Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Generation of Mice Overexpressing Glo1 Against the SAMP8 Background
2.2.1. SAMP8 ES Cell Lines Established
2.2.2. Rosa26-CAG-cMyc-hGlo1-IRES2-tdTomato Targeting Vