Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = Gaussian membership function

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1408 KB  
Article
A Fuzzy Granular K-Means Clustering Method Driven by Gaussian Membership Functions
by Junjie Huang, Biyun Lan, Haibo Huang, Tiancai Huang and Yumin Chen
Mathematics 2026, 14(3), 462; https://doi.org/10.3390/math14030462 - 28 Jan 2026
Viewed by 79
Abstract
The K-means clustering algorithm is widely applied in various clustering tasks due to its high computational efficiency and simple implementation. However, its performance significantly deteriorates when dealing with non-convex structures, fuzzy boundaries, or noisy data, as it relies on the assumption that clusters [...] Read more.
The K-means clustering algorithm is widely applied in various clustering tasks due to its high computational efficiency and simple implementation. However, its performance significantly deteriorates when dealing with non-convex structures, fuzzy boundaries, or noisy data, as it relies on the assumption that clusters are spherical or linearly separable. To address these limitations, this paper proposes a Gaussian membership-driven fuzzy granular K-means clustering method. In this approach, multi-function Gaussian membership functions are used for fuzzy granulation at the single-feature level to generate fuzzy granules, while fuzzy granule vectors are constructed in the multi-feature space. A novel distance metric for fuzzy granules is defined along with operational rules, for which axiomatic proof is provided. This Gaussian-based granulation enables effective modeling of nonlinear separability in complex data structures, leading to the development of a new fuzzy granular K-means clustering framework. Experimental results on multiple public UCI datasets demonstrate that the proposed method significantly outperforms traditional K-means and other baseline methods in clustering tasks involving complex geometric data (e.g., circular and spiral structures), showing improved robustness and adaptability. This offers an effective solution for clustering data with intricate distributions. Full article
20 pages, 4096 KB  
Article
Transformer Core Loosening Diagnosis Based on Fusion Feature Extraction and CPO-Optimized CatBoost
by Yuanqi Xiao, Yipeng Yin, Jiaqi Xu and Yuxin Zhang
Processes 2025, 13(10), 3247; https://doi.org/10.3390/pr13103247 - 12 Oct 2025
Viewed by 572
Abstract
Transformer reliability is crucial to grid security, with core loosening a common fault. This paper proposes a transformer core loosening fault diagnosis method based on a fusion feature extraction approach and Categorical Boosting (CatBoost) optimized by the Crested Porcupine Optimizer (CPO) algorithm. Firstly, [...] Read more.
Transformer reliability is crucial to grid security, with core loosening a common fault. This paper proposes a transformer core loosening fault diagnosis method based on a fusion feature extraction approach and Categorical Boosting (CatBoost) optimized by the Crested Porcupine Optimizer (CPO) algorithm. Firstly, the audio signal is decomposed into six Intrinsic Mode Functions (IMF) components through Variational Mode Decomposition (VMD). This paper utilizes Gaussian membership functions to quantify the energy proportion, central frequency, and kurtosis of IMF and constructs a fuzzy entropy discrimination function. Then, the IMF noise components are removed through an adaptive threshold. Subsequently, the denoised signal undergoes a wavelet packet transform instead of a short-time Fourier transform to optimize Mel-frequency cepstral coefficients (WPT-MFCC), combining time-domain statistical features and frequency-band energy distribution to form a 24-dimensional fusion feature. Finally, the CatBoost algorithm is employed to validate the effects of different feature schemes. The CPO is introduced to optimize its iteration number, learning rate, tree depth, and random strength parameters, thereby enhancing overall performance. The CPO-optimized CatBoost model had 99.0196% fault recognition accuracy in experimental testing, 15% better than the standard CatBoost. Accuracy exceeded 90% even under extreme 0 dB noise. This method makes fault diagnosis more accurate and reliable. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

