Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (286)

Search Parameters:
Keywords = Global Surface Water Dataset

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6552 KiB  
Article
Assessing Flooding from Changes in Extreme Rainfall: Using the Design Rainfall Approach in Hydrologic Modeling
by Anna M. Jalowska, Daniel E. Line, Tanya L. Spero, J. Jack Kurki-Fox, Barbara A. Doll, Jared H. Bowden and Geneva M. E. Gray
Water 2025, 17(15), 2228; https://doi.org/10.3390/w17152228 - 26 Jul 2025
Viewed by 347
Abstract
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study [...] Read more.
Quantifying future changes in extreme events and associated flooding is challenging yet fundamental for stormwater managers. Along the U.S. Atlantic Coast, Eastern North Carolina (ENC) is frequently exposed to catastrophic floods from extreme rainfall that is typically associated with tropical cyclones. This study presents a novel approach that uses rainfall data from five dynamically and statistically downscaled (DD and SD) global climate models under two scenarios to visualize a potential future extent of flooding in ENC. Here, we use DD data (at 36-km grid spacing) to compute future changes in precipitation intensity–duration–frequency (PIDF) curves at the end of the 21st century. These PIDF curves are further applied to observed rainfall from Hurricane Matthew—a landfalling storm that created widespread flooding across ENC in 2016—to project versions of “Matthew 2100” that reflect changes in extreme precipitation under those scenarios. Each Matthew-2100 rainfall distribution was then used in hydrologic models (HEC-HMS and HEC-RAS) to simulate “2100” discharges and flooding extents in the Neuse River Basin (4686 km2) in ENC. The results show that DD datasets better represented historical changes in extreme rainfall than SD datasets. The projected changes in ENC rainfall (up to 112%) exceed values published for the U.S. but do not exceed historical values. The peak discharges for Matthew-2100 could increase by 23–69%, with 0.4–3 m increases in water surface elevation and 8–57% increases in flooded area. The projected increases in flooding would threaten people, ecosystems, agriculture, infrastructure, and the economy throughout ENC. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 2919 KiB  
Article
A Feasible Domain Segmentation Algorithm for Unmanned Vessels Based on Coordinate-Aware Multi-Scale Features
by Zhengxun Zhou, Weixian Li, Yuhan Wang, Haozheng Liu and Ning Wu
J. Mar. Sci. Eng. 2025, 13(8), 1387; https://doi.org/10.3390/jmse13081387 - 22 Jul 2025
Viewed by 145
Abstract
The accurate extraction of navigational regions from images of navigational waters plays a key role in ensuring on-water safety and the automation of unmanned vessels. Nonetheless, current technological methods encounter significant challenges in addressing fluctuations in water surface illumination, reflective disturbances, and surface [...] Read more.
The accurate extraction of navigational regions from images of navigational waters plays a key role in ensuring on-water safety and the automation of unmanned vessels. Nonetheless, current technological methods encounter significant challenges in addressing fluctuations in water surface illumination, reflective disturbances, and surface undulations, among other disruptions, in turn making it challenging to achieve rapid and precise boundary segmentation. To cope with these challenges, in this paper, we propose a coordinate-aware multi-scale feature network (GASF-ResNet) method for water segmentation. The method integrates the attention module Global Grouping Coordinate Attention (GGCA) in the four downsampling branches of ResNet-50, thus enhancing the model’s ability to capture target features and improving the feature representation. To expand the model’s receptive field and boost its capability in extracting features of multi-scale targets, the Avoidance Spatial Pyramid Pooling (ASPP) technique is used. Combined with multi-scale feature fusion, this effectively enhances the expression of semantic information at different scales and improves the segmentation accuracy of the model in complex water environments. The experimental results show that the average pixel accuracy (mPA) and average intersection and union ratio (mIoU) of the proposed method on the self-made dataset and on the USVInaland unmanned ship dataset are 99.31% and 98.61%, and 98.55% and 99.27%, respectively, significantly better results than those obtained for the existing mainstream models. These results are helpful in overcoming the background interference caused by water surface reflection and uneven lighting in the aquatic environment and in realizing the accurate segmentation of the water area for the safe navigation of unmanned vessels, which is of great value for the stable operation of unmanned vessels in complex environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

