Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,648)

Search Parameters:
Keywords = GRID analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2954 KiB  
Article
A Multi-Objective Decision-Making Method for Optimal Scheduling Operating Points in Integrated Main-Distribution Networks with Static Security Region Constraints
by Kang Xu, Zhaopeng Liu and Shuaihu Li
Energies 2025, 18(15), 4018; https://doi.org/10.3390/en18154018 - 28 Jul 2025
Abstract
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling [...] Read more.
With the increasing penetration of distributed generation (DG), integrated main-distribution networks (IMDNs) face challenges in rapidly and effectively performing comprehensive operational risk assessments under multiple uncertainties. Thereby, using the traditional hierarchical economic scheduling method makes it difficult to accurately find the optimal scheduling operating point. To address this problem, this paper proposes a multi-objective dispatch decision-making optimization model for the IMDN with static security region (SSR) constraints. Firstly, the non-sequential Monte Carlo sampling is employed to generate diverse operational scenarios, and then the key risk characteristics are extracted to construct the risk assessment index system for the transmission and distribution grid, respectively. Secondly, a hyperplane model of the SSR is developed for the IMDN based on alternating current power flow equations and line current constraints. Thirdly, a risk assessment matrix is constructed through optimal power flow calculations across multiple load levels, with the index weights determined via principal component analysis (PCA). Subsequently, a scheduling optimization model is formulated to minimize both the system generation costs and the comprehensive risk, where the adaptive grid density-improved multi-objective particle swarm optimization (AG-MOPSO) algorithm is employed to efficiently generate Pareto-optimal operating point solutions. A membership matrix of the solution set is then established using fuzzy comprehensive evaluation to identify the optimal compromised operating point for dispatch decision support. Finally, the effectiveness and superiority of the proposed method are validated using an integrated IEEE 9-bus and IEEE 33-bus test system. Full article
Show Figures

Figure 1

25 pages, 8614 KiB  
Article
Shuffled Puma Optimizer for Parameter Extraction and Sensitivity Analysis in Photovoltaic Models
by En-Jui Liu, Rou-Wen Chen, Qing-An Wang and Wan-Ling Lu
Energies 2025, 18(15), 4008; https://doi.org/10.3390/en18154008 - 28 Jul 2025
Abstract
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the [...] Read more.
Photovoltaic (PV) systems are the core technology for implementing net-zero carbon emissions by 2050. The performance of PV systems is strongly influenced by environmental factors, including irradiance, temperature, and shading, which makes it difficult to characterize the nonlinear and multi-coupling behavior of the systems. Accurate modeling is essential for reliable performance prediction and lifespan estimation. To address this challenge, a novel metaheuristic algorithm called shuffled puma optimizer (SPO) is deployed to perform parameter extraction and optimal configuration identification across four PV models. The robustness and stability of SPO are comprehensively evaluated through comparisons with advanced algorithms based on best fitness, mean fitness, and standard deviation. The root mean square error (RMSE) obtained by SPO for parameter extraction are 8.8180 × 10−4, 8.5513 × 10−4, 8.4900 × 10−4, and 2.3941 × 10−3 for the single diode model (SDM), double diode model (DDM), triple diode model (TDM), and photovoltaic module model (PMM), respectively. A one-factor-at-a-time (OFAT) sensitivity analysis is employed to assess the relative importance of undetermined parameters within each PV model. The SPO-based modeling framework enables high-accuracy PV performance prediction, and its application to sensitivity analysis can accurately identify key factors that lead to reduced computational cost and improved adaptability for integration with energy management systems and intelligent electric grids. Full article
Show Figures