23 pages, 3467 KB  
Article
Adaptive Neuro-Fuzzy Inference System Framework for Paediatric Wrist Injury Classification
by Olamilekan Shobayo, Reza Saatchi and Shammi Ramlakhan
Multimodal Technol. Interact. 2025, 9(10), 104; https://doi.org/10.3390/mti9100104 - 8 Oct 2025
Viewed by 869
Abstract
An Adaptive Neuro-Fuzzy Inference System (ANFIS) framework for paediatric wrist injury classification (fracture versus sprain) was developed utilising infrared thermography (IRT). ANFIS combines artificial neural network (ANN) learning with interpretable fuzzy rules, mitigating the “black-box” limitation of conventional ANNs through explicit membership functions [...] Read more.
An Adaptive Neuro-Fuzzy Inference System (ANFIS) framework for paediatric wrist injury classification (fracture versus sprain) was developed utilising infrared thermography (IRT). ANFIS combines artificial neural network (ANN) learning with interpretable fuzzy rules, mitigating the “black-box” limitation of conventional ANNs through explicit membership functions and Takagi–Sugeno rule consequents. Forty children (19 fractures, 21 sprains, confirmed by X-ray radiograph) provided thermal image sequences from which three statistically discriminative temperature distribution features namely standard deviation, inter-quartile range (IQR) and kurtosis were selected. A five-layer Sugeno ANFIS with Gaussian membership functions were trained using a hybrid least-squares/gradient descent optimisation and evaluated under three premise-parameter initialisation strategies: random seeding, K-means clustering, and fuzzy C-means (FCM) data partitioning. Five-fold cross-validation guided the selection of membership functions standard deviation (σ) and rule count, yielding an optimal nine-rule model. Comparative experiments show K-means initialisation achieved the best balance between convergence speed and generalisation versus slower but highly precise random initialisation and rapidly convergent yet unstable FCM. The proposed K-means–driven ANFIS offered data-efficient decision support, highlighting the potential of thermal feature fusion with neuro-fuzzy modelling to reduce unnecessary radiographs in emergency bone fracture triage. Full article
Show Figures

Figure 1

18 pages, 2957 KB  
Article
Modelling a Fuzzy Logic-Based Multiple-Actuator Hydraulic Lifting and Positioning System
by Grzegorz Filo, Edward Lisowski, Paweł Lempa and Konrad Wisowski
Appl. Sci. 2025, 15(19), 10747; https://doi.org/10.3390/app151910747 - 6 Oct 2025
Viewed by 907
Abstract
This paper presents a fuzzy logic control strategy for synchronising the vertical lifting and positioning of a multi-actuator hydraulic system designed for a 360-ton movable platform. The primary focus is on achieving precise actuator movement coordination under uneven loading conditions without using external [...] Read more.
This paper presents a fuzzy logic control strategy for synchronising the vertical lifting and positioning of a multi-actuator hydraulic system designed for a 360-ton movable platform. The primary focus is on achieving precise actuator movement coordination under uneven loading conditions without using external reference systems or high-cost sensors. A mathematical model and a simulation environment were developed in MATLAB/Simulink with Fuzzy Logic Toolbox. Four fuzzy controller variants were evaluated regarding positioning accuracy, robustness, and compliance with dynamic constraints. The results demonstrate the effectiveness of the proposed control method, particularly when using Gaussian membership functions and PROD–PROBOR fuzzy operators. The system achieved sub-millimetre synchronisation accuracy even under 20% load imbalance. This work contributes to developing decentralised, sensor-light control strategies for large-scale hydraulic systems and offers a validated foundation for future experimental implementation in the PANDA particle detector project. Full article
(This article belongs to the Special Issue Applications of Fuzzy Systems and Fuzzy Decision Making)
Show Figures