29 pages, 6561 KiB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 401
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

23 pages, 10392 KiB  
Article
Dual-Branch Luminance–Chrominance Attention Network for Hydraulic Concrete Image Enhancement
by Zhangjun Peng, Li Li, Chuanhao Chang, Rong Tang, Guoqiang Zheng, Mingfei Wan, Juanping Jiang, Shuai Zhou, Zhenggang Tian and Zhigui Liu
Appl. Sci. 2025, 15(14), 7762; https://doi.org/10.3390/app15147762 - 10 Jul 2025
Viewed by 252
Abstract
Hydraulic concrete is a critical infrastructure material, with its surface condition playing a vital role in quality assessments for water conservancy and hydropower projects. However, images taken in complex hydraulic environments often suffer from degraded quality due to low lighting, shadows, and noise, [...] Read more.
Hydraulic concrete is a critical infrastructure material, with its surface condition playing a vital role in quality assessments for water conservancy and hydropower projects. However, images taken in complex hydraulic environments often suffer from degraded quality due to low lighting, shadows, and noise, making it difficult to distinguish defects from the background and thereby hindering accurate defect detection and damage evaluation. In this study, following systematic analyses of hydraulic concrete color space characteristics, we propose a Dual-Branch Luminance–Chrominance Attention Network (DBLCANet-HCIE) specifically designed for low-light hydraulic concrete image enhancement. Inspired by human visual perception, the network simultaneously improves global contrast and preserves fine-grained defect textures, which are essential for structural analysis. The proposed architecture consists of a Luminance Adjustment Branch (LAB) and a Chroma Restoration Branch (CRB). The LAB incorporates a Luminance-Aware Hybrid Attention Block (LAHAB) to capture both the global luminance distribution and local texture details, enabling adaptive illumination correction through comprehensive scene understanding. The CRB integrates a Channel Denoiser Block (CDB) for channel-specific noise suppression and a Frequency-Domain Detail Enhancement Block (FDDEB) to refine chrominance information and enhance subtle defect textures. A feature fusion block is designed to fuse and learn the features of the outputs from the two branches, resulting in images with enhanced luminance, reduced noise, and preserved surface anomalies. To validate the proposed approach, we construct a dedicated low-light hydraulic concrete image dataset (LLHCID). Extensive experiments conducted on both LOLv1 and LLHCID benchmarks demonstrate that the proposed method significantly enhances the visual interpretability of hydraulic concrete surfaces while effectively addressing low-light degradation challenges. Full article
Show Figures

Figure 1

23 pages, 5627 KiB  
Article
Evaluation of Noah-MP Land Surface Model-Simulated Water and Carbon Fluxes Using the FLUXNET Dataset
by Bofeng Pan, Xiaolu Wu and Xitian Cai
Land 2025, 14(7), 1400; https://doi.org/10.3390/land14071400 - 3 Jul 2025
Viewed by 374
Abstract
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales [...] Read more.
Land surface models (LSMs) play a crucial role in climate prediction and carbon cycle assessment. To ensure their reliability, it is crucial to evaluate their performance in simulating key processes, such as evapotranspiration (ET) and gross primary productivity (GPP), across various temporal scales and vegetation types. This study systematically evaluates the performance of the newly modernized Noah-MP LSM version 5.0 in simulating water and carbon fluxes, specifically ET and GPP, across temporal scales ranging from half-hourly (capturing diurnal cycles) to annual using observational data from 105 sites within the globally FLUXNET2015 dataset. The results reveal that Noah-MP effectively captured the overall variability of both ET and GPP, particularly at short temporal scales. The model successfully simulated the diurnal and seasonal cycles of both fluxes, though cumulative errors increased at the annual scale. Diurnally, the largest simulation biases typically occurred around noon; while, seasonally, biases were smallest in winter. Performance varied significantly across vegetation types. For ET, the simulations were most accurate for open shrublands and deciduous broadleaf forests, while showing the largest deviation for woody savannas. Conversely, GPP simulations were most accurate for wetlands and closed shrublands, showing the largest deviation for evergreen broadleaf forests. Furthermore, an in-depth analysis stratified by the climate background revealed that ET simulations failed to capture inter-annual variability in the temperate and continental zones, while GPP was severely overestimated in arid and temperate climates. This study identifies the strengths and weaknesses of Noah-MP in simulating water and carbon fluxes, providing valuable insights for future model improvements. Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