Figure 1

19 pages, 650 KiB  
Article
LEMAD: LLM-Empowered Multi-Agent System for Anomaly Detection in Power Grid Services
by Xin Ji, Le Zhang, Wenya Zhang, Fang Peng, Yifan Mao, Xingchuang Liao and Kui Zhang
Electronics 2025, 14(15), 3008; https://doi.org/10.3390/electronics14153008 - 28 Jul 2025
Abstract
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time [...] Read more.
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time monitoring, accuracy, and scalability in such environments. This paper proposes a novel service performance anomaly detection system based on large language models (LLMs) and multi-agent systems (MAS). By integrating the semantic understanding capabilities of LLMs with the distributed collaboration advantages of MAS, we construct a high-precision and robust anomaly detection framework. The system adopts a hierarchical architecture, where lower-layer agents are responsible for tasks such as log parsing and metric monitoring, while an upper-layer coordinating agent performs multimodal feature fusion and global anomaly decision-making. Additionally, the LLM enhances the semantic analysis and causal reasoning capabilities for logs. Experiments conducted on real-world data from the State Grid Corporation of China, covering 1289 service combinations, demonstrate that our proposed system significantly outperforms traditional methods in terms of the F1-score across four platforms, including customer services and grid resources (achieving up to a 10.3% improvement). Notably, the system excels in composite anomaly detection and root cause analysis. This study provides an industrial-grade, scalable, and interpretable solution for intelligent power grid O&M, offering a valuable reference for the practical implementation of AIOps in critical infrastructures. Evaluated on real-world data from the State Grid Corporation of China (SGCC), our system achieves a maximum F1-score of 88.78%, with a precision of 92.16% and recall of 85.63%, outperforming five baseline methods. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

19 pages, 2871 KiB  
Article
Strategic Information Patterns in Advertising: A Computational Analysis of Industry-Specific Message Strategies Using the FCB Grid Framework
by Seung Chul Yoo
Information 2025, 16(8), 642; https://doi.org/10.3390/info16080642 - 28 Jul 2025
Abstract
This study presents a computational analysis of industry-specific advertising message strategies through the theoretical lens of the FCB (Foote, Cone & Belding) grid framework. Leveraging the AiSAC (AI Analysis System for Ad Creation) system developed by the Korea Broadcast Advertising Corporation (KOBACO), we [...] Read more.
This study presents a computational analysis of industry-specific advertising message strategies through the theoretical lens of the FCB (Foote, Cone & Belding) grid framework. Leveraging the AiSAC (AI Analysis System for Ad Creation) system developed by the Korea Broadcast Advertising Corporation (KOBACO), we analyzed 27,000 Korean advertisements across five major industries using advanced machine learning techniques. Through Latent Dirichlet Allocation topic modeling with a coherence score of 0.78, we identified five distinct message strategies: emotional appeal, product features, visual techniques, setting and objects, and entertainment and promotion. Our computational analysis revealed that each industry exhibits a unique “message strategy fingerprint” that significantly discriminates between categories, with discriminant analysis achieving 62.7% classification accuracy. Time-series analysis using recurrent neural networks demonstrated a significant evolution in strategy preferences, with emotional appeal increasing by 44.3% over the study period (2015–2024). By mapping these empirical findings onto the FCB grid, the present study validated that industry positioning within the grid’s quadrants aligns with theoretical expectations: high-involvement/think (IT and Telecom), high-involvement/feel (Public Institutions), low-involvement/think (Food and Household Goods), and low-involvement/feel (Services). This study contributes to media science by demonstrating how computational methods can empirically validate the established theoretical frameworks in advertising, providing a data-driven approach to understanding message strategy patterns across industries. Full article
(This article belongs to the Special Issue AI Tools for Business and Economics)
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

