A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization
Abstract
1. Introduction
- (1)
- To address the challenge of insufficient expert knowledge in diesel engine fault diagnosis, a DI-BRB-R model is developed.
- (2)
- To ensure the effectiveness of the model, a fuzzy c-means clustering with the Davies–Bouldin index (DBI-FCM) and a Gaussian membership function with Laplace smoothing (LS-GMF) are proposed, which are used to initialize attribute reference values and belief degrees, respectively.
- (3)
- To ensure the reliability and consistency of the optimization process, a set of reliability guidelines is introduced to guide the optimization of parameters, thereby maintaining a balance between accuracy and reliability of the model.
2. BRB Basics and Problem Formulation
2.1. BRB Basics
2.2. Problem Formulation
- Problem 1: How to construct a BRB model in the absence of sufficient expert knowledge
- Problem 2: How to ensure reliability during the model optimization process
- Problem 3: How to construct the DI-BRB-R model for diesel engine fault diagnosis
3. Construction of DI-BRB-R
3.1. Reference Values Initialization
- Step 1: Objective function definition
- Step 2: Compute membership matrix and cluster centers
- Step 3: Set termination condition
- Step 4: Compute the DBI
- Step 5: Discussion on threshold values
- (1)
- The minimum reference value, corresponding to the minimum observed value of the attribute within the dataset.
- (2)
- The maximum reference value, corresponding to the maximum observed value of the attribute within the dataset.
- (3)
- The intermediate reference values, corresponding to the cluster centers obtained through DBI-FCM.
3.2. Belief Degrees’ Initialization
- Step 1: Calculate the membership degrees corresponding to the reference values
- Step 2: The calculation of the integrated membership degree
- Step 3: Verification procedure
- Step 4: Normalization processing
3.3. Reliability Guidelines
3.4. The Optimization Process of the DI-BRB-R Model
3.5. Summary of the DI-BRB-R Modeling
- Step 1: Initialize the antecedent reference values using the DBI-FCM algorithm. The detailed procedure is described in Section 3.1.
- Step 2: Initialize the belief degrees using a Gaussian membership function, as detailed in Section 3.2.
- Step 3: Build the DI-BRB-R model using the reference values and belief degrees obtained in Step 1 and Step 2.
- Step 4: Optimize the rule weights, attribute weights, and belief degrees through the improved P-CMA-ES algorithm. To prevent excessive deviation from the initial parameters provided by the DI-BRB-R model and damaging the reliability of the model, a group of reliability guidelines is introduced in Section 3.3 to guarantee the reliability of the optimization process.
- Step 5: Based on the optimized parameters, the ER algorithm is employed to derive the final fault diagnosis results for the diesel engine.
4. Case Study
4.1. The Modeling of the DI-BRB-R
4.2. Analysis of the Experimental Results
4.3. The Reliability Analysis of the Model
4.4. Comparative Experiment