Figure 1

30 pages, 4823 KB  
Article
Combining Deep Learning Architectures with Fuzzy Logic for Robust Pneumonia Detection in Chest X-Rays
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Appl. Sci. 2025, 15(19), 10321; https://doi.org/10.3390/app151910321 - 23 Sep 2025
Cited by 1 | Viewed by 1089
Abstract
Early and accurate detection of pneumonia from chest X-ray images is essential for improving treatment and clinical outcomes. Medical imaging datasets often exhibit class imbalance and uncertainty in feature extraction, which complicates conventional classification methods and motivates the use of advanced approaches combining [...] Read more.
Early and accurate detection of pneumonia from chest X-ray images is essential for improving treatment and clinical outcomes. Medical imaging datasets often exhibit class imbalance and uncertainty in feature extraction, which complicates conventional classification methods and motivates the use of advanced approaches combining deep learning and fuzzy logic. This study proposes a hybrid approach that combines deep learning architectures (VGG16, EfficientNetV2, MobileNetV2, ResNet50) for feature extraction with fuzzy logic-based classifiers, including Fuzzy C-Means, Fuzzy Decision Tree, Fuzzy KNN, Fuzzy SVM, and ANFIS (Adaptive Neuro-Fuzzy Inference System). Feature selection techniques were also applied to enhance the discriminative power of the extracted features. The best-performing model, ANFIS with MobileNetV2 features and Gaussian membership functions, achieved an overall accuracy of 98.52%, with Normal class precision of 97.07%, recall of 97.48%, and F1-score of 97.27%, and Pneumonia class precision of 99.06%, recall of 98.91%, and F1-score of 98.99%. Among the fuzzy classifiers, Fuzzy SVM and Fuzzy KNN also showed strong performance with accuracy above 96%, while Fuzzy Decision Tree and Fuzzy C-Means achieved moderate results. These findings demonstrate that integrating deep feature extraction with neuro-fuzzy reasoning significantly improves diagnostic accuracy and robustness, providing a reliable tool for clinical decision support. Future research will focus on optimizing model efficiency, interpretability, and real-time applicability. Full article
(This article belongs to the Special Issue Machine Learning-Based Feature Extraction and Selection: 2nd Edition)
Show Figures

Figure 1

28 pages, 7371 KB  
Article
Deep Fuzzy Fusion Network for Joint Hyperspectral and LiDAR Data Classification
by Guangen Liu, Jiale Song, Yonghe Chu, Lianchong Zhang, Peng Li and Junshi Xia
Remote Sens. 2025, 17(17), 2923; https://doi.org/10.3390/rs17172923 - 22 Aug 2025
Cited by 3 | Viewed by 1443
Abstract
Recently, Transformers have made significant progress in the joint classification task of HSI and LiDAR due to their efficient modeling of long-range dependencies and adaptive feature learning mechanisms. However, existing methods face two key challenges: first, the feature extraction stage does not explicitly [...] Read more.
Recently, Transformers have made significant progress in the joint classification task of HSI and LiDAR due to their efficient modeling of long-range dependencies and adaptive feature learning mechanisms. However, existing methods face two key challenges: first, the feature extraction stage does not explicitly model category ambiguity; second, the feature fusion stage lacks a dynamic perception mechanism for inter-modal differences and uncertainties. To this end, this paper proposes a Deep Fuzzy Fusion Network (DFNet) for the joint classification of hyperspectral and LiDAR data. DFNet adopts a dual-branch architecture, integrating CNN and Transformer structures, respectively, to extract multi-scale spatial–spectral features from hyperspectral and LiDAR data. To enhance the model’s discriminative robustness in ambiguous regions, both branches incorporate fuzzy learning modules that model class uncertainty through learnable Gaussian membership functions. In the modality fusion stage, a Fuzzy-Enhanced Cross-Modal Fusion (FECF) module is designed, which combines membership-aware attention mechanisms with fuzzy inference operators to achieve dynamic adjustment of modality feature weights and efficient integration of complementary information. DFNet, through a hierarchical design, realizes uncertainty representation within and fusion control between modalities. The proposed DFNet is evaluated on three public datasets, and the extensive experimental results indicate that the proposed DFNet considerably outperforms other state-of-the-art methods. Full article
Show Figures

