Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,093)

Search Parameters:
Keywords = GPx-4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2287 KiB  
Article
Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice
by Alcir Luiz Dafre, Taketo Taguchi, Yelena Dayn, Antonio Currais and Pamela Maher
Antioxidants 2025, 14(8), 946; https://doi.org/10.3390/antiox14080946 (registering DOI) - 1 Aug 2025
Abstract
As the size of the elderly population increases, the need for an improved understanding of what leads to the age-related decline in physiological function continues to grow. SAMP8 mice were selected for their accelerated aging phenotype. The low levels of glyoxalase 1 (Glo1), [...] Read more.
As the size of the elderly population increases, the need for an improved understanding of what leads to the age-related decline in physiological function continues to grow. SAMP8 mice were selected for their accelerated aging phenotype. The low levels of glyoxalase 1 (Glo1), the main enzyme that removes the reactive dicarbonyl methylglyoxal (MGO), in the cerebral cortex of SAMP8 mice prompted us to produce the first transgenic mice overexpressing Glo1 against the SAMP8 background, aimed at rescuing the accelerated aging phenotype. Selected health and biochemical endpoints were assessed in ten-month-old SAMP8 mice overexpressing Glo1. Glo1 overexpression increased median survival in males (21%) and females (4.6%), which was associated with better memory performance. Glo1 overexpression also increased synaptic markers (synaptophysin and SNAP25) as well as markers of mitochondrial function (NDUFB8, SDHB) and negative modulators of oxytosis/ferroptosis (NQO1, FTH1, and GPx4) in the cerebral cortex. For all parameters analyzed, the effect of Glo1 overexpression was more pronounced in males. Overall, the data support the beneficial effects of overexpressing Glo1 in multiple tissues, especially in SAMP8 males, suggesting a possible gender effect of MGO in aging. Both modulation of oxytosis/ferroptosis and mitochondrial metabolism warrant further investigation as potential mechanisms underlying the improved health span of Glo1 mice. Full article
Show Figures

Figure 1

18 pages, 2510 KiB  
Article
The Glutathione Peroxidase Gene Family in Chenopodium quinoa: Genome-Wide Identification, Classification, Gene Expression and Functional Analysis
by Jing Yang, Anna Xu, Kexin An, Lilong Wang, Taiping Luo, Xinyue Yu, Haibo Yin, Shanli Guo and Xia Zhang
Antioxidants 2025, 14(8), 940; https://doi.org/10.3390/antiox14080940 - 30 Jul 2025
Abstract
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary [...] Read more.
Glutathione peroxidase (GPX) is crucial in mediating plant responses to abiotic stresses. In this study, bioinformatics methods were used to identify the GPX gene family in quinoa. A total of 15 CqGPX genes were identified at the quinoa genome level and conducted preliminary analysis on their protein characteristics, chromosome distribution, gene structure, conserved domain structure, cis-acting elements, and expression patterns. Phylogenetic analysis showed that the GPX genes of quinoa, Arabidopsis, soybean, rice, and maize were divided into three groups. Most of the CqGPXs had the three characteristic conserved motifs and other conserved sequences and amino acid residues. Six types of cis-acting elements were identified in the CqGPX gene promoter, with stress and hormone response-related cis-acting elements constituting the two main categories. Additionally, the expression patterns of CqGPX genes across various tissues and their responses to treatments with NaCl, PEG, CdCl2, and H2O2 were also investigated. The qRT-PCR results showed significant differences in the expression levels of the CqGPX genes under stress treatment at different time points. Consistently, the activity of glutathione peroxidase enzymes increased under stresses. Heterologous expression of CqGPX4 and CqGPX15 conferred stress tolerance to E. coli. This study will provide a reference for exploring the function of CqGPX genes. Full article
(This article belongs to the Special Issue Oxidative Stress in Plant Stress and Plant Physiology)
Show Figures