4.5. Experimental Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yan, H.; Bai, H.; Zhan, X.; Wu, Z.; Wen, L.; Jia, X. Combination of VMD Mapping MFCC and LSTM: A New Acoustic Fault Diagnosis Method of Diesel Engine. Sensors 2022, 22, 8325. [Google Scholar] [CrossRef]
- Ming, Z.; Zhou, Z.; Cao, Y.; Tang, S.; Chen, Y.; Han, X.; He, W. A new interpretable fault diagnosis method based on belief rule base probability table. Chin. J. Aeronaut. 2023, 36, 184–201. [Google Scholar] [CrossRef]
- Zhou, Z.; Ming, Z.; Wang, J.; Tang, S.; Cao, Y.; Han, X.; Xiang, G. A Novel Belief Rule-Based Fault Diagnosis Method with Interpretability. Comput. Model. Eng. Sci. 2023, 136, 1165–1185. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, S.; Fujita, H.; Chen, D.; Wen, C. Deep learning fault diagnosis method based on global optimization GAN for unbalanced data. Knowl.-Based Syst. 2020, 187, 104837. [Google Scholar] [CrossRef]
- Cai, B.; Sun, X.; Wang, J.; Yang, C.; Wang, Z.; Kong, X.; Liu, Z.; Liu, Y. Fault detection diagnostic method of diesel engine by combining rule-based algorithm BNs/BPNNs. J. Manuf. Syst. 2020, 57, 148–157. [Google Scholar] [CrossRef]
- Deng, Q.; Li, S.; Yang, C.; Ma, N.; He, W. A New Health State Assessment Method for Complex Systems Based on Approximate Belief Rule Base With Attribute Reliability. IEEE Access 2024, 12, 162268–162281. [Google Scholar] [CrossRef]
- Li, S.; Qi, L.; Shi, J.; Xiao, H.; Da, B.; Tang, R.; Zuo, D. Study on Few-Shot Fault Diagnosis Method for Marine Fuel Systems Based on DT-SViT-KNN. Sensors 2024, 25, 6. [Google Scholar] [CrossRef]
- Kong, X.; Cai, B.; Khan, J.A.; Gao, L.; Yang, J.; Wang, B.; Yu, Y.; Liu, Y. Concurrent fault diagnosis method for electric-hydraulic system: Subsea blowout preventer system as a case study. Ocean Eng. 2024, 294, 116818. [Google Scholar] [CrossRef]
- Qi, J.; Mauricio, A.; Sarrazin, M.; Janssens, K.; Gryllias, K. Enhanced Particle Filter and Cyclic Spectral Coherence based Prognostics of Rolling Element Bearings. PHM Soc. Eur. Conf. 2018, 4. [Google Scholar] [CrossRef]
- Gao, B.; Xu, J.; Zhang, Z.; Liu, Y.; Chang, X. Marine diesel engine piston ring fault diagnosis based on LSTM, improved beluga whale optimization. Alex. Eng. J. 2024, 109, 213–228. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Wang, D.; Lu, W.; Yuan, B.; Qin, C.; Cheng, Y.; Căleanu, C. MITDCNN: A multi-modal input Transformer-based deep convolutional neural network for misfire signal detection in high-noise diesel engines. Expert Syst. Appl. 2024, 238, 121797. [Google Scholar] [CrossRef]
- Wang, R.; Yan, H.; Dong, E.; Cheng, Z.; Li, Y.; Jia, X. Infrared thermography based fault diagnosis of diesel engines using convolutional neural network and image enhancement. Open Phys. 2024, 22, 20240110. [Google Scholar] [CrossRef]
- Yang, X.; Bi, F.; Cheng, J.; Tang, D.; Shen, P.; Bi, X. A Multiple Attention Convolutional Neural Networks for Diesel Engine Fault Diagnosis. Sensors 2024, 24, 2708. [Google Scholar] [CrossRef]