Figure 1

26 pages, 36602 KB  
Article
FE-MCFN: Fuzzy-Enhanced Multi-Scale Cross-Modal Fusion Network for Hyperspectral and LiDAR Joint Data Classification
by Shuting Wei, Mian Jia and Junyi Duan
Algorithms 2025, 18(8), 524; https://doi.org/10.3390/a18080524 - 18 Aug 2025
Viewed by 1035
Abstract
With the rapid advancement of remote sensing technologies, the joint classification of hyperspectral image (HSI) and LiDAR data has become a key research focus in the field. To address the impact of inherent uncertainties in hyperspectral images on classification—such as the “same spectrum, [...] Read more.
With the rapid advancement of remote sensing technologies, the joint classification of hyperspectral image (HSI) and LiDAR data has become a key research focus in the field. To address the impact of inherent uncertainties in hyperspectral images on classification—such as the “same spectrum, different materials” and “same material, different spectra” phenomena, as well as the complexity of spectral features. Furthermore, existing multimodal fusion approaches often fail to fully leverage the complementary advantages of hyperspectral and LiDAR data. We propose a fuzzy-enhanced multi-scale cross-modal fusion network (FE-MCFN) designed to achieve joint classification of hyperspectral and LiDAR data. The FE-MCFN enhances convolutional neural networks through the application of fuzzy theory and effectively integrates global contextual information via a cross-modal attention mechanism. The fuzzy learning module utilizes a Gaussian membership function to assign weights to features, thereby adeptly capturing uncertainties and subtle distinctions within the data. To maximize the complementary advantages of multimodal data, a fuzzy fusion module is designed, which is grounded in fuzzy rules and integrates multimodal features across various scales while taking into account both local features and global information, ultimately enhancing the model’s classification performance. Experimental results obtained from the Houston2013, Trento, and MUUFL datasets demonstrate that the proposed method outperforms current state-of-the-art classification techniques, thereby validating its effectiveness and applicability across diverse scenarios. Full article
(This article belongs to the Section Databases and Data Structures)
Show Figures

Figure 1

26 pages, 1570 KB  
Article
A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization
by Huimin Guan, Guanyu Hu, Hongyao Du, Yuetong Yin and Wei He
Sensors 2025, 25(16), 5091; https://doi.org/10.3390/s25165091 - 16 Aug 2025
Viewed by 1234
Abstract
Diesel engines serve as critical power sources across transportation and industrial fields, and their fault diagnosis is essential for ensuring operational safety and system reliability. However, acquiring sufficient and effective operational data remains a significant challenge due to the high complexity of the [...] Read more.
Diesel engines serve as critical power sources across transportation and industrial fields, and their fault diagnosis is essential for ensuring operational safety and system reliability. However, acquiring sufficient and effective operational data remains a significant challenge due to the high complexity of the systems. As a modeling method that incorporates expert knowledge, the belief rule base (BRB) demonstrates strong potential in resolving such challenges. Nevertheless, the reliance on expert knowledge constrains its practical application, particularly in complex engineering scenarios. To overcome this limitation, this study proposes a reliability fault diagnosis method for diesel engines based on the belief rule base with data-driven initialization (DI-BRB-R), which aims to improve modeling capability under conditions of limited expert knowledge. Specifically, the approach first employs fuzzy c-means clustering with the Davies–Bouldin index (DBI-FCM) to initialize attribute reference values. Then, a Gaussian membership function with Laplace smoothing (LS-GMF) is developed to initialize the rule belief degrees. Furthermore, to guarantee the reliability of the model optimization process, a group of reliability guidelines is introduced. Finally, the effectiveness of the proposed method is validated through an example of fault diagnosis of the WD615 diesel engine. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 1754 KB  
Article
A Fuzzy Five-Region Membership Model for Continuous-Time Vehicle Flow Statistics in Underground Mines
by Hao Wang, Maoqua Wan, Hanjun Gong and Jie Hou
Processes 2025, 13(8), 2434; https://doi.org/10.3390/pr13082434 - 31 Jul 2025
Viewed by 602
Abstract
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to [...] Read more.
Accurate dynamic flow statistics for trackless vehicles are critical for efficiently scheduling trackless transportation systems in underground mining. However, traditional discrete time-point methods suffer from “time membership discontinuity” due to RFID timestamp sparsity. This study proposes a fuzzy five-region membership (FZFM) model to address this issue by subdividing time intervals into five characteristic regions and constructing a composite Gaussian–quadratic membership function. The model dynamically assigns weights to adjacent segments based on temporal distances, ensuring smooth transitions between time intervals while preserving flow conservation. When validated on a 29-day RFID dataset from a large coal mine, FZFM eliminated conservation bias, reduced the boundary mutation index by 11.1% compared with traditional absolute segmentation, and maintained high computational efficiency, proving suitable for real-time systems. The method effectively mitigates abrupt flow jumps at segment boundaries, providing continuous and robust flow distributions for intelligent scheduling algorithms in complex underground logistics systems. Full article
(This article belongs to the Special Issue Data-Driven Analysis and Simulation of Coal Mining)
Show Figures