30 pages, 25009 KiB  
Article
Advancing Scalable Methods for Surface Water Monitoring: A Novel Integration of Satellite Observations and Machine Learning Techniques
by Megan Renshaw and Lori A. Magruder
Geosciences 2025, 15(7), 255; https://doi.org/10.3390/geosciences15070255 - 3 Jul 2025
Viewed by 333
Abstract
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral [...] Read more.
Accurate surface water volume (SWV) estimates are crucial for effective water resource management and for the regional monitoring of hydrological trends. This study introduces a multi-resolution surface water volume estimation framework that integrates ICESat-2 altimetry, Sentinel-1 Synthetic Aperture Radar (SAR), and Sentinel-2 multispectral imagery via machine learning to improve the vertical resolution of a digital elevation model (DEM) to improve the accuracy of SWV estimates. The machine learning approach provides a significant improvement in terrain accuracy relative to the DEM, reducing RMSE by ~66% and 78% across the two models, respectively, over the initial data product fidelity. Assessing the resulting SWV estimates relative to GRACE-FO terrestrial water storage in parts of the Amazon Basin, we found strong correlations and basin-wide drying trends. Notably, the high correlation (r > 0.8) between our surface water estimates and the GRACE-FO signal in the Manaus region highlights our method’s ability to resolve key hydrological dynamics. Our results underscore the value of improved vertical DEM availability for global hydrological studies and offer a scalable framework for future applications. Future work will focus on expanding our DEM dataset, further validation, and scaling this methodology for global applications. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 3768 KiB  
Article
Long-Term Innovative Trend Analysis of Hydro-Climatic Data of the Sudd Region of South Sudan
by Robert Galla, Hiroshi Ishidaira, Jun Magome and Kazuyoshi Souma
Water 2025, 17(13), 1961; https://doi.org/10.3390/w17131961 - 30 Jun 2025
Viewed by 428
Abstract
Floods and droughts are natural disasters that disrupt livelihoods and destroy the environment, with floods constituting up to 40% of all natural disasters globally. South Sudan has experienced severe, recurrent flooding for decades, with two-thirds of the country affected. An integrated flood management [...] Read more.
Floods and droughts are natural disasters that disrupt livelihoods and destroy the environment, with floods constituting up to 40% of all natural disasters globally. South Sudan has experienced severe, recurrent flooding for decades, with two-thirds of the country affected. An integrated flood management system is urgently needed to mitigate impacts and improve community resilience. This requires understanding the inundation process and analyzing flood causes and characteristics. This research leverages data from the Climate Hazards Center InfraRed Precipitation with Station (CHIRPS v2.0) to examine rainfall patterns and analyze trends in annual total precipitation (PRCPTOT), days with precipitation ≥ 20 mm (R20 mm), and simple precipitation intensity (SDII) at the basin scale. It also incorporates Nile River flow data from the Mangala station and Lake Victoria water levels from satellite altimetry. Findings indicate decreasing trends in PRCPTOT, R20 mm, and SDII in Jonglei and Unity States, but increasing trends in river flows and Lake Victoria levels. The Global Surface Water dataset reveals increased water surface areas in these states. These findings suggest that river flow trends oppose rainfall patterns, indicating that local rainfall is not the primary contributor to the recurrent flooding in the area. Full article
(This article belongs to the Special Issue Watershed Hydrology and Management under Changing Climate)
Show Figures

Figure 1

26 pages, 9416 KiB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 542
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