14 pages, 2557 KiB  
Article
Enhancing Medium-Term Load Forecasting Accuracy in Post-Pandemic Tropical Regions: A Comparative Analysis of Polynomial Regression, Split Polynomial Regression, and LSTM Networks
by Agus Setiawan
Energies 2025, 18(15), 3999; https://doi.org/10.3390/en18153999 - 27 Jul 2025
Abstract
This research focuses on medium-term load forecasting in a tropical region post-pandemic. This study presents one of the first attempts to analyze medium-term forecasting using half-hourly resolution in the Java-Bali power system post-COVID-19 period. The dataset comprises load measurements recorded every 30 min [...] Read more.
This research focuses on medium-term load forecasting in a tropical region post-pandemic. This study presents one of the first attempts to analyze medium-term forecasting using half-hourly resolution in the Java-Bali power system post-COVID-19 period. The dataset comprises load measurements recorded every 30 min (48 data points per day) from 2014 to 2022. Three distinct methods, namely polynomial regression, split polynomial regression, and Long Short-Term Memory (LSTM) networks, were employed and compared to predict the electricity load demand. The analysis found that LSTM outperformed the other methods, exhibiting the lowest error rates with Mean Absolute Percentage Error (MAPE) at 3.86% and Root Mean Squared Error (RMSE) at 1247.93. Additionally, a consistent observation emerged, showing that all methods performed better in predicting load demand during nighttime hours (6 p.m. to 6 a.m.). The hypothesis is that data stability during nighttime, with fewer significant fluctuations, contributed to the improved prediction accuracy. These findings provide valuable insights for improving load forecasting in the post-pandemic tropical region and offer opportunities for enhancing power grid efficiency and reliability. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

23 pages, 1154 KiB  
Article
Impact of Paintings Made from Waste Materials from a Particular Region on Viewers’ Behavioral Intention Regarding Social and Environmental Issues
by Ryuzo Furukawa and Ayami Tamura
Sustainability 2025, 17(15), 6822; https://doi.org/10.3390/su17156822 - 27 Jul 2025
Abstract
The purpose of this study is to analyze how future landscape paintings using paints and binders made from the waste materials of a particular region and the background information of these artworks affect viewers’ behavioral intentions regarding social and environmental issues. First, 30 [...] Read more.
The purpose of this study is to analyze how future landscape paintings using paints and binders made from the waste materials of a particular region and the background information of these artworks affect viewers’ behavioral intentions regarding social and environmental issues. First, 30 beauty evaluation items were extracted by a repertory grid analysis. Then, we asked participants to view the artworks at an exhibition in order to determine the impact of the background information behind the painting and the painting itself on participants’ imagination of the future, reconsidering themselves, social and environmental issues, and their behavioral intentions. The results showed that viewing paintings with their background information and using paints made of waste materials from a particular region improved participants’ behavioral intentions to imagine the future, to reconsider themselves, and to reconsider social and environmental issues. The elements of beauty of the paintings were found to have the potential to trigger the first step toward lifestyle change for sustainability. Full article
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 171
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

20 pages, 5404 KiB  
Article
Adaptive Transient Synchronization Support Strategy for Grid-Forming Energy Storage Facing Inverter Faults
by Chao Xing, Jiajie Xiao, Peiqiang Li, Xinze Xi, Yunhe Chen and Qi Guo
Electronics 2025, 14(15), 2980; https://doi.org/10.3390/electronics14152980 - 26 Jul 2025
Viewed by 138
Abstract
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze [...] Read more.
Aiming at the transient synchronization instability problem of grid-forming energy storage under a fault in the grid-connected inverter, this paper proposes an adaptive transient synchronization support strategy for grid-forming energy storage facing inverter faults. First, the equal area rule is employed to analyze the transient response mechanism of the grid-forming energy storage grid-connected inverter under faults, revealing the negative coupling relationship between active power output and transient stability, as well as the positive coupling relationship between reactive power output and transient stability. Based on this, through the analysis of the dynamic characteristics of the fault overcurrent, the negative correlation between the fault inrush current and impedance and the positive correlations among the fault steady-state current, active power, and voltage at the point of common coupling are identified. Then, a variable proportional–integral controller is designed to adaptively correct the active power reference value command, and the active power during the fault is gradually restored via the frequency feedback mechanism. Meanwhile, the reactive power reference value is dynamically adjusted according to the voltage at the point of common coupling to effectively support the voltage. Finally, the effectiveness of the proposed strategy is verified in MATLAB/Simulink. Full article
(This article belongs to the Special Issue Energy Saving Management Systems: Challenges and Applications)
Show Figures