Figure 1

17 pages, 3987 KB  
Article
Predicting Winter Ammonia and Methane Emissions from a Naturally Ventilated Dairy Barn in a Cold Region Using an Adaptive Neural Fuzzy Inference System
by Hualong Liu, Xin Wang, Tana, Tiezhu Xie, Hurichabilige, Qi Zhen and Wensheng Li
Agriculture 2025, 15(14), 1560; https://doi.org/10.3390/agriculture15141560 - 21 Jul 2025
Cited by 1 | Viewed by 973
Abstract
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target [...] Read more.
This study aims to characterize the emissions of ammonia (NH3) and methane (CH4) from naturally ventilated dairy barns located in cold regions during the winter season, thereby providing a scientific basis for optimizing dairy barn environmental management. The target barn was selected at a commercial dairy farm in Ulanchab, Inner Mongolia, China. Environmental factors, including temperature, humidity, wind speed, and concentrations of NH3, CH4, and CO2, were monitored both inside and outside the barn. The ventilation rate and emission rate were calculated using the CO2 mass balance method. Additionally, NH3 and CH4 emission prediction models were developed using the adaptive neural fuzzy inference system (ANFIS). Correlation analyses were conducted to clarify the intrinsic links between environmental factors and NH3 and CH4 emissions, as well as the degree of influence of each factor on gas emissions. The ANFIS model with a Gaussian membership function (gaussmf) achieved the highest performance in predicting NH3 emissions (R2 = 0.9270), while the model with a trapezoidal membership function (trapmf) was most accurate for CH4 emissions (R2 = 0.8977). The improved ANFIS model outperformed common models, such as multilayer perceptron (MLP) and radial basis function (RBF). This study revealed the significant effects of environmental factors on NH3 and CH4 emissions from dairy barns in cold regions and provided reliable data support and intelligent prediction methods for realizing the precise control of gas emissions. Full article
Show Figures

Figure 1

20 pages, 2602 KB  
Article
Performance Improvement in a Vehicle Suspension System with FLQG and LQG Control Methods
by Tayfun Abut, Enver Salkım and Andreas Demosthenous
Actuators 2025, 14(3), 137; https://doi.org/10.3390/act14030137 - 10 Mar 2025
Cited by 8 | Viewed by 1440
Abstract
This study investigates the effect of active control on a quarter-vehicle suspension system. The car suspension system was modeled using the Lagrange–Euler method. The linear quadratic Gaussian (LQG) and fuzzy linear quadratic Gaussian (FLQG) control methods were designed and used for active control [...] Read more.
This study investigates the effect of active control on a quarter-vehicle suspension system. The car suspension system was modeled using the Lagrange–Euler method. The linear quadratic Gaussian (LQG) and fuzzy linear quadratic Gaussian (FLQG) control methods were designed and used for active control to increase vehicle handling and passenger comfort, with the aim of reducing or eliminating vibrations by performing active control of passive suspension systems using these methods. The optimum values of the coefficients of the points where the membership functions of the LQG and Fuzzy LQG methods touch were obtained using the grey wolf optimization (GWO) algorithm. The success of the control performance rate of the applied methods was compared based on the passive suspension system. In addition, the obtained results were compared with each other and with other studies using the integral time-weighted absolute error (ITAE) performance criterion. The proposed control method yielded significant improvements in vehicle parameters compared with the passive suspension system. Vehicle body movement, vehicle acceleration, suspension deflection, and tire deflection improved by approximately 88.2%, 91.5%, 88%, and 89.4%, respectively. Thus, vehicle driving comfort was significantly enhanced based on the proposed system. Full article
Show Figures