- Chen, T.; Xiang, Y.; Wang, X. IFD-BiC: A class-incremental continual learning method for diesel engine fault diagnosis. Eng. Res. Express 2025, 7, 015419. [Google Scholar] [CrossRef]
- Yang, L.; Fu, W.; Li, W.; Li, H.; Xu, R.; Zhang, S. Response and fault diagnosis of crankshafts containing breathing cracks based on torsional angular velocity. Mech. Syst. Signal Process. 2025, 233, 112765. [Google Scholar] [CrossRef]
- Xu, N.; Yang, L.; Guo, Y.; Chang, L.; Zhang, G.; Zhang, J. An Improved Thermoeconomic Diagnosis Method: Applying to Marine Diesel Engines. J. Mar. Sci. Eng. 2025, 13, 244. [Google Scholar] [CrossRef]
- Coelho, R.N.C.; Macêdo, E.N.; Quaresma, J.N.N. Monitoring the operational condition of a diesel engine by evaluating the parameters of its thermodynamic operation cycle. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 447. [Google Scholar] [CrossRef]
- Knežević, V.; Orović, J.; Stazić, L.; Čulin, J. Fault Tree Analysis Failure Diagnosis of Marine Diesel Engine Turbocharger System. J. Mar. Sci. Eng. 2020, 8, 1004. [Google Scholar] [CrossRef]
- Du, J.; Ma, K.; Liu, Y. Research on the dynamic characteristics of multi-cylinder crankshaft considering crack and engine variable conditions. Nonlinear Dyn. 2024, 112, 17907–17932. [Google Scholar] [CrossRef]
- Zhan, X.; Bai, H.; Yan, H.; Wang, R.; Guo, C.; Jia, X. Diesel Engine Fault Diagnosis Method Based on Optimized VMD, Improved, CNN. Processes 2022, 10, 2162. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J. Fault Diagnosis of Marine Diesel Engines under Partial Set Cross Working Conditions Based on Transfer Learning. J. Mar. Sci. Eng. 2023, 11, 1527. [Google Scholar] [CrossRef]
- Jiang, R.; Ou, S.; Li, B.; Liu, W.; Cao, B.; Yu, Y.; Katunin, A. A Fault Diagnosis Method for Typical Failures of Marine Diesel Engines Based on Multisource Information Fusion. Shock Vib. 2025, 2025, 1904885. [Google Scholar] [CrossRef]
- Li, B.; Ding, Y.; Ma, W.; Xiang, L.; Sui, C. A health condition assessment method for marine diesel engine turbochargers using zero-dimensional engine model and machine learning. Measurement 2025, 251, 117283. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Kong, X.; Zhang, J.; Jiang, Z.; Mao, Z. Knowledge features enhanced intelligent fault detection with progressive adaptive sparse attention learning for high-power diesel engine. Meas. Sci. Technol. 2023, 34, 105906. [Google Scholar] [CrossRef]
- Qi, J.; Chen, Z.; Uhlmann, Y.; Schullerus, G. Sensorless Robust Anomaly Detection of Roller Chain Systems Based on Motor Driver Data Deep Weighted, K.N.N. IEEE Trans. Instrum. Meas. 2025, 74, 3502613. [Google Scholar] [CrossRef]
- Kong, X.; Cai, B.; Yu, Y.; Yang, J.; Wang, B.; Liu, Z.; Shao, X.; Yang, C. Intelligent diagnosis method for early faults of electric-hydraulic control system based on residual analysis. Reliab. Eng. Syst. Saf. 2025, 261, 111142. [Google Scholar] [CrossRef]