Figure 1

38 pages, 2182 KiB  
Article
Smart Grid Strategies for Tackling the Duck Curve: A Qualitative Assessment of Digitalization, Battery Energy Storage, and Managed Rebound Effects Benefits
by Joseph Nyangon
Energies 2025, 18(15), 3988; https://doi.org/10.3390/en18153988 - 25 Jul 2025
Viewed by 259
Abstract
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the [...] Read more.
Modern utilities face unprecedented pressures as trends in digital transformation and democratized energy choice empower consumers to engage in peak shaving, flexible load management, and adopt grid automation and intelligence solutions. A powerful confluence of architectural, technological, and socio-economic forces is transforming the U.S. electricity market, triggering significant changes in electricity production, transmission, and consumption. Utilities are embracing digital twins and repurposed Utility 2.0 concepts—distributed energy resources, microgrids, innovative electricity market designs, real-time automated monitoring, smart meters, machine learning, artificial intelligence, and advanced data and predictive analytics—to foster operational flexibility and market efficiency. This analysis qualitatively evaluates how digitalization, Battery Energy Storage Systems (BESSs), and adaptive strategies to mitigate rebound effects collectively advance smart duck curve management. By leveraging digital platforms for real-time monitoring and predictive analytics, utilities can optimize energy flows and make data-driven decisions. BESS technologies capture surplus renewable energy during off-peak periods and discharge it when demand spikes, thereby smoothing grid fluctuations. This review explores the benefits of targeted digital transformation, BESSs, and managed rebound effects in mitigating the duck curve problem, ensuring that energy efficiency gains translate into actual savings. Furthermore, this integrated approach not only reduces energy wastage and lowers operational costs but also enhances grid resilience, establishing a robust framework for sustainable energy management in an evolving market landscape. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
Show Figures

Figure 1

41 pages, 5984 KiB  
Article
Socio-Economic Analysis for Adoption of Smart Metering System in SAARC Region: Current Challenges and Future Perspectives
by Zain Khalid, Syed Ali Abbas Kazmi, Muhammad Hassan, Sayyed Ahmad Ali Shah, Mustafa Anwar, Muhammad Yousif and Abdul Haseeb Tariq
Sustainability 2025, 17(15), 6786; https://doi.org/10.3390/su17156786 - 25 Jul 2025
Viewed by 303
Abstract
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector [...] Read more.
Cross-border energy trading activity via interconnection has received much attention in Southern Asia to help the South Asian Association for Regional Cooperation (SAARC) region’s energy deficit states. This research article proposed a smart metering system to reduce energy losses and increase distribution sector efficiency. The implementation of smart metering systems in utility management plays a pivotal role in advancing several Sustainable Development Goals (SDGs), i.e.; SDG (Affordable and Clean Energy), and SDG Climate Action. By enabling real-time monitoring, accurate measurement, and data-driven management of energy resources, smart meters promote efficient consumption, reduce losses, and encourage sustainable behaviors among consumers. The adoption of a smart metering system along with Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis, socio-economic analysis, current challenges, and future prospects was also investigated. Besides the economics of the electrical distribution system, one feeder with non-technical losses of about 16% was selected, and the cost–benefit analysis and cost–benefit ratio was estimated for the SAARC region. The import/export ratio is disturbing in various SAARC grids, and a solution in terms of community microgrids is presented from Pakistan’s perspective as a case study. The proposed work gives a guidelines for SAARC countries to reduce their losses and improve their system functionality. It gives a composite solution across multi-faceted evaluation for the betterment of a large region. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Graphical abstract

29 pages, 21087 KiB  
Article
Multi-Scale Ecosystem Service Supply–Demand Dynamics and Driving Mechanisms in Mainland China During the Last Two Decades: Implications for Sustainable Development
by Menghao Qi, Mingcan Sun, Qinping Liu, Hongzhen Tian, Yanchao Sun, Mengmeng Yang and Hui Zhang
Sustainability 2025, 17(15), 6782; https://doi.org/10.3390/su17156782 - 25 Jul 2025
Viewed by 124
Abstract
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across [...] Read more.
The growing mismatch between ecosystem service (ES) supply and demand underscores the importance of thoroughly understanding their spatiotemporal patterns and key drivers to promote ecological civilization and sustainable development at the regional level in China. This study investigates six key ES indicators across mainland China—habitat quality (HQ), carbon sequestration (CS), water yield (WY), sediment delivery ratio (SDR), food production (FP), and nutrient delivery ratio (NDR)—by integrating a suite of analytical approaches. These include a spatiotemporal analysis of trade-offs and synergies in supply, demand, and their ratios; self-organizing maps (SOM) for bundle identification; and interpretable machine learning models. While prior research studies have typically examined ES at a single spatial scale, focusing on supply-side bundles or associated drivers, they have often overlooked demand dynamics and cross-scale interactions. In contrast, this study integrates SOM and SHAP-based machine learning into a dual-scale framework (grid and city levels), enabling more precise identification of scale-dependent drivers and a deeper understanding of the complex interrelationships between ES supply, demand, and their spatial mismatches. The results reveal pronounced spatiotemporal heterogeneity in ES supply and demand at both grid and city scales. Overall, the supply services display a spatial pattern of higher values in the east and south, and lower values in the west and north. High-value areas for multiple demand services are concentrated in the densely populated eastern regions. The grid scale better captures spatial clustering, enhancing the detection of trade-offs and synergies. For instance, the correlation between HQ and NDR supply increased from 0.62 (grid scale) to 0.92 (city scale), while the correlation between HQ and SDR demand decreased from −0.03 to −0.58, indicating that upscaling may highlight broader synergistic or conflicting trends missed at finer resolutions. In the spatiotemporal interaction network of supply–demand ratios, CS, WY, FP, and NDR persistently show low values (below −0.5) in western and northern regions, indicating ongoing mismatches and uneven development. Driver analysis demonstrates scale-dependent effects: at the grid scale, HQ and FP are predominantly influenced by socioeconomic factors, SDR and WY by ecological variables, and CS and NDR by climatic conditions. At the city level, socioeconomic drivers dominate most services. Based on these findings, nine distinct supply–demand bundles were identified at both scales. The largest bundle at the grid scale (B3) occupies 29.1% of the study area, while the largest city-scale bundle (B8) covers 26.5%. This study deepens the understanding of trade-offs, synergies, and driving mechanisms of ecosystem services across multiple spatial scales; reveals scale-sensitive patterns of spatial mismatch; and provides scientific support for tiered ecological compensation, integrated regional planning, and sustainable development strategies. Full article
Show Figures

Figure 1

20 pages, 2497 KiB  
Article
Sustainable Solar Desalination: Experimental Predictive Control with Integrated LCA and Techno-Economic Evaluation
by Mishal Alsehli
Processes 2025, 13(8), 2364; https://doi.org/10.3390/pr13082364 - 25 Jul 2025
Viewed by 149
Abstract
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial [...] Read more.
This study experimentally validates a solar-thermal desalination system equipped with predictive feedwater control guided by real-time solar forecasting. Unlike conventional systems that react to temperature changes, the proposed approach proactively adjusts feedwater flow in anticipation of solar variability. To assess environmental and financial sustainability, the study integrates this control logic with a full Life Cycle Assessment (LCA) and Techno-Economic Analysis (TEA). Field testing in a high-temperature, arid region demonstrated strong performance, achieving a Global Warming Potential (GWP) of 1.80 kg CO2-eq/m3 and a Levelized Cost of Water (LCOW) of $0.88/m3. Environmental impacts were quantified using OpenLCA and ecoinvent datasets, covering climate change, acidification, and eutrophication categories. The TEA confirmed economic feasibility, reporting a positive Net Present Value (NPV) and an Internal Rate of Return (IRR) exceeding 11.5% over a 20-year lifespan. Sensitivity analysis showed that forecast precision and TES design strongly influence both environmental and economic outcomes. The integration of intelligent control with simplified thermal storage offers a scalable, cost-effective solution for off-grid freshwater production in solar-rich regions. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Graphical abstract

