Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,465)

Search Parameters:
Keywords = Guilin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3394 KiB  
Article
Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure
by Jiansen Ma, Weiping Cao and Xinhua Yu
Electronics 2025, 14(15), 3137; https://doi.org/10.3390/electronics14153137 - 6 Aug 2025
Abstract
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve [...] Read more.
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve section. The integrated high–low impedance structure enables the monopole to achieve excellent filtering characteristics while maintaining the monopole compactly. Meanwhile, the combination of the RLC loads and the sleeve monopole ensures wideband omnidirectional radiation performance. To validate the design, a prototype operating from 200 to 1500 MHz is fabricated and tested. The measurement results demonstrate that the monopole achieves a VSWR below 3 across the entire operating band and a measured gain exceeding 0 dB. Furthermore, the monopole exhibits satisfactory out-of-band rejection from 1700 to 4000 MHz, confirming its effective filtering capability. Full article
Show Figures

Figure 1

30 pages, 2099 KiB  
Article
SABE-YOLO: Structure-Aware and Boundary-Enhanced YOLO for Weld Seam Instance Segmentation
by Rui Wen, Wu Xie, Yong Fan and Lanlan Shen
J. Imaging 2025, 11(8), 262; https://doi.org/10.3390/jimaging11080262 - 6 Aug 2025
Abstract
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, [...] Read more.
Accurate weld seam recognition is essential in automated welding systems, as it directly affects path planning and welding quality. With the rapid advancement of industrial vision, weld seam instance segmentation has emerged as a prominent research focus in both academia and industry. However, existing approaches still face significant challenges in boundary perception and structural representation. Due to the inherently elongated shapes, complex geometries, and blurred edges of weld seams, current segmentation models often struggle to maintain high accuracy in practical applications. To address this issue, a novel structure-aware and boundary-enhanced YOLO (SABE-YOLO) is proposed for weld seam instance segmentation. First, a Structure-Aware Fusion Module (SAFM) is designed to enhance structural feature representation through strip pooling attention and element-wise multiplicative fusion, targeting the difficulty in extracting elongated and complex features. Second, a C2f-based Boundary-Enhanced Aggregation Module (C2f-BEAM) is constructed to improve edge feature sensitivity by integrating multi-scale boundary detail extraction, feature aggregation, and attention mechanisms. Finally, the inner minimum point distance-based intersection over union (Inner-MPDIoU) is introduced to improve localization accuracy for weld seam regions. Experimental results on the self-built weld seam image dataset show that SABE-YOLO outperforms YOLOv8n-Seg by 3 percentage points in the AP(50–95) metric, reaching 46.3%. Meanwhile, it maintains a low computational cost (18.3 GFLOPs) and a small number of parameters (6.6M), while achieving an inference speed of 127 FPS, demonstrating a favorable trade-off between segmentation accuracy and computational efficiency. The proposed method provides an effective solution for high-precision visual perception of complex weld seam structures and demonstrates strong potential for industrial application. Full article
(This article belongs to the Section Image and Video Processing)
13 pages, 1194 KiB  
Review
Kiwifruit Peelability (Actinidia spp.): A Review
by Beibei Qi, Peng Li, Jiewei Li, Manrong Zha and Faming Wang
Horticulturae 2025, 11(8), 927; https://doi.org/10.3390/horticulturae11080927 (registering DOI) - 6 Aug 2025
Abstract
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged [...] Read more.
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged as a critical breeding target in fruit crop improvement programs. The present review systematically synthesized existing studies on kiwifruit peelability, and focused on its evolutionary trajectory, genotypic divergence, quantitative evaluation, possible underlying mechanisms, and artificial manipulation strategies. Kiwifruit peelability research has advanced from early exploratory studies in New Zealand (2010s) to systematic investigations in China (2020s), with milestones including the development of evaluation metrics and the identification of genetic resources. Genotypic variation exists among kiwifruit genera. Several Actinidia eriantha accessions and the novel Actinidia longicarpa cultivar ‘Guifei’ exhibit superior peelability, whereas most commercial Actinidia chinensis and Actinidia deliciosa cultivars exhibit poor peelability. Quantitative evaluation highlights the need for standardized metrics, with “skin-flesh adhesion force” and “peel toughness” proposed as robust, instrument-quantifiable indicators to minimize operational variability. Mechanistically, peelability is speculated to be governed by cell wall polysaccharide metabolism and phytohormone signaling networks. Pectin degradation and differential distribution during fruit development form critical “peeling zones”, whereas ethylene, abscisic acid, and indoleacetic acid may regulate cell wall remodeling and softening, collectively influencing skin-flesh adhesion. Owing to the scarcity of easy-to-peel kiwifruit cultivars, artificial manipulation methods, including manual peeling benchmarking, lye treatment, and thermal peeling, can be employed to further optimize kiwifruit peelability. Currently, shortcomings include incomplete genotype-phenotype characterization, limited availability of easy-peeling germplasms, and a fragmented understanding of the underlying mechanisms. Future research should focus on methodological innovation, germplasm development, and the elucidation of relevant mechanisms. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