Figure 1

17 pages, 1160 KiB  
Article
Enhanced Antioxidant and Antiproliferative Activities of Apple and Korean Green Chili Pepper Extracts Cultivated with Mineral Supplementation
by Ji-Sun Lim, Mi-Hee Yu, Dong Kyu Choi, Hae Won Kim, Seung-Hwan Park, Sin-Il Sin and Jong-Sang Kim
Foods 2025, 14(15), 2685; https://doi.org/10.3390/foods14152685 - 30 Jul 2025
Abstract
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts [...] Read more.
Apples and Korean green chili peppers are rich in phytochemicals and recognized for their diverse bioactive properties. Given the potential to enhance these beneficial compounds, this study investigated the effects of mineral supplementation during cultivation on the antioxidant and antiproliferative activities of extracts from both crops. Mineral-enriched cultivation significantly increased the total phenolic and flavonoid contents in both crops, which was accompanied by enhanced DPPH and ABTS radical scavenging activities. Moreover, the mineral-supplemented extracts of Korean green chili pepper activated the Nrf2 signaling pathway and upregulated downstream antioxidant enzymes, including heme oxygenase-1 (HO-1), γ-glutamylcysteine ligase (GCL), and glutathione peroxidase (GPx). Notably, the mineral-supplemented Korean green chili pepper extract significantly suppressed the proliferation of human colorectal cancer cells. These findings suggest that mineral supplementation during cultivation may improve the functional quality of apples and Korean green chili peppers, supporting their potential application in cancer prevention and complementary therapeutic strategies. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

21 pages, 8337 KiB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 120
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

23 pages, 2594 KiB  
Article
A Natural Polyphenol, Chlorogenic Acid, Attenuates Obesity-Related Metabolic Disorders in Male Rats via miR-146a-IRAK1-TRAF6 and NRF2-Mediated Antioxidant Pathways
by Rashid Fahed Alenezi, Adel Abdelkhalek, Gehad El-Sayed, Ioan Pet, Mirela Ahmadi, El Said El Sherbini, Daniela Pușcașiu and Ahmed Hamed Arisha
Biomolecules 2025, 15(8), 1086; https://doi.org/10.3390/biom15081086 - 27 Jul 2025
Viewed by 193
Abstract
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, [...] Read more.
Chronic high-fat diet (HFD) feeding in male rats causes significant metabolic as well as inflammatory disturbances, including obesity, insulin resistance, dyslipidemia, liver and kidney dysfunction, oxidative stress, and hypothalamic dysregulation. This study assessed the therapeutic effects of chlorogenic acid (CGA), a natural polyphenol, administered at 10 mg and 100 mg/kg/day for the last 4 weeks of a 12-week HFD protocol. Both CGA doses reduced body weight gain, abdominal circumference, and visceral fat accumulation, with the higher dose showing greater efficacy. CGA improved metabolic parameters by lowering fasting glucose and insulin and enhancing lipid profiles. CGA suppressed orexigenic genes (Agrp, NPY) and upregulated anorexigenic genes (POMC, CARTPT), suggesting appetite regulation in the hypothalamus. In abdominal white adipose tissue (WAT), CGA boosted antioxidant defenses (SOD, CAT, GPx, HO-1), reduced lipid peroxidation (MDA), and suppressed pro-inflammatory cytokines including TNF-α, IFN-γ, and IL-1β, while increasing the anti-inflammatory cytokine IL-10. CGA modulated inflammatory signaling via upregulation of miR-146a and inhibition of IRAK1, TRAF6, and NF-κB. It also reduced apoptosis by downregulating p53, Bax, and Caspase-3, and restoring Bcl-2. These findings demonstrate that short-term CGA administration effectively reverses multiple HFD-induced impairments, highlighting its potential as an effective therapeutic for obesity-related metabolic disorders. Full article
(This article belongs to the Special Issue Antioxidant and Anti-Inflammatory Activities of Phytochemicals)
Show Figures