22 pages, 10230 KiB  
Article
Near-Surface Water Vapor Content Based on SPICAV IR/VEx Observations in the 1.1 and 1.18 μm Transparency Windows of Venus
by Daria Evdokimova, Anna Fedorova, Nikolay Ignatiev, Oleg Korablev, Franck Montmessin and Jean-Loup Bertaux
Atmosphere 2025, 16(6), 726; https://doi.org/10.3390/atmos16060726 - 15 Jun 2025
Cited by 1 | Viewed by 398
Abstract
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the [...] Read more.
The SPICAV IR spectrometer aboard the Venus Express orbiter measured spectra of the 1.1 and 1.18 μm atmospheric transparency windows at the Venus night side in 2006–2014. The long-term measurements encompassed the major part of the Venus globe, including polar latitudes. For the first time, the H2O volume mixing ratio in the deep Venus atmosphere at about 10–16 km has been retrieved for the entire SPICAV IR dataset using a radiative transfer model with multiple scattering. The retrieved H2O volume mixing ratio is found to be sensitive to different approximations of the H2O and CO2 absorption lines’ far wings and assumed surface emissivity. The global average of the H2O abundance retrieved for different parameters ranges from 23.6 ± 1.0 ppmv to 27.7 ± 1.2 ppmv. The obtained values are consistent with recent studies of water vapor below the cloud layer, showing the H2O mixing ratio below 30 ppmv. Within the considered dataset, the zonal mean of the H2O mixing ratio does not vary significantly from 60° S to 75° N, except for a 2 ppmv decrease noted at high latitudes. The H2O local time distribution is also uniform. The 8-year observation period revealed no significant long-term trends or periodicities. Full article
(This article belongs to the Section Planetary Atmospheres)
Show Figures

Figure 1

18 pages, 1193 KiB  
Article
GFANet: An Efficient and Accurate Water Segmentation Network
by Shiyu Xie and Lishan Jia
Electronics 2025, 14(9), 1890; https://doi.org/10.3390/electronics14091890 - 7 May 2025
Viewed by 567
Abstract
Accurate water body detection is essential for autonomous navigation and operational planning of unmanned surface vehicles (USVs). To address model adaptability to ambiguous boundaries caused by diverse scenarios and climatic conditions, this study proposes GFANet (Global–Local Feature Attention Network) for the real-time water [...] Read more.
Accurate water body detection is essential for autonomous navigation and operational planning of unmanned surface vehicles (USVs). To address model adaptability to ambiguous boundaries caused by diverse scenarios and climatic conditions, this study proposes GFANet (Global–Local Feature Attention Network) for the real-time water surface semantic segmentation of camera-captured images. First, a Global–Local Feature (GLF) extraction module is proposed, integrating a self-attention-based local feature extractor and a multi-scale global feature extractor for parallel feature learning, thereby enhancing hierarchical feature representation. Second, a Gated Attention (GA) module is designed with a dual-branch gating mechanism to implement noise suppression and efficient low-level feature utilization. The method was validated on three publicly available datasets in relevant domains. The experimental results on the Riwa dataset show that GFANet achieves state-of-the-art segmentation performance (4.41 M parameters, 7.15 GFLOPs) with an mIoU of 82.29% and an mPA of 89.49%. Comparable performance metrics were obtained on the USVInland and WaterSeg datasets. Additionally, GFANet achieves a 154.98 FPS processing speed, meeting real-time segmentation requirements. The experimental results verify that GFANet achieves an optimal balance between high segmentation accuracy and real-time processing efficiency. Full article
Show Figures