- Qi, J.; Chen, Z.; Kong, Y.; Qin, W.; Qin, Y. Attention-guided graph isomorphism learning: A multi-task framework for fault diagnosis and remaining useful life prediction. Reliab. Eng. Syst. Saf. 2025, 263, 111209. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, G.; Hu, C.; Wen, C.; Chang, L. A Survey of Belief Rule-Base Expert System. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 4944–4958. [Google Scholar] [CrossRef]
- Yang, J.; Liu, J.; Wang, J.; Sii, H.; Wang, H. Belief rule-base inference methodology using the evidential reasoning, Approach-RIMER. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2006, 36, 266–285. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, L.; Fu, C.; Chen, Y.W. Transparent Digital Twin for Output Control Using Belief Rule Base. IEEE Trans. Cybern. 2022, 52, 10364–10378. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; He, W.; Zhang, L.; Wu, R. A new belief rule base model with uncertainty parameters. Reliab. Eng. Syst. Saf. 2025, 256, 110796. [Google Scholar] [CrossRef]
- Yin, X.; He, W.; Cao, Y.; Zhou, G.; Li, H. Interpretable belief rule base for safety state assessment with reverse causal inference. Inf. Sci. 2023, 651, 119748. [Google Scholar] [CrossRef]
- Liu, M.; He, W.; Ma, N.; Zhu, H.; Zhou, G. A new reliability health status assessment model for complex systems based on belief rule base. Reliab. Eng. Syst. Saf. 2025, 254, 110614. [Google Scholar] [CrossRef]
- Chang, L.; Xu, X.; Liu, Z.; Qian, B.; Xu, X.; Chen, Y. BRB Prediction With Customized Attributes Weights Tradeoff Analysis for Concurrent Fault Diagnosis. IEEE Syst. J. 2021, 15, 1179–1190. [Google Scholar] [CrossRef]
- Xu, X.; Yan, X.; Sheng, C.; Yuan, C.; Xu, D.; Yang, J. A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 656–672. [Google Scholar] [CrossRef]
- Li, H.; Yin, X.; He, W.; Feng, Z.; Cao, Y. A New Fault Diagnosis Method Based on Belief Rule Base With Attribute Reliability Considering Multi-Fault Features. IEEE Access 2023, 11, 92766–92774. [Google Scholar] [CrossRef]
- Zhang, Q.; Si, Z.; Shen, J.; Zhu, H.; Zhou, G.; He, W. Data-driven enhanced belief rule base for complex system health state assessment. Inf. Sci. 2025, 717, 122293. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, B.; He, W.; Zhu, H.; Zhou, G. A behavior prediction method for complex system based on belief rule base with structural adaptive. Appl. Soft Comput. 2024, 151, 111118. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Q.; Wang, Z.; Zhou, Z. AutoBRB: An automated belief rule base model for pathologic complete response prediction in gastric cancer. Comput. Biol. Med. 2022, 140, 105104. [Google Scholar] [CrossRef]
- Yang, J.; Xu, D. Evidential reasoning rule for evidence combination. Artif. Intell. 2013, 205, 1–29. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, Z.; Hu, C.; He, W.; Tang, S. On the Interpretability of Belief Rule-Based Expert Systems. IEEE Trans. Fuzzy Syst. 2021, 29, 3489–3503. [Google Scholar] [CrossRef]
- Tang, M.; Liao, H.; Xu, J.; Streimikiene, D.; Zheng, X. Adaptive consensus reaching process with hybrid strategies for large-scale group decision making. Eur. J. Oper. Res. 2020, 282, 957–971. [Google Scholar] [CrossRef]
- Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef]
- Cao, Y.; Tang, S.; Yao, R.; Chang, L.; Yin, X. Interpretable hierarchical belief rule base expert system for complex system modeling. Measurement 2024, 226, 114033. [Google Scholar] [CrossRef]
- Si, Z.; Shen, J.; He, W. Lithium-Ion Battery Health Assessment Method Based on Double Optimization Belief Rule Base with Interpretability. Batteries 2024, 10, 323. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, G.; Zhang, B.; Hu, C.; Zhou, Z.; Qiao, P. A Model for Hidden Behavior Prediction of Complex Systems Based on Belief Rule Base and Power Set. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 1649–1655. [Google Scholar] [CrossRef]
- Li, G.; Zhou, Z.; Hu, C.; Chang, L.; Zhou, Z.; Zhao, F. A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base. Saf. Sci. 2017, 93, 108–120. [Google Scholar] [CrossRef]
- Feng, Z.; Zhou, Z.J.; Hu, C.; Chang, L.; Hu, G.; Zhao, F. A New Belief Rule Base Model With Attribute Reliability. IEEE Trans. Fuzzy Syst. 2019, 27, 903–916. [Google Scholar] [CrossRef]
Rank | N | M | S |
---|---|---|---|
Reference values | 1 | 0.5 | 0 |
Number of Clusters | The Cluster Center Value | DBI |
---|---|---|
2 | {0.0993, 0.1494} | 0.8972 |
3 | {0.0977, 0.1424, 0.1648} | 3.1303 |
4 | {0.0899, 0.1102, 0.1439, 0.1663} | 2.5632 |
5 | {0.0860, 0.1057, 0.1382, 0.1490, 0.1682} | 4.3898 |
6 | {0.0852, 0.1041, 0.1296, 0.1422, 0.1514, 0.1691} | 5.0570 |
7 | {0.0824, 0.0968, 0.1065, 0.1203, 0.1411, 0.1510, 0.1689} | 5.1407 |
Number of Clusters | The Cluster Center Value | DBI |
---|---|---|
2 | {3.2291, 5.2068} | 1 |
3 | {3.0129, 4.5144,5.9645} | 1.3033 |
4 | {2.7662, 3.6161, 4.6544, 6.0063} | 3.6062 |
5 | {2.7224, 3.4963, 4.5043,5.5631, 7.1421} | 3.0987 |
6 | {2.7008, 3.4277,4.3236,4.8954, 5.6777, 7.1333} | 8.2395 |
7 | {2.6248,3.1666,3.6413, 4.3603, 4.9168, 5.6757, 7.0940} | 5.6760 |
Attribute | Attribute Weight | Mean1 | Mean2 | Mean3 | Mean4 |
---|---|---|---|---|---|
Mean | 1 [0.9, 1] | 0.0728 | 0.0993 | 0.1494 | 0.1829 |
Kurtosis | 1 [0.9, 1] | 2.1749 | 3.2291 | 5.2068 | 11.0112 |
No. | Attribute | Rule Weight | ||
---|---|---|---|---|
Mean | Kurtosis | |||
1 | Mean1 | Kurtosis1 | 1 [0.5, 1] | {0.5790, 0.3404, 0.0806} {[0.4, 0.6], [0.2, 0.4], [0.05, 0.35]} |
2 | Mean1 | Kurtosis2 | 1 [0.6, 1] | {0.6440, 0.3113, 0.0447} {[0.6, 1], [0, 0.32], [0, 0.1]} |
3 | Mean1 | Kurtosis3 | 1 [0.8, 1] | {0.6644, 0.3050, 0.0306} {[0.65, 1], [0, 0.32], [0, 0.1]} |
4 | Mean1 | Kurtosis4 | 1 [0.7, 1] | {0.6659, 0.3049, 0.0293} {[0.55, 0.7], [0.3, 0.45], [0, 0.1]} |
5 | Mean2 | Kurtosis1 | 1 [0.5, 1] | {0.3035, 0.4613, 0.2352} {[0.2, 0.35], [0.4, 0.5], [0.2, 0.3]} |
6 | Mean2 | Kurtosis2 | 1 [0, 1] | {0.4745, 0.3703, 0.1552} {[0.4, 0.6], [0.2, 0.4], [0.15, 0.3]} |
7 | Mean2 | Kurtosis3 | 1 [0.8, 1] | {0.6329, 0.3072, 0.0599} {[0.62, 1], [0, 0.32], [0, 0.1]} |
8 | Mean2 | Kurtosis4 | 1 [0.8, 1] | {0.6659, 0.3049, 0.0293} {[0.65, 0.85], [0.15, 0.32], [0, 0.1]} |
9 | Mean3 | Kurtosis1 | 1 [0.7, 1] | {0.2282, 0.5090, 0.2628} {[0.2, 0.25], [0.5, 0.6], [0.2, 0.3]} |