Figure 1

14 pages, 1821 KiB  
Article
Antioxidant Enzyme Activity and mRNA Expression in the Reproductive Tissues of Male European Red Deer (Cervus elaphus elaphus)
by Nicoletta M. Neuman, Przemysław Gilun, Magdalena Koziorowska-Gilun, Paweł Janiszewski and Anna Dziekońska
Int. J. Mol. Sci. 2025, 26(15), 7221; https://doi.org/10.3390/ijms26157221 - 25 Jul 2025
Viewed by 151
Abstract
The aim of this study was to analyze the influence of season (rut and non-rut) on the antioxidant status of selected reproductive tissues in male European red deer (Cervus elaphus elaphus). Tissue samples were collected post mortem from the testes and [...] Read more.
The aim of this study was to analyze the influence of season (rut and non-rut) on the antioxidant status of selected reproductive tissues in male European red deer (Cervus elaphus elaphus). Tissue samples were collected post mortem from the testes and epididymides (caput, corpus, and cauda) of 24 animals. The activity of antioxidant enzymes (superoxide dismutase—SOD, glutathione peroxidase—GPx, and catalase—CAT) and the mRNA expression of SOD1, SOD2, SOD3, GPx4, GPx5, and CAT were examined. In addition, these proteins were identified by western blot. ANOVA revealed that season, type of tissue, and the interaction between these factors significantly (p ≤ 0.05) influenced the activity and mRNA expression of the analyzed enzymes. The activity of SOD and GPx peaked in the corpus epididymis in the rut season and in the caput epididymis in the non-rut season. Regardless of season, the relative abundances of GPx4, SOD1, SOD2, and SOD3 mRNA were highest in the testis, and GPx5 mRNA—in the caput epididymis. The activity of SOD and CAT was significantly higher during the non-rut season compared with the rut season, but only in the caput epididymis. This study demonstrated that the activity of antioxidant enzymes and the relative mRNA expression varies across tissues and seasons to provide the reproductive system of European red deer with the required antioxidant protection. Further research is needed to expand our understanding of the antioxidant defense system in the reproductive tract of European red deer. Full article
(This article belongs to the Special Issue Sperm Oxidative Stress and Male Infertility)
Show Figures

Figure 1

18 pages, 2943 KiB  
Article
Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway
by Huan Li, Zixin Qiu, Long Chen, Tianbao Zhang, Diandian Wei, Xue Chen and Yun Wang
Int. J. Mol. Sci. 2025, 26(15), 7204; https://doi.org/10.3390/ijms26157204 - 25 Jul 2025
Viewed by 178
Abstract
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells [...] Read more.
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells to explore the impact of ferroptosis in the inhibition of Cd-induced BEAS-2B cells proliferation. BEAS-2B cells were exposed to Cd (5 μM) with/without Lut (10 μM), ferroptosis modulators (Ferrostatin-1 (Fer-1)/Erastin), or nuclear factor erythroid 2-related factor 2 (Nrf2) regulators (tert-butylhydroquinone (TBHQ)/ML385). Viability, iron content, reactive oxygen species (ROS), LPO, mitochondrial membrane potential (MMP), and glutathione peroxidase (GSH-PX) activity were assessed. Exposure to Cd significantly decreased cell viability, increased intracellular iron levels, ROS production, and LPO activity, while simultaneously reducing MMP and GSH-PX activity. Fer-1 mitigated Cd-induced cytotoxicity, but Erastin intensified these effects. Mechanistically, Cd exposure suppressed the Nrf2/Solute Carrier Family 7 Member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway, which plays a crucial role in maintaining redox homeostasis. Activation of Nrf2 using TBHQ mitigated oxidative stress and upregulated the expression of key proteins within this pathway, while inhibition of Nrf2 with ML385 exacerbated cellular damage. Notably, Lut treatment could significantly alleviate Cd-induced cytotoxicity, oxidative stress, and downregulation of Nrf2/SLC7A11/GPX4 proteins. These findings demonstrate that ferroptosis is a critical mechanism underlying Cd-mediated lung epithelial injury and identify Lut as a promising therapeutic candidate via its activation of Nrf2-driven antioxidant defense mechanisms. This study provides novel insights into molecular targets for the prevention and treatment of Cd-associated pulmonary disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 3054 KiB  
Article
Naringenin Inhibits Enterotoxigenic Escherichia coli-Induced Ferroptosis via Targeting HSP90 in IPEC-J2 Cells
by Pengxin Jiang, Kangping Liu, Yanan Cui, Puyu Liu, Xutao Wang, Zijuan Hou, Jiamei Cui, Ning Chen, Jinghui Fan, Jianguo Li, Yuzhu Zuo and Yan Li
Antioxidants 2025, 14(8), 914; https://doi.org/10.3390/antiox14080914 - 25 Jul 2025
Viewed by 275
Abstract
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) leads to severe diarrhea in piglets. Naringenin (Nar), a natural flavonoid compound, is known for its antibacterial and anti-antioxidant properties. However, the protective effects of Nar against ETEC-induced diarrhea have not been reported yet. This study investigated the protective mechanisms of Nar against ETEC infection in porcine intestinal epithelial cells (IPEC-J2). ETEC infection induced oxidative stress and ferroptosis in IPEC-J2 cells by elevating intracellular iron content and ROS accumulation, increasing MDA levels, downregulating SOD activity and GPX4 expression, and upregulating the transcription of CHAC1 and SLC7A11. In contrast, Nar suppressed ETEC-induced ferroptosis of IPEC-J2 cells by inhibiting the SLC7A11/GPX4 pathway. Specifically, Nar mitigated mitochondrial damage, reduced intracellular iron levels and ROS accumulation, and ultimately reversed the oxidative stress. Network pharmacology and molecular docking identified heat-shock protein 90 (HSP90) as a potential target of Nar. Overexpression and knockdown experiments revealed that ETEC-induced ferroptosis was mediated by upregulation of HSP90, while the protective effects of Nar against ETEC-induced ferroptosis were dependent on the downregulation of HSP90. In conclusion, Nar targets host HSP90 to protect IPEC-J2 cells from ferroptosis caused by ETEC infection. This study demonstrates that Nar is a potent antioxidant natural compound with potential for preventing ETEC-induced intestinal damage. Full article
(This article belongs to the Special Issue Oxidative Stress in Livestock and Poultry—3rd Edition)
Show Figures

Figure 1

19 pages, 2974 KiB  
Article
PI3K/Akt1 Pathway Suppression by Quercetin–Doxorubicin Combination in Osteosarcoma Cell Line (MG-63 Cells)
by Mehmet Uğur Karabat and Mehmet Cudi Tuncer
Medicina 2025, 61(8), 1347; https://doi.org/10.3390/medicina61081347 - 25 Jul 2025
Viewed by 155
Abstract
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) [...] Read more.
Background and Objectives: This study aimed to investigate the anticancer effects and potential synergistic interactions of quercetin (Q) and doxorubicin (Dox) on the MG-63 osteosarcoma (OS) cell line. Specifically, the effects of these agents on cell viability, apoptosis, reactive oxygen species (ROS) generation, antioxidant defense, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt1) signaling pathway were evaluated. Material and Methods: MG-63 cells were cultured and treated with varying concentrations of Q and Dox, both individually and in combination (fixed 5:1 molar ratio), for 48 h. Cell viability was assessed using an MTT assay, and IC50 values were calculated. Synergistic effects were analyzed using the Chou–Talalay combination index (CI). Apoptosis was evaluated via Annexin V-FITC/PI staining and caspase-3/7 activity. ROS levels were quantified using DCFH-DA probe, and antioxidant enzymes (SOD, GPx) were measured spectrophotometrically. Gene expression (Runx2, PI3K, Akt1, caspase-3) was analyzed by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results: Q and Dox reduced cell viability in a dose-dependent manner, with IC50 values of 70.3 µM and 1.14 µM, respectively. The combination treatment exhibited synergistic cytotoxicity (CI < 1), especially in the Q50 + Dox5 group (CI = 0.23). Apoptosis was significantly enhanced in the combination group, evidenced by increased Annexin V positivity and caspase-3 activation. ROS levels were markedly elevated, while antioxidant enzyme activities declined. RT-qPCR revealed upregulation of caspase-3 and downregulation of Runx2, PI3K, and Akt1 mRNA levels. Conclusions: The combination of Q and Dox exerts synergistic anticancer effects in MG-63 OS cells by inducing apoptosis, elevating oxidative stress, suppressing antioxidant defense, and inhibiting the PI3K/Akt1 signaling pathway and Runx2 expression. These findings support the potential utility of Q as an adjuvant to enhance Dox efficacy in OS treatment. Full article
Show Figures

Figure 1

31 pages, 2338 KiB  
Review
ROS Regulation and Antioxidant Responses in Plants Under Air Pollution: Molecular Signaling, Metabolic Adaptation, and Biotechnological Solutions
by Muhammad Junaid Rao, Mingzheng Duan, Muhammad Ikram and Bingsong Zheng
Antioxidants 2025, 14(8), 907; https://doi.org/10.3390/antiox14080907 - 24 Jul 2025
Viewed by 464
Abstract
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge [...] Read more.
Air pollution acts as a pervasive oxidative stressor, disrupting global crop production and ecosystem health through the overproduction of reactive oxygen species (ROS). Hazardous pollutants impair critical physiological processes—photosynthesis, respiration, and nutrient uptake—triggering oxidative damage and yield losses. This review synthesizes current knowledge on plant defense mechanisms, emphasizing the integration of enzymatic (SOD, POD, CAT, APX, GPX, GR) and non-enzymatic (polyphenols, glutathione, ascorbate, phytochelatins) antioxidant systems to scavenge ROS and maintain redox homeostasis. We highlight the pivotal roles of transcription factors (MYB, WRKY, NAC) in orchestrating stress-responsive gene networks, alongside MAPK and phytohormone signaling (salicylic acid, jasmonic acid, ethylene), in mitigating oxidative stress. Secondary metabolites (flavonoids, lignin, terpenoids) are examined as biochemical shields against ROS and pollutant toxicity, with evidence from transcriptomic and metabolomic studies revealing their biosynthetic regulation. Furthermore, we explore biotechnological strategies to enhance antioxidant capacity, including overexpression of ROS-scavenging genes (e.g., TaCAT3) and engineering of phenolic pathways. By addressing gaps in understanding combined stress responses, this review provides a roadmap for developing resilient crops through antioxidant-focused interventions, ensuring sustainability in polluted environments. Full article
Show Figures