11 pages, 60623 KiB  
Article
Super Resolution for Mangrove UAV Remote Sensing Images
by Qin Qin, Wenlong Dai and Xin Wang
Symmetry 2025, 17(8), 1250; https://doi.org/10.3390/sym17081250 - 6 Aug 2025
Abstract
Mangroves play a crucial role in ecosystems, and the accurate classification and real-time monitoring of mangrove species are essential for their protection and restoration. To improve the segmentation performance of mangrove UAV remote sensing images, this study performs species segmentation after the super-resolution [...] Read more.
Mangroves play a crucial role in ecosystems, and the accurate classification and real-time monitoring of mangrove species are essential for their protection and restoration. To improve the segmentation performance of mangrove UAV remote sensing images, this study performs species segmentation after the super-resolution (SR) reconstruction of images. Therefore, we propose SwinNET, an SR reconstruction network. We design a convolutional enhanced channel attention (CEA) module within a network to enhance feature reconstruction through channel attention. Additionally, the Neighborhood Attention Transformer (NAT) is introduced to help the model better focus on domain features, aiming to improve the reconstruction of leaf details. These two attention mechanisms are symmetrically integrated within the network to jointly capture complementary information from spatial and channel dimensions. The experimental results demonstrate that SwinNET not only achieves superior performance in SR tasks but also significantly enhances the segmentation accuracy of mangrove species. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

15 pages, 7500 KiB  
Article
Large-Scale Spatiotemporal Patterns of Burned Areas and Fire-Driven Mortality in Boreal Forests (North America)
by Wendi Zhao, Qingchen Zhu, Qiuling Chen, Xiaohan Meng, Kexu Song, Diego I. Rodriguez-Hernandez, Manuel Esteban Lucas-Borja, Demetrio Antonio Zema, Tong Zhang and Xiali Guo
Forests 2025, 16(8), 1282; https://doi.org/10.3390/f16081282 - 6 Aug 2025
Abstract
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically [...] Read more.
Due to climate effects and human influences, wildfire regimes in boreal forests are changing, leading to profound ecological consequences, including shortened fire return intervals and elevated tree mortality. However, a critical knowledge gap exists concerning the spatiotemporal dynamics of fire-induced tree mortality specifically within the vast North American boreal forest, as previous studies have predominantly focused on Mediterranean and tropical forests. Therefore, in this study, we used satellite observation data obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra MCD64A1 and related database data to study the spatial and temporal variability in burned area and forest mortality due to wildfires in North America (Alaska and Canada) over an 18-year period (2003 to 2020). By calculating the satellite reflectance data before and after the fire, fire-driven forest mortality is defined as the ratio of the area of forest loss in a given period relative to the total forest area in that period, i.e., the area of forest loss divided by the total forest area. Our findings have shown average values of burned area and forest mortality close to 8000 km2/yr and 40%, respectively. Burning and tree loss are mainly concentrated between May and September, with a corresponding temporal trend in the occurrence of forest fires and high mortality. In addition, large-scale forest fires were primarily concentrated in Central Canada, which, however, did not show the highest forest mortality (in contrast to the results recorded in Northern Canada). Critically, based on generalized linear models (GLMs), the results showed that fire size and duration, but not the burned area, had significant effects on post-fire forest mortality. Overall, this study shed light on the most sensitive forest areas and time periods to the detrimental effects of forest wildfire in boreal forests of North America, highlighting distinct spatial and temporal vulnerabilities within the boreal forest and demonstrating that fire regimes (size and duration) are primary drivers of ecological impact. These insights are crucial for refining models of boreal forest carbon dynamics, assessing ecosystem resilience under changing fire regimes, and informing targeted forest management and conservation strategies to mitigate wildfire impacts in this globally significant biome. Full article
(This article belongs to the Special Issue Forest Disturbance and Management)
Show Figures