10 | Mean3 | Kurtosis2 | 1 [0.2, 1] | {0.2098, 0.4803, 0.3099} {[0.2, 0.3], [0.4, 0.5], [0.3, 0.4]} |
11 | Mean3 | Kurtosis3 | 1 [0.4, 1] | {0.1031, 0.3222, 0.5747} {[0, 0.1], [0, 0.32], [0.55, 1]} |
12 | Mean3 | Kurtosis4 | 1 [0.1, 1] | {0.6659, 0.3049, 0.0293} {[0.5, 0.7], [0.3, 0.4], [0, 0.2]} |
13 | Mean4 | Kurtosis1 | 1 [0.7, 1] | {0.2250, 0.5074, 0.2676} {[0.15, 0.3], [0.35, 0.55], [0.25, 0.4]} |
14 | Mean4 | Kurtosis2 | 1 [0, 1] | {0.1641, 0.4438, 0.3921} {[0, 0.2], [0.43, 0.6], [0.3, 0.4]} |
15 | Mean4 | Kurtosis3 | 1 [0.8, 1] | {0.0363, 0.3105, 0.6532} {[0, 0.1], [0, 0.32], [0.65, 0.1]} |
16 | Mean4 | Kurtosis4 | 1 [0.6, 1] | {0.6659, 0.3049, 0.0293} {[0.6, 0.7], [0.2, 0.32], [0.1, 0.2]} |
No. | Attribute | Rule Weight | ||
---|---|---|---|---|
Mean | Kurtosis | |||
1 | Mean1 | Kurtosis1 | 0.8126 | {0.5158, 0.3473, 0.1369} |
2 | Mean1 | Kurtosis2 | 0.7879 | {0.9610, 0.0361, 0.0029} |
3 | Mean1 | Kurtosis3 | 0.8802 | {0.9991,0.0004, 0.0004} |
4 | Mean1 | Kurtosis4 | 0.8599 | {0.3849, 0.5915, 0.0235} |
5 | Mean2 | Kurtosis1 | 0.5406 | {0.1278, 0.4192, 0.4530} |
6 | Mean2 | Kurtosis2 | 0 | {0.5928, 0.1626, 0.2445} |
7 | Mean2 | Kurtosis3 | 0.9863 | {0.9993, 0.0002, 0} |
8 | Mean2 | Kurtosis4 | 0.8129 | {0.8866, 0.1047, 0.0087} |
9 | Mean3 | Kurtosis1 | 0.9320 | {0.2431, 0.5505, 0.2064} |
10 | Mean3 | Kurtosis2 | 0.2756 | {0.2339, 0.3406, 0.4255} |
11 | Mean3 | Kurtosis3 | 0.5093 | {0.0001, 0.0005, 0.9994} |
12 | Mean3 | Kurtosis4 | 0.1692 | {0.2582, 0.4633, 0.2780} |
13 | Mean4 | Kurtosis1 | 0.9493 | {0.1699, 0.3596, 0.4705} |
14 | Mean4 | Kurtosis2 | 0 | {0.0019, 0.0042, 0.9938} |
15 | Mean4 | Kurtosis3 | 0.9931 | {0.0019, 0.0042, 0.9938} |
16 | Mean4 | Kurtosis4 | 0.6079 | {0.6010, 0.3041, 0.0949} |
Attribute | Attribute Weight |
---|---|
Mean | 1 |
Kurtosis | 0.9967 |
Method | MSE | RMSE | MAE | |
---|---|---|---|---|
Part A | Classical BRB | 0.1560 | 0.3950 | 0.3491 |
DI-BRB | 0.0120 | 0.1097 | 0.0591 | |
BRB [Feng] | 0.0398 | 0.1955 | 0.1471 | |
BRB [Li] | 0.0287 | 0.1694 | 0.1039 | |
BRB [Yin] | 0.0425 | 0.2062 | 0.1503 | |
Part B | DI-BRB-R | 0.0122 | 0.1103 | 0.0601 |
BPNN | 0.0228 | 0.1508 | 0.0933 | |
SVM | 0.1345 | 0.3668 | 0.2942 | |
ELM | 0.0421 | 0.2051 | 0.1026 | |
RF | 0.0301 | 0.1735 | 0.1094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, H.; Hu, G.; Du, H.; Yin, Y.; He, W. A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization. Sensors 2025, 25, 5091. https://doi.org/10.3390/s25165091
Guan H, Hu G, Du H, Yin Y, He W. A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization. Sensors. 2025; 25(16):5091. https://doi.org/10.3390/s25165091
Chicago/Turabian StyleGuan, Huimin, Guanyu Hu, Hongyao Du, Yuetong Yin, and Wei He. 2025. "A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization" Sensors 25, no. 16: 5091. https://doi.org/10.3390/s25165091
APA StyleGuan, H., Hu, G., Du, H., Yin, Y., & He, W. (2025). A Reliability Fault Diagnosis Method for Diesel Engines Based on the Belief Rule Base with Data-Driven Initialization. Sensors, 25(16), 5091. https://doi.org/10.3390/s25165091