Figure 1

20 pages, 2271 KiB  
Article
Single and Combined Effects of Meropenem, Valproic Acid, and Ketoprofen on Adult Zebrafish Behavior, Oxidative Stress, and Acetylcholinesterase Activity
by Ionut-Alexandru Chelaru, Roxana Strungaru-Jijie, Mircea Nicoara, Diana Mirila, Alin Ciobica and Dorel Ureche
Pharmaceuticals 2025, 18(8), 1096; https://doi.org/10.3390/ph18081096 - 24 Jul 2025
Viewed by 269
Abstract
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, [...] Read more.
Background: Pharmaceutical compounds frequently co-occur in environmental waters, but studies on their combined effects on animals and humans remain limited. The present study investigated the individual and combined short-term effects of ketoprofen (Kp, a nonsteroidal anti-inflammatory drug inhibiting cyclooxygenase-2), valproic acid (VPA, an anticonvulsant acting as a voltage-gated sodium channel modulator), and meropenem (Mp, a β-lactam antibiotic) at environmentally relevant concentrations on zebrafish behavior, acetylcholinesterase (AChE) activity, and oxidative status. Methods: Adult zebrafish were exposed for 4 days to Kp, VPA, Mp, and their binary and ternary mixtures. Behavioral effects were assessed using 3D novel tank and social behavior tests, while the oxidative stress response was assessed through malondialdehyde (MDA) content, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Results: Zebrafish exposed to Mp showed a notable increase in immobility, whereas those exposed to VPA and Mp + Kp exhibited a significant augmentation of average velocity and counter-clockwise rotations. All treated groups exhibited a notable increase in the time spent near the walls (thigmotaxis), and except for the control and Mp-exposed zebrafish, the other groups mostly stayed in the bottom tank zone (geotaxis). Kp, VPA + Kp, and VPA + Mp + Kp treatments impaired social behavior, with zebrafish displaying less interest in conspecifics. Biochemical analysis demonstrated that both the individual drugs and their combination caused oxidative stress, characterized by decreased GPx activity and increased SOD activity and MDA levels. Moreover, AChE activity was more strongly inhibited in zebrafish exposed to the binary and ternary mixtures than to individual drugs. Conclusions: The results indicate that acute exposure to individual and/or combined pharmaceuticals induces behavioral changes, oxidative damage, and AChE inhibition in zebrafish, highlighting the need to assess the effects of pharmaceutical mixtures for comprehensive ecosystem risks evaluation. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 263
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

13 pages, 554 KiB  
Article
Genetic Variants in Antioxidant Genes Modulate the Relationships Among Obesity-Related Oxidative Stress Markers in Mexican Children
by Ana Nava-Cabrera, Armando Ramírez-Cruz, Jaime Gómez-Zamudio, Araceli Pérez-Bautista, Linda Esther Ruiz-Queb, Miguel Vazquez-Moreno and Miguel Cruz
Antioxidants 2025, 14(8), 896; https://doi.org/10.3390/antiox14080896 - 22 Jul 2025
Viewed by 308
Abstract
Single-nucleotide polymorphisms (SNPs) in antioxidant genes could influence redox regulation from early life. We aimed to assess the direct and modulatory effects of SNPs in antioxidant genes (SOD2 rs4880, GPX1 rs1050450, GPX7 rs835337, CAT rs1001179) on the relationships among obesity-related oxidative stress [...] Read more.
Single-nucleotide polymorphisms (SNPs) in antioxidant genes could influence redox regulation from early life. We aimed to assess the direct and modulatory effects of SNPs in antioxidant genes (SOD2 rs4880, GPX1 rs1050450, GPX7 rs835337, CAT rs1001179) on the relationships among obesity-related oxidative stress markers in Mexican children. Anthropometric data of 2946 unrelated children were analyzed in this cross-sectional study. SNPs were genotyped using TaqMan assay. Serum total antioxidant capacity (sTAC) and oxidative stress markers (thiobarbituric acid reactive substances [TBARS, as lipid peroxidation], and protein carbonyl [PC]) were assessed. Although no SNPs were associated with obesity (p ≥ 0.125), both sTAC (p = 0.001) and TBARS (p = 0.015) were positively associated with it. A negative relationship was also observed between sTAC and TBARS (p < 0.001). SOD2 rs4880 was negatively associated with TBARS, while GPX1 rs1050450 was inversely associated with both TBARS and PC levels (p ≤ 0.036). The inverse association between sTAC and TBARS remained significant only in non-carriers of SOD2 rs4880 (p = 0.003) and GPX1 rs1050450 (p = 0.002). Our data evidence that sTAC and TBARS are associated with obesity, showing a negative relationship in Mexican children who are non-carriers of SOD2 rs4880 and GPX1 rs1050450. Full article
(This article belongs to the Special Issue Exploring Biomarkers of Oxidative Stress in Health and Disease)
21 pages, 3372 KiB  
Article
Advanced Research on Biological Properties—A Study on the Activity of the Apis mellifera Antioxidant System and the Crystallographic and Spectroscopic Properties of 7-Diethylamino-4-hydroxycoumarin
by Klaudia Rząd, Iwona Budziak-Wieczorek, Aneta Strachecka, Patrycja Staniszewska, Adam Staniszewski, Anna Gryboś, Alicja Matwijczuk, Bożena Gładyszewska, Karolina Starzak, Anna A. Hoser, Maurycy E. Nowak, Małgorzata Figiel, Sylwia Okoń and Arkadiusz Paweł Matwijczuk
Int. J. Mol. Sci. 2025, 26(14), 7015; https://doi.org/10.3390/ijms26147015 - 21 Jul 2025
Viewed by 390
Abstract
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, [...] Read more.
The search for substances that increase the immunity of bees is becoming a necessity in the era of various environmental threats and the declining immunocompetence of these insects. Therefore, we tested the biological and physicochemical properties of 7-diethylamino-4-hydroxycoumarin (7DOC). In a cage test, two groups of bees were created: a control group fed with sugar syrup and an experimental group fed with sugar syrup with the addition of 7DOC. In each group, the longevity of the bees was determined and the protein concentrations and antioxidant activities in the bees’ hemolymph were determined. The bees fed with 7DOC lived 2.7 times longer than those in the control group. The protein concentrations and activities of SOD, CAT, GPx and GST, as well as the TAC levels, were significantly higher in the hemolymph of the supplemented workers. To confirm these potent biological properties of 7DOC, the UV-Vis spectra, emission and excitation of fluorescence, synchronous spectra and finally the fluorescence lifetimes of this compound were measured using the time-correlated single photon counting method, in various environments differing in polarity and in the environment applied in bee research. This compound was shown to be sensitive to changes in solvent polarity. The spectroscopic assays were complemented with crystallographic tests of the obtained monocrystals of the aforementioned compounds, which attested to the aggregation effects observed in the spectra measurements for the selected coumarin. The research results confirm that this compound has the potential to be implemented in apiary management, which will be our application goal, but further research into apiary conditions is required. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