Figure 1

16 pages, 4488 KiB  
Technical Note
Land Use and Land Cover Classification with Deep Learning-Based Fusion of SAR and Optical Data
by Ayesha Irfan, Yu Li, Xinhua E and Guangmin Sun
Remote Sens. 2025, 17(7), 1298; https://doi.org/10.3390/rs17071298 - 5 Apr 2025
Cited by 3 | Viewed by 2302
Abstract
Land use and land cover (LULC) classification through remote sensing imagery serves as a cornerstone for environmental monitoring, resource management, and evidence-based urban planning. While Synthetic Aperture Radar (SAR) and optical sensors individually capture distinct aspects of Earth’s surface, their complementary nature SAR [...] Read more.
Land use and land cover (LULC) classification through remote sensing imagery serves as a cornerstone for environmental monitoring, resource management, and evidence-based urban planning. While Synthetic Aperture Radar (SAR) and optical sensors individually capture distinct aspects of Earth’s surface, their complementary nature SAR excelling in structural and all-weather observation and optical sensors providing rich spectral information—offers untapped potential for improving classification robustness. However, the intrinsic differences in their imaging mechanisms (e.g., SAR’s coherent scattering versus optical’s reflectance properties) pose significant challenges in achieving effective multimodal fusion for LULC analysis. To address this gap, we propose a multimodal deep-learning framework that systematically integrates SAR and optical imagery. Our approach employs a dual-branch neural network, with two fusion paradigms being rigorously compared: the Early Fusion strategy and the Late Fusion strategy. Experiments on the SEN12MS dataset—a benchmark containing globally diverse land cover categories—demonstrate the framework’s efficacy. Our Early Fusion strategy achieved 88% accuracy (F1 score: 87%), outperforming the Late Fusion approach (84% accuracy, F1 score: 82%). The results indicate that optical data provide detailed spectral signatures useful for identifying vegetation, water bodies, and urban areas, whereas SAR data contribute valuable texture and structural details. Early Fusion’s superiority stems from synergistic low-level feature extraction, capturing cross-modal correlations lost in late-stage fusion. Compared to state-of-the-art baselines, our proposed methods show a significant improvement in classification accuracy, demonstrating that multimodal fusion mitigates single-sensor limitations (e.g., optical cloud obstruction and SAR speckle noise). This study advances remote sensing technology by providing a precise and effective method for LULC classification. Full article
Show Figures

Figure 1

26 pages, 6392 KiB  
Article
Atmospheric Rivers in Africa Observed with GNSS-RO and Reanalysis Data
by Linda Martina Maier, Bahareh Rahimi and Ulrich Foelsche
Remote Sens. 2025, 17(7), 1273; https://doi.org/10.3390/rs17071273 - 3 Apr 2025
Viewed by 462
Abstract
Atmospheric Rivers (ARs) transport significant amounts of moisture and cause extreme precipitation events, yet their behavior over Africa is not well understood. This study addresses this gap by analyzing the occurrence, seasonal variability, and spatial dynamics of ARs across the continent from 2009 [...] Read more.
Atmospheric Rivers (ARs) transport significant amounts of moisture and cause extreme precipitation events, yet their behavior over Africa is not well understood. This study addresses this gap by analyzing the occurrence, seasonal variability, and spatial dynamics of ARs across the continent from 2009 to 2019. Utilizing ERA5 reanalysis data, Global Navigation Satellite Systems Radio Occultation (GNSS RO) measurements, and the Image-Processing-based Atmospheric River Tracking (IPART) method, distinct seasonal AR patterns are identified. Southern Africa experiences peak activity during austral summer, while AR occurrence in Northern Africa peaks in boreal winter and spring, aligning with regional rainy seasons. Moisture sources include the Atlantic Ocean, the Arabian Sea, and the Red Sea. A comparison of ERA5 Integrated Water Vapor (IWV) estimates with high-resolution GNSS RO data shows that both datasets effectively capture broad-scale moisture patterns. However, ERA5 consistently delivers higher IWV values compared to GNSS RO, which is likely due to underrepresentation of GNSS RO IWV values, since profiles generally do not reach all the way down to the surface—but also due to an overrepresentation of humidity in the ERA5 reanalyses. Understanding AR dynamics in Africa is essential to improve climate resilience, water management and understanding extreme precipitation events. Full article
Show Figures