Figure 1

24 pages, 7195 KiB  
Article
Research on Position-Feedback Control Strategy of Engineered Drilling Rig Hydro-Mechanical Composite Propulsion System
by Sibo Liu, Zhong Liu, Yuanzhou Li, Dandan Wu and Hongwang Zhao
Processes 2025, 13(8), 2470; https://doi.org/10.3390/pr13082470 - 4 Aug 2025
Viewed by 166
Abstract
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The [...] Read more.
To solve the problem of traditional engineering drilling rig propulsion systems being difficult to adapt to complex working conditions due to their bulky structure and poor load adaptability, this study proposes a new type of mechanical hydraulic composite electro-hydraulic proportional propulsion system. The system innovatively adopts a composite design of parallel hydraulic cylinders and movable pulley groups in mechanical structure, aiming to achieve system lightweighting through displacement multiplication effect. In terms of control strategy, a fuzzy adaptive PID controller based on position feedback was designed to improve the dynamic tracking performance and robustness of the system under nonlinear time-varying loads. The study established a multi physics domain mathematical model of the system and conducted joint simulation using AMESim and MATLAB/Simulink to deeply verify the overall performance of the proposed scheme. The simulation results show that the mechanical structure can stably achieve a 2:1 displacement multiplication effect, providing a feasible path for shortening the system size. Compared with traditional PID control, the proposed fuzzy adaptive PID control strategy significantly improves the positioning accuracy of the system. The maximum tracking errors of the master and slave hydraulic cylinders are reduced from 6.3 mm and 10.4 mm to 2.3 mm and 5.6 mm, respectively, and the accuracy is improved by 63.49% and 46.15%, providing theoretical support and technical reference for the design of engineering drilling rig propulsion control systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

15 pages, 2885 KiB  
Article
Effects of Modified Senna obtusifolia Straw Biochar on Organic Matter Mineralization and Nutrient Transformation in Siraitia grosvenorii Farmland
by Lening Hu, Yinnan Bai, Shu Li, Gaoyan Liu, Jingxiao Liang, Hua Deng, Anyu Li, Linxuan Li, Limei Pan and Yuan Huang
Agronomy 2025, 15(8), 1877; https://doi.org/10.3390/agronomy15081877 - 3 Aug 2025
Viewed by 182
Abstract
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change [...] Read more.
Biochar has garnered considerable attention as a soil amendment due to its unique physicochemical properties. Its application not only enhances soil carbon sequestration but also improves nutrient availability. Incorporating biochar into soil is regarded as a promising strategy for mitigating global climate change while delivering substantial environmental and agricultural benefits. In this study, biochar was extracted from Siraitia grosvenorii and subsequently modified through alkali treatment. A laboratory incubation experiment was conducted to assess the effects of unmodified (JMC) and modified (GXC) biochar, applied at different rates (1%, 2%, and 4%), on organic carbon mineralization and soil nutrient dynamics. Results indicated that, at equivalent application rates, JMC-treated soils exhibited lower CO2 emissions than those treated with GXC, with emissions increasing alongside biochar dosage. After the incubation, the 1% JMC treatment exhibited a mineralization rate of 17.3 mg·kg−1·d−1, which was lower than that of the control (CK, 18.8 mg·kg−1·d−1), suggesting that JMC effectively inhibited organic carbon mineralization and reduced CO2 emissions, thereby contributing positively to carbon sequestration in Siraitia grosvenorii farmland. In contrast, GXC application significantly enhanced soil nutrient levels, particularly increasing available phosphorus (AP) by 14.33% to 157.99%. Furthermore, partial least squares structural equation modeling (PLS-SEM) identified application rate and pH as the key direct factors influencing soil nutrient availability. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