Figure 1

22 pages, 3691 KB  
Article
G-TS-HRNN: Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network
by Omar Bahou, Mohammed Roudani and Karim El Moutaouakil
Information 2025, 16(2), 141; https://doi.org/10.3390/info16020141 - 14 Feb 2025
Viewed by 1107
Abstract
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly [...] Read more.
The Hopfield Recurrent Neural Network (HRNN) is a single-point descent metaheuristic that uses a single potential solution to explore the search space of optimization problems, whose constraints and objective function are aggregated into a typical energy function. The initial point is usually randomly initialized, then moved by applying operators, characterizing the discrete dynamics of the HRNN, which modify its position or direction. Like all single-point metaheuristics, HRNN has certain drawbacks, such as being more likely to get stuck in local optima or miss global optima due to the use of a single point to explore the search space. Moreover, it is more sensitive to the initial point and operator, which can influence the quality and diversity of solutions. Moreover, it can have difficulty with dynamic or noisy environments, as it can lose track of the optimal region or be misled by random fluctuations. To overcome these shortcomings, this paper introduces a population-based fuzzy version of the HRNN, namely Gaussian Takagi–Sugeno Hopfield Recurrent Neural Network (G-TS-HRNN). For each neuron, the G-TS-HRNN associates an input fuzzy variable of d values, described by an appropriate Gaussian membership function that covers the universe of discourse. To build an instance of G-TS-HRNN(s) of size s, we generate s n-uplets of fuzzy values that present the premise of the Takagi–Sugeno system. The consequents are the differential equations governing the dynamics of the HRNN obtained by replacing each premise fuzzy value with the mean of different Gaussians. The steady points of all the rule premises are aggregated using the fuzzy center of gravity equation, considering the level of activity of each rule. G-TS-HRNN is used to solve the random optimization method based on the support vector model. Compared with HRNN, G-TS-HRNN performs better on well-known data sets. Full article
Show Figures

Figure 1

23 pages, 3030 KB  
Article
Research on Precise Feeding Strategies for Large-Scale Marine Aquafarms
by Yizhi Wang, Yusen Zhang, Fengyuan Ma, Xiaomin Tian, Shanshan Ge, Chaoyuan Man and Maohua Xiao
J. Mar. Sci. Eng. 2024, 12(9), 1671; https://doi.org/10.3390/jmse12091671 - 18 Sep 2024
Cited by 3 | Viewed by 1593
Abstract
Breeding in large-scale marine aquafarms faces many challenges in terms of precise feeding, including real-time decisions as to the precise feeding amount, along with disturbances caused by the feeding speed and the moving speed of feeding equipment. Involving many spatiotemporal distributed parameters and [...] Read more.
Breeding in large-scale marine aquafarms faces many challenges in terms of precise feeding, including real-time decisions as to the precise feeding amount, along with disturbances caused by the feeding speed and the moving speed of feeding equipment. Involving many spatiotemporal distributed parameters and variables, an effective predictive model for environment and growth stage perception is yet to obtained, further preventing the development of precise feeding strategies and feeding equipment. Therefore, in this paper, a hierarchical type-2 fuzzy system based on a quasi-Gaussian membership function for fast, precise, on-site feeding decisions is proposed and validated. The designed system consists of two layers of decision subsystems, taking in different sources of data and expert experience in feeding but avoiding the rule explosion issue. Meanwhile, the water quality evaluation is considered as the secondary membership function for type-2 fuzzy sets and used to adjust the parameters of the quasi-Gaussian membership function, decreasing the calculation load in type reduction. The proposed system is validated, and the results indicate that the shape of the primary fuzzy sets is altered with the secondary membership, which influences the defuzzification results accordingly. Meanwhile, the hardware of feeding bins for UAVs with variable-speed coupling control systems with disturbance compensation is improved and validated. The results indicate that the feeding speed can follow the disturbance in the level flying speed. Full article
Show Figures