Figure 1

24 pages, 44313 KiB  
Article
Spatiotemporal Trend and Influencing Factors of Surface Soil Moisture in Eurasian Drylands over the Past Four Decades
by Jinyue Liu, Jie Zhao, Junhao He, Jianjia Qu, Yushen Xing, Rui Du, Shichao Chen, Xianhui Tang, Liang Wang and Chao Yue
Forests 2025, 16(4), 589; https://doi.org/10.3390/f16040589 - 28 Mar 2025
Viewed by 433
Abstract
Eurasian drylands are vital for the global climate and ecological balance. Quantifying spatiotemporal variations in surface soil moisture (SSM) is essential for monitoring water, energy, and carbon cycles. The suitability of recent global-scale surface soil moisture datasets for Eurasian arid and semi-arid regions [...] Read more.
Eurasian drylands are vital for the global climate and ecological balance. Quantifying spatiotemporal variations in surface soil moisture (SSM) is essential for monitoring water, energy, and carbon cycles. The suitability of recent global-scale surface soil moisture datasets for Eurasian arid and semi-arid regions has not been comprehensively evaluated. This study investigates spatiotemporal trends of five SSM products—MERRA-2, ESACCI, GLEAM, GLDAS, and ERA5—from 1980 to 2023. The performance of these products was evaluated using in situ station data and the three-cornered hat (TCH) method, followed by partial correlation analysis to assess the influence of environmental factors, including mean annual temperature (MAT), mean annual precipitation (MAP), potential evapotranspiration (PET), vapor pressure deficit (VPD), and leaf area index (LAI), on SSM from 1981 to 2018. The results showed consistent SSM patterns: higher values in India, the North China Plain, and Russia, and lower values in the Arabian Peninsula, the Iranian Plateau, and Central Asia. Regionally, MAT, PET, VPD, and LAI increased significantly (0.04 °C yr−1, 1.66 mm yr−1, 0.004 kPa yr−1, and 0.003 m2 m−2 yr−1, respectively; p < 0.05), while MAP rose non-significantly (0.29 mm yr−1). ERA5 exhibited the strongest correlation with in situ station data (R2 = 0.42), followed by GLEAM (0.37), ESACCI (0.28), MERRA2 (0.19), and GLDAS (0.17). Additionally, ERA5 showed the highest correlation (correlation = 0.72), while GLEAM had the lowest bias (0.03 m3 m−3) and ESACCI exhibited the lowest ubRMSE (0.03 m3 m−3). The three-cornered hat method identified ERA5 and GLDAS as having the lowest uncertainties (<0.03 m3 m−3), with ESACCI exceeding 0.05 m3 m−3 in northern regions. Across land cover types, cropland had the lowest uncertainty among the five SSM products, while forest had the highest. Partial correlation and dominant factor analysis identified MAP as the primary driver of SSM. This study comprehensively evaluated SSM products, highlighting their strengths and limitations. It underscored MAP’s crucial role in SSM dynamics and provided insights for improving SSM datasets and water resource management in drylands, with broader implications for understanding the hydrological impacts of climate change. Full article
(This article belongs to the Special Issue Remote Sensing Approach for Early Detection of Forest Disturbance)
Show Figures