13 pages, 1092 KiB  
Article
Exogenous Application of Nano-Silicon and Melatonin Ameliorates Salinity Injury in Coix Seedlings
by Beibei Qi, Junkai Liu, Ruixue Zheng, Jiada Huang and Chao Wu
Agronomy 2025, 15(8), 1862; https://doi.org/10.3390/agronomy15081862 - 31 Jul 2025
Viewed by 142
Abstract
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous [...] Read more.
Soil salinization is a major environmental constraint that poses a significant threat to global agricultural productivity and food security. Coix lacryma-jobi L., a minor cereal crop that is valued for its nutritional and medicinal properties, displays moderate susceptibility to salinity stress. Although exogenous treatments have been demonstrated to enhance plant resilience against various biotic and abiotic stresses, the potential of nano-silicon (NaSi), melatonin (MT), and their combined application in mitigating salinity-induced damage, particularly in relation to the medicinal properties of this medicinal and edible crop, remains poorly understood. This study investigated the effects of exogenous NaSi and MT application on Coix under salinity stress using two varieties with contrasting salinity tolerances. The plants were subjected to salinity stress and treated with NaSi, MT, or a combination of both. The results revealed that salinity stress significantly impaired the agronomic traits, physiological performance, and accumulation of medicinal compounds of Coix. Exogenous MT application effectively alleviated salinity-induced damage to agronomic and physiological parameters, exhibiting superior protective effects compared to NaSi treatment. Strikingly, the combined application of MT and NaSi demonstrated synergistic effects, leading to substantial improvements in growth and physiological indices. However, the medicinal components were only marginally affected by exogenous treatments under both control and salinity-stressed conditions. Further clarification of the molecular mechanisms underlying salinity stress responses and exogenous substance-induced effects is critical to achieving a comprehensive understanding of these protective mechanisms. Full article
Show Figures

Figure 1

24 pages, 4254 KiB  
Article
Strength and Micro-Mechanism of Guar Gum–Palm Fiber Composite for Improvement of Expansive Soil
by Junhua Chen, Yuejian Huang, Aijun Chen, Xinping Ji, Xiao Liao, Shouqian Li and Ying Xiao
Fibers 2025, 13(8), 104; https://doi.org/10.3390/fib13080104 - 31 Jul 2025
Viewed by 175
Abstract
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The [...] Read more.
This study investigates the improvement effect and micro-mechanism of guar gum and palm fibers, two eco-friendly materials, on expansive soil. The study uses disintegration tests, unconfined compressive strength tests, triaxial compression tests, and SEM analysis to evaluate the enhancement of mechanical properties. The results show that the guar gum–palm fiber composite significantly improves the compressive and shear strength of expansive soil. The optimal ratio is 2% guar gum, 0.4% palm fiber, and 6 mm palm fiber length. Increasing fiber length initially boosts and then reduces unconfined compressive strength. Guar gum increases unconfined compressive strength by 187.18%, further improved by 20.9% with palm fibers. When fiber length is fixed, increasing palm fiber content increases and then stabilizes peak stress and shear strength (cohesion and internal friction angle), improving by 27.30%, 52.1%, and 12.4%, respectively, compared to soil improved with only guar gum. Micro-analysis reveals that guar gum enhances bonding between soil particles via a gel matrix, improving water stability and mechanical properties, while palm fibers reinforce the soil and inhibit crack propagation. The synergistic effect significantly enhances composite-improved soil performance, offering economic and environmental benefits, and provides insights for expansive soil engineering management. Full article
Show Figures

Figure 1

23 pages, 7166 KiB  
Article
Deriving Early Citrus Fruit Yield Estimation by Combining Multiple Growing Period Data and Improved YOLOv8 Modeling
by Menglin Zhai, Juanli Jing, Shiqing Dou, Jiancheng Du, Rongbin Wang, Jichi Yan, Yaqin Song and Zhengmin Mei
Sensors 2025, 25(15), 4718; https://doi.org/10.3390/s25154718 - 31 Jul 2025
Viewed by 271
Abstract
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield [...] Read more.
Early crop yield prediction is a major challenge in precision agriculture, and efficient and rapid yield prediction is highly important for sustainable fruit production. The accurate detection of major fruit characteristics, including flowering, green fruiting, and ripening stages, is crucial for early yield estimation. Currently, most crop yield estimation studies based on the YOLO model are only conducted during a single stage of maturity. Combining multi-growth period data for crop analysis is of great significance for crop growth detection and early yield estimation. In this study, a new network model, YOLOv8-RL, was proposed using citrus multigrowth period characteristics as a data source. A citrus yield estimation model was constructed and validated by combining network identification counts with manual field counts. Compared with YOLOv8, the number of parameters of the improved network is reduced by 50.7%, the number of floating-point operations is decreased by 49.4%, and the size of the model is only 3.2 MB. In the test set, the average recognition rate of citrus flowers, green fruits, and orange fruits was 95.6%, the mAP@.5 was 94.6%, the FPS value was 123.1, and the inference time was only 2.3 milliseconds. This provides a reference for the design of lightweight networks and offers the possibility of deployment on embedded devices with limited computational resources. The two estimation models constructed on the basis of the new network had coefficients of determination R2 values of 0.91992 and 0.95639, respectively, with a prediction error rate of 6.96% for citrus green fruits and an average error rate of 3.71% for orange fruits. Compared with network counting, the yield estimation model had a low error rate and high accuracy, which provided a theoretical basis and technical support for the early prediction of fruit yield in complex environments. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