33 pages, 2362 KiB  
Review
Ferroptosis and Metabolic Dysregulation: Emerging Chemical Targets in Cancer and Infection
by Marta Pawłowska, Jarosław Nuszkiewicz, Dorian Julian Jarek and Alina Woźniak
Molecules 2025, 30(14), 3020; https://doi.org/10.3390/molecules30143020 - 18 Jul 2025
Viewed by 492
Abstract
The distinctive nature of ferroptosis is that it is induced chemically and signifies a regulated cell death dependent on iron-dependent lipid peroxidation. The mechanism of ferroptosis involves oxidative damage to the membrane lipids. It differs from apoptosis and necroptosis, triggering metabolic changes in [...] Read more.
The distinctive nature of ferroptosis is that it is induced chemically and signifies a regulated cell death dependent on iron-dependent lipid peroxidation. The mechanism of ferroptosis involves oxidative damage to the membrane lipids. It differs from apoptosis and necroptosis, triggering metabolic changes in the iron-lipid homeostasis and antioxidant defense, such as glutathione (GSH) and glutathione peroxidase 4 (GPX4). Herein, the molecular mechanisms of ferroptosis and its role in the tumorigenesis process and infection-related diseases are presented. It also discusses metabolic reprogramming as a factor that modifies the levels of cell-sensitizing polyunsaturated fatty acids (PUFAs), iron dysregulation, and oxidative stress in aggressive cancers and inflammatory diseases such as sepsis, tuberculosis, and COVID-19. Particular attention is given to chemical modulators of ferroptosis, including synthetic inducers and inhibitors, as well as bioactive natural compounds. Our focus is on the significance of analytical tools, such as lipidomics and metabolomics, in understanding the phenomenon of ferroptosis. Finally, we explore novel therapeutic approaches targeting ferroptosis in cancer and infectious diseases, while navigating both the opportunities and challenges in drug development. The review then draws on chemical biology and disease pathology to propose promising areas of study for ferroptosis-related therapies. Full article
Show Figures

Figure 1

Back to TopTop