional adenomas (NFAs) ± MACS. We excluded: reviews, meta-analyses, editorials, conference abstracts, case reports, and case series; non-human research; studies that did not provide clear criteria for distinguishing between Cushing syndrome and MACS; primary aldosteronism. Results: The sample-focused analysis (n = 13 studies) involved various designs: cross-sectional (n = 4), prospective (n = 1), retrospective (n = 7), and cohort (n = 1); a total of 4203 patients (female-to-male ratio = 1.45), mean age of 59.92 years. I. Cs-DST cutoffs varied among the studies (n = 6), specifically, 0.87, 0.9, 1.2, and 1.4 µg/dL in relationship with the cardio-metabolic outcomes. After adjusting for age (n = 1), only the prevalence of cardiovascular disease remained significantly higher in >0.9 µg/dL vs. ≤0.9 group (OR = 2.23). Multivariate analysis (n = 1) found cs-DST between 1.2 and 1.79 µg/dL was independently associated with hypertension (OR = 1.55, 95%CI: 1.08–2.23, p = 0.018), diabetes (OR = 1.60, 95%CI: 1.01–2.57, p = 0.045), and their combination (OR = 1.96, 95%CI:1.12–3.41, p = 0.018) after adjusting for age, gender, obesity, and dyslipidemia. A higher cs-DST was associated with a lower estimated glomerular filtration rate (eGFR), independently of traditional cardiovascular risk factors. Post-adrenalectomy eGFR improvement was more pronounced in younger individuals, those with lower eGFR before surgery, and with a longer post-operative follow-up. Cs-DST (n = 1) was strongly associated with AIs size and weakly associated with age, body mass index and eGFR. Cortisol level increased by 9% (95% CI: 6–11%) for each 10 mL/min/1.73 m2 decrease in eGFR. A lower cs-DST was associated with a faster post-adrenalectomy function recovery; the co-diagnosis of diabetes reduced the likelihood of this recovery (OR = 24.55, p = 0.036). II. Additional biomarkers assays (n = 5) showed effectiveness only for lower DHEAS to pinpoint MACS amid AIs (n = 2, cutoffs of <49.31 µg/dL, respectively, <75 µg/dL), and lower ACTH (n = 1, <12.6 pmol/L). III. Longitudinal analysis of DST’s results (n = 3): 22% of NFAS switch to MACS after a median of 35.7 months (n = 1), respectively, 29% (n = 1) after 48.6 ± 12.5 months, 11.8% (n = 1) after 40.4 ± 51.17 months. A multifactorial model of prediction showed the lowest risk of switch (2.4%) in individuals < 50 years with unilateral tumor and cs-DST < 0.45 µg/dL. In the subgroup of subjects without cardio-metabolic comorbidities at presentation, 25.6% developed ≥1 comorbidities during surveillance. Conclusions: The importance of exploring the domain of AIs/NFAs/MACS relates to an increasing detection in aging population, hence, the importance of their optimum hormonal characterization and identifying/forestalling cardio-metabolic consequences. The spectrum of additional biomarkers in MACS (other than DST) remains heterogeneous and still controversial, noting the importance of their cost-effectiveness, and availability in daily practice. Cs-DST serves as an independent predictor of cardio-metabolic outcomes, kidney dysfunction, while adrenalectomy may correct them in both MACS and NFAs, especially in younger population. Moreover, it serves as a predictor of switching the NFA into MACS category during surveillance. Changing the hormonal behavior over time implies awareness, since it increases the overall disease burden. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

40 pages, 6391 KB  
Systematic Review
A Systematic Review of Technological Strategies to Improve Self-Starting in H-Type Darrieus VAWT
by Jorge-Saúl Gallegos-Molina and Ernesto Chavero-Navarrete
Sustainability 2025, 17(17), 7878; https://doi.org/10.3390/su17177878 - 1 Sep 2025
Cited by 2 | Viewed by 1578
Abstract
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic [...] Read more.
The self-starting capability of straight-bladed H-type Darrieus Vertical Axis Wind Turbines (VAWTs) remains a major constraint for deployment, particularly in urban, low speed, and turbulent environments. We conducted a systematic review of technological strategies to improve self-starting, grouped into five categories: (1) aerodynamic airfoil design, (2) rotor configuration, (3) passive flow control, (4) active flow control, and (5) incident flow augmentation. Searches in Scopus and IEEE Xplore (last search 20 August 2025) covered the period from 2019 to 2026 and included peer-reviewed journal articles in English reporting experimental or numerical interventions on H-type Darrieus VAWTs with at least one start-up metric. From 1212 records, 53 studies met the eligibility after title/abstract screening and full-text assessment. Data were synthesized qualitatively using a comparative thematic approach, highlighting design parameters, operating conditions, and performance metrics (torque and power coefficients) during start-up. Quantitatively, studies reported typical start-up torque gains of 20–30% for airfoil optimization and passive devices, about 25% for incident-flow augmentation, and larger but less certain improvements (around 30%) for active control. Among the strategies, airfoil optimization and passive devices consistently improved start-up torque at low TSR with minimal added systems; rotor-configuration tuning and incident-flow devices further reduced start-up time where structural or siting constraints allowed; and active control showed the largest laboratory gains but with uncertain regarding energy and durability. However, limitations included heterogeneity in designs and metrics, predominance of 2D-Computational Fluid Dynamics (CFDs), and limited 3D/field validation restricted quantitative pooling. Risk of bias was assessed using an ad hoc matrix; overall certainty was rated as low to moderate due to limited validation and inconsistent uncertainty reporting. In conclusions, no single solution is universally optimal; hybrid strategies, combining optimized airfoils with targeted passive or active control, appear most promising. Future work should standardize start-up metrics, adopt validated 3D Fluid–Structure Interaction (FSI) models, and expand wind-tunnel/field trials. Full article
Show Figures

Graphical abstract

Back to TopTop