30 pages, 8795 KiB  
Article
Numerical Simulation of Flapping Airfoil Aerodynamic Characteristics
by Junjie Xu, Shizhen Zheng, Ziyu Guo and Jianlong Chang
Appl. Sci. 2025, 15(15), 8484; https://doi.org/10.3390/app15158484 (registering DOI) - 30 Jul 2025
Viewed by 202
Abstract
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping [...] Read more.
Flapping airfoil flight technology is widely used in defense and civilian fields, and huge economic benefits can be created. The bionic flapping airfoil is the research object of this paper. The influence of flapping frequency, flight trajectory, different airfoil types, and various flapping layouts on the aerodynamic characteristics of the flapping airfoil is investigated through numerical calculation. It is found that an increase in the flutter frequency can lead to an increase in the lift and drag of the flutter airfoil, as well as the strength of the flutter airfoil leading edge vortex, thereby improving the aerodynamic characteristics of the flutter airfoil, but the increase in the frequency leads to the decrease in the lifting efficiency. With the same symmetry of the trajectory of the flapping airfoil, the flapping airfoil lift characteristics are the same, but the drag characteristics may be different. If the symmetry of the flapping airfoil trajectory is distinct, the lift and drag characteristics of the flapping airfoil are different, and it is also found that the best lifting efficiency occurred in the “∞” trajectory. If the curvature and thickness of the airfoil are different, the aerodynamic characteristics of the flapping airfoil are distinct. Finally, the effect of different layouts on the aerodynamic characteristics of the flapping airfoil is examined. It is found that both tandem and parallel layout flapping airfoils can effectively increase the lift drag, but both tandem and parallel layout flapping airfoils lead to a decrease in the lifting efficiency. Full article
(This article belongs to the Special Issue Application of Fluid Mechanics and Aerodynamics in Aerospace)
Show Figures

Figure 1

20 pages, 3518 KiB  
Article
YOLO-AWK: A Model for Injurious Bird Detection in Complex Farmland Environments
by Xiang Yang, Yongliang Cheng, Minggang Dong and Xiaolan Xie
Symmetry 2025, 17(8), 1210; https://doi.org/10.3390/sym17081210 - 30 Jul 2025
Viewed by 261
Abstract
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. [...] Read more.
Injurious birds pose a significant threat to food production and the agricultural economy. To address the challenges posed by their small size, irregular shape, and frequent occlusion in complex farmland environments, this paper proposes YOLO-AWK, an improved bird detection model based on YOLOv11n. Firstly, to improve the ability of the enhanced model to recognize bird targets in complex backgrounds, we introduce the in-scale feature interaction (AIFI) module to replace the original SPPF module. Secondly, to more accurately localize and identify bird targets of different shapes and sizes, we use WIoUv3 as a new loss function. Thirdly, to remove the noise interference and improve the extraction of bird residual features, we introduce the Kolmogorov–Arnold network (KAN) module. Finally, to improve the model’s detection accuracy for small bird targets, we add a small target detection head. The experimental results show that the detection performance of YOLO-AWK on the farmland bird dataset is significantly improved, and the final precision, recall, mAP@0.5, and mAP@0.5:0.95 reach 93.9%, 91.2%, 95.8%, and 75.3%, respectively, which outperforms the original model by 2.7, 2.3, 1.6, and 3.0 percentage points, respectively. These results demonstrate that the proposed method offers a reliable and efficient technical solution for farmland injurious bird monitoring. Full article
(This article belongs to the Special Issue Symmetry and Its Applications in Image Processing)
Show Figures