Figure 1

20 pages, 4706 KiB  
Article
A SMA-SVM-Based Prediction Model for the Tailings Discharge Volume After Tailings Dam Failure
by Gaolin Liu, Bing Zhao, Xiangyun Kong, Yingming Xin, Mingqiang Wang and Yonggang Zhang
Water 2025, 17(4), 604; https://doi.org/10.3390/w17040604 - 19 Feb 2025
Cited by 1 | Viewed by 686
Abstract
Tailings ponds can recycle water resources through the water recirculation system by clarifying and purifying the wastewater discharged from the mining production process. Due to factors such as flooding and heavy rainfall, once a tailings dams burst, the spread of heavy metals in [...] Read more.
Tailings ponds can recycle water resources through the water recirculation system by clarifying and purifying the wastewater discharged from the mining production process. Due to factors such as flooding and heavy rainfall, once a tailings dams burst, the spread of heavy metals in the tailings causes underground and surface water pollution, endangering the lives and properties of people downstream. To effectively assess the potential impact of tailings dams bursting, many problems such as the difficulty of taking values in predicting the volume of silt penetration through empirical formulae, model testing, and numerical simulation need to be solved. In this study, 65 engineering cases were collected to develop a sample dataset containing dam height and storage capacity. The Support Vector Machine (SVM) algorithm was used to develop a nonlinear regression model for tailings discharge volume after tailings dam failure. In addition, the model penalty parameter C and kernel function g were optimized using the powerful global search capability of the Slime Mold Algorithm (SMA) to develop an SMA–SVM prediction model for tailings discharge volume. The results indicate that the volume of tailings discharged increases nonlinearly with increasing dam height and tailings storage capacity. The SMA-SVM model showed higher prediction accuracy compared to the predictions made by the Random Forest (RF), Radial Basis Function (RBF), and Least Squares SVM (LS-SVM) algorithms. The average absolute error in tailings discharge volume compared to actual values was 30,000 m3, with an average relative error of less than 25%. This is very close to practical engineering scenarios. The ability of the SMA-SVM optimization algorithm to produce predictions with minimal error relative to actual values was further confirmed by the combination of numerical simulations. In addition, the numerical simulations revealed the flow characteristics and inundation area of the discharged sediment during tailings dam failure, and the research results can provide reference for water resource protection and downstream safety prevention and control of tailings ponds. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

27 pages, 8424 KiB  
Article
Research on the Algorithm of Lake Surface Height Inversion in Qinghai Lake Based on Sentinel-3A Altimeter
by Chuntao Chen, Xiaoqing Li, Jianhua Zhu, Hailong Peng, Youhua Xue, Wanlin Zhai, Mingsen Lin, Yufei Zhang, Jiajia Liu and Yili Zhao
Remote Sens. 2025, 17(4), 647; https://doi.org/10.3390/rs17040647 - 14 Feb 2025
Cited by 1 | Viewed by 754
Abstract
Lakes are a crucial component of inland water bodies, and changes in their water levels serve as key indicators of global climate change. Traditional methods of lake water level monitoring rely heavily on hydrological stations, but there are problems such as regional representativeness, [...] Read more.
Lakes are a crucial component of inland water bodies, and changes in their water levels serve as key indicators of global climate change. Traditional methods of lake water level monitoring rely heavily on hydrological stations, but there are problems such as regional representativeness, data stability, and high maintenance costs. The satellite altimeter is an essential tool in lake research, with the Synthetic Aperture Radar (SAR) altimeter offering a high spatial resolution. This enables precise and quantitative observations of lake water levels on a large scale. In this study, we used Sentinel-3A SAR Radar Altimeter (SRAL) data to establish a more reasonable lake height inversion algorithm for satellite-derived lake heights. Subsequently, using this technology, a systematic analysis study was conducted with Qinghai Lake as the case study area. By employing regional filtering, threshold filtering, and altimeter range filtering techniques, we obtained effective satellite altimeter height measurements of the lake surface height. To enhance the accuracy of the data, we combined these measurements with GPS buoy-based geoid data from Qinghai Lake, normalizing lake surface height data from different periods and locations to a fixed reference point. A dataset based on SAR altimeter data was then constructed to track lake surface height changes in Qinghai Lake. Using data from the Sentinel-3A altimeter’s 067 pass over Qinghai Lake, which has spanned 96 cycles since its launch in 2016, we analyzed over seven years of lake surface height variations. The results show that the lake surface height exhibits distinct seasonal patterns, peaking in September and October and reaching its lowest levels in April and May. From 2016 to 2023, Qinghai Lake showed a general upward trend, with an increase of 2.41 m in lake surface height, corresponding to a rate of 30.0 cm per year. Specifically, from 2016 to 2020, the lake surface height rose at a rate of 47.2 cm per year, while from 2020 to 2022, the height remained relatively stable. Full article
(This article belongs to the Special Issue Remote Sensing in Monitoring Coastal and Inland Waters)
Show Figures

Graphical abstract

Back to TopTop