22 pages, 4943 KiB  
Article
Machine Learning-Based Fatigue Life Prediction for E36 Steel Welded Joints
by Lina Zhu, Hongye Guo, Zongxian Song, Yong Liu, Jinling Peng and Jifeng Wang
Materials 2025, 18(15), 3481; https://doi.org/10.3390/ma18153481 - 24 Jul 2025
Viewed by 140
Abstract
E36 steel, widely used in shipbuilding and offshore structures, offers moderate strength and excellent low-temperature toughness. However, its welded joints are highly susceptible to fatigue failure. Cracks typically initiate at weld toes or within the heat-affected zone (HAZ), severely limiting the fatigue life [...] Read more.
E36 steel, widely used in shipbuilding and offshore structures, offers moderate strength and excellent low-temperature toughness. However, its welded joints are highly susceptible to fatigue failure. Cracks typically initiate at weld toes or within the heat-affected zone (HAZ), severely limiting the fatigue life of fabricated components. Traditional life prediction methods are complex, inefficient, and lack accuracy. This study proposes a machine learning (ML) framework for efficient fatigue life prediction of E36 welded joints. Welded specimens using SQJ501 filler wire on prepared E36 steel established a dataset from 23 original fatigue test data points. The dataset was expanded via Z-parameter model fitting, with data scarcity addressed using SMOTE. Pearson correlation analysis validated data relationships. After grid-optimized training on the augmented data, models were evaluated on the original dataset. Results demonstrate that the machine learning models significantly outperformed the Z-parameter formula (R2 = 0.643, MAPE = 16.15%). The artificial neural network (R2 = 0.972, MAPE = 4.45%) delivered the best overall performance, while the random forest model exhibited high consistency between validation (R2 = 0.888, MAPE = 6.34%) and testing sets (R2 = 0.897), with its error being significantly lower than that of support vector regression. Full article
(This article belongs to the Special Issue Microstructural and Mechanical Characteristics of Welded Joints)
Show Figures

Figure 1

21 pages, 2568 KiB  
Article
Research on the Data-Driven Identification of Control Parameters for Voltage Ride-Through in Energy Storage Systems
by Liming Bo, Jiangtao Wang, Xu Zhang, Yimeng Su, Xueting Cheng, Zhixuan Zhang, Shenbing Ma, Jiyu Wang and Xiaoyu Fang
Appl. Sci. 2025, 15(15), 8249; https://doi.org/10.3390/app15158249 - 24 Jul 2025
Viewed by 138
Abstract
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter [...] Read more.
The large-scale integration of wind power, photovoltaic systems, and energy storage systems (ESSs) into power grids has increasingly influenced the transient stability of power systems due to their dynamic response characteristics. Considering the commercial confidentiality of core control parameters from equipment manufacturers, parameter identification has become a crucial approach for analyzing ESS dynamic behaviors during high-voltage ride-through (HVRT) and low-voltage ride-through (LVRT) and for optimizing control strategies. In this study, we present a multidimensional feature-integrated parameter identification framework for ESSs, combining a multi-scenario voltage disturbance testing environment built on a real-time laboratory platform with field-measured data and enhanced optimization algorithms. Focusing on the control characteristics of energy storage converters, a non-intrusive identification method for grid-connected control parameters is proposed based on dynamic trajectory feature extraction and a hybrid optimization algorithm that integrates an improved particle swarm optimization (PSO) algorithm with gradient-based coordination. The results demonstrate that the proposed approach effectively captures the dynamic coupling mechanisms of ESSs under dual-mode operation (charging and discharging) and voltage fluctuations. By relying on measured data for parameter inversion, the method circumvents the limitations posed by commercial confidentiality, providing a novel technical pathway to enhance the fault ride-through (FRT) performance of energy storage systems (ESSs). In addition, the developed simulation verification framework serves as a valuable tool for security analysis in power systems with high renewable energy penetration. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

Back to TopTop