Figure 1

22 pages, 2523 KiB  
Article
Computational Simulation of Aneurysms Using Smoothed Particle Hydrodynamics
by Yong Wu, Fei Wang, Xianhong Sun, Zibo Liu, Zhi Xiong, Mingzhi Zhang, Baoquan Zhao and Teng Zhou
Mathematics 2025, 13(15), 2439; https://doi.org/10.3390/math13152439 - 29 Jul 2025
Viewed by 204
Abstract
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the [...] Read more.
Modeling and simulation of aneurysm formation, growth, and rupture plays an essential role in a wide spectrum of application scenarios, ranging from risk stratification to stability prediction, and from clinical decision-making to treatment innovation. Unfortunately, it remains a non-trivial task due to the difficulties imposed by the complex and under-researched pathophysiological mechanisms behind the different development stages of various aneurysms. In this paper, we present a novel computational method for aneurysm simulation using smoothed particle hydrodynamics (SPH). Firstly, we consider blood in a vessel as a kind of incompressible fluid and model its flow dynamics using the SPH method; and then, to simulate aneurysm growth and rupture, the relationship between the aneurysm development and the properties of fluid particles is established by solving the motion control equation. In view of the prevalence of aneurysms in bifurcation vessels, we further enhance the capability of the model by introducing a solution for bifurcation aneurysms simulation according to Murray’s law. In addition, a CUDA parallel computing scheme is also designed to speed up the simulation process. To evaluate the performance of the proposed method, we conduct extensive experiments with different physical parameters associated with morphological characteristics of an aneurysm. The experimental results demonstrate the effectiveness and efficiency of proposed method in modeling and simulating aneurysm formation, growth, and rupture. Full article
Show Figures

Figure 1

20 pages, 8132 KiB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 205
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

24 pages, 3204 KiB  
Article
Host Shaping Associated Microbiota in Hydrothermal Vent Snails from the Indian Ocean Ridge
by Xiang Zeng, Jianwei Chen, Guilin Liu, Yadong Zhou, Liping Wang, Yaolei Zhang, Shanshan Liu and Zongze Shao
Biology 2025, 14(8), 954; https://doi.org/10.3390/biology14080954 - 29 Jul 2025
Viewed by 241
Abstract
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon [...] Read more.
Snails at hydrothermal vents rely on symbiotic bacteria for nutrition; however, the specifics of these associations in adapting to such extreme environments remain underexplored. This study investigated the community structure and metabolic potential of bacteria associated with two Indian Ocean vent snails, Chrysomallon squamiferum and Gigantopelta aegis. Using microscopic, phylogenetic, and metagenomic analyses, this study examines bacterial communities inhabiting the foot and gland tissues of these snails. G. aegis exhibited exceptionally low bacterial diversity (Shannon index 0.14–0.18), primarily Gammaproteobacteria (99.9%), including chemosynthetic sulfur-oxidizing Chromatiales using Calvin–Benson–Bassham cycle and methane-oxidizing Methylococcales in the glands. C. squamiferum hosted significantly more diverse symbionts (Shannon indices 1.32–4.60). Its black variety scales were dominated by Campylobacterota (67.01–80.98%), such as Sulfurovum, which perform sulfur/hydrogen oxidation via the reductive tricarboxylic acid cycle, with both Campylobacterota and Gammaproteobacteria prevalent in the glands. The white-scaled variety of C. squamiferum had less Campylobacterota but a higher diversity of heterotrophic bacteria, including Delta-/Alpha-Proteobacteria, Bacteroidetes, and Firmicutes (classified as Desulfobacterota, Pseudomomonadota, Bacteroidota, and Bacillota in GTDB taxonomy). In C. squamiferum, Gammaproteobacteria, including Chromatiales, Thiotrichales, and a novel order “Endothiobacterales,” were chemosynthetic, capable of oxidizing sulfur, hydrogen, or iron, and utilizing the Calvin–Benson–Bassham cycle for carbon fixation. Heterotrophic Delta- and Alpha-Proteobacteria, Bacteroidetes, and Firmicutes potentially utilize organic matter from protein, starch, collagen, amino acids, thereby contributing to the holobiont community and host nutrition accessibility. The results indicate that host species and intra-species variation, rather than the immediate habitat, might shape the symbiotic microbial communities, crucial for the snails’ adaptation to vent ecosystems. Full article
Show Figures

Figure 1

Back to TopTop