Figure 1

19 pages, 2683 KB  
Article
Refining Environmental Sustainability Governance Reports through Fuzzy Systems Evaluation and Scoring
by Yung-Fa Yang, Haon-Yao Chen, Yun-Hsiang Chen, Shih-Ping Ho, Chuan-San Wang and Cheng-Fang Lin
Sustainability 2024, 16(16), 7227; https://doi.org/10.3390/su16167227 - 22 Aug 2024
Cited by 3 | Viewed by 2003
Abstract
Environmental, Social, and Governance (ESG) reports have become essential tools for enterprises to showcase their commitment to sustainable development and social responsibility. However, discrepancies persist regarding the criteria, assessments, and ratings disclosed in these reports. Moreover, there is a need for more objective [...] Read more.
Environmental, Social, and Governance (ESG) reports have become essential tools for enterprises to showcase their commitment to sustainable development and social responsibility. However, discrepancies persist regarding the criteria, assessments, and ratings disclosed in these reports. Moreover, there is a need for more objective methods to determine the weight distribution of indicator items. This study introduces a novel approach utilizing semantic variables in fuzzy theory and a multiple logic fuzzy inference system to develop an ESG environmental management performance assessment model. Therefore, this paper aims to develop a novel approach utilizing semantic variables and a multiple logic fuzzy inference system to quantitatively evaluate the sustainable performance of an environmental management plan. This research also aims to ensure fair and objective assessment outcomes, providing valuable guidance for enterprises in implementing performance management strategies. Key aspects investigated include the impact of membership functions, the extended utilization of semantic variables and logical rules, a comparative analysis of traditional weight assessments, and the limitations of applying fuzzy theory. Through comprehensive discussions and calculations, it is evident that fuzzy theory offers considerable flexibility in application. By tailoring fuzzy rules and selecting appropriate membership functions, diverse application scenarios can be accommodated. The Fuzzy systems evaluation and scoring EMP model generates EMP evaluation scores ranging from 1.76 to 8.29 for Gaussian membership, 1.80 to 8.19 for Triangular membership-A, 1.92 to 8.00 for Triangular membership-B, and 1.81 to 8.19 for Quadrilateral trapezoidal membership, based on simulated rating scenarios using the semantic variables of completeness and feasibility. This approach successfully incorporates distribution logic from subjective membership degrees to evaluate EMP scores. The findings demonstrate that fuzzy theory enables the consideration of multiple factors and facilitates the provision of objective-level membership, underscoring its potential in addressing complex evaluation challenges. This study illuminates the versatility of the fuzzy system theory, with its applications poised to extend across various domains. Full article
Show Figures

Figure 1

41 pages, 5173 KB  
Article
Onboard Neuro-Fuzzy Adaptive Helicopter Turboshaft Engine Automatic Control System
by Serhii Vladov, Maryna Bulakh, Victoria Vysotska and Ruslan Yakovliev
Energies 2024, 17(16), 4195; https://doi.org/10.3390/en17164195 - 22 Aug 2024
Cited by 5 | Viewed by 1526
Abstract
A modified onboard neuro-fuzzy adaptive (NFA) helicopter turboshaft engine (HTE) automatic control system (ACS) is proposed, which is based on a circuit consisting of a research object, a regulator, an emulator, a compensator, and an observer unit. In this scheme, it is proposed [...] Read more.
A modified onboard neuro-fuzzy adaptive (NFA) helicopter turboshaft engine (HTE) automatic control system (ACS) is proposed, which is based on a circuit consisting of a research object, a regulator, an emulator, a compensator, and an observer unit. In this scheme, it is proposed to use the proposed AFNN six-layer hybrid neuro-fuzzy network (NFN) with Sugeno fuzzy inference and a Gaussian membership function for fuzzy variables, which makes it possible to reduce the HTE fuel consumption parameter transient process regulation time by 15.0 times compared with the use of a traditional system automatic control (clear control), 17.5 times compared with the use of a fuzzy ACS (fuzzy control), and 11.25 times compared with the use of a neuro-fuzzy reconfigured ACS based on an ANFIS five-layer hybrid NFN. By applying the Lyapunov method as a criterion, its system stability is proven at any time, with the exception of the initial time, since at the initial time the system is in an equilibrium state. The use of the six-layer ANFF NFN made it possible to reduce the I and II types of error in the HTE fuel consumption controlling task by 1.36…2.06 times compared with the five-layer ANFIS NFN. This work also proposes an AFNN six-layer hybrid NFN training algorithm, which, due to adaptive elements, allows one to change its parameters and settings in real time based on changing conditions or external influences and, as a result, achieve an accuracy of up to 99.98% in the HTE fuel consumption controlling task and reduce losses to 0.2%. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

Back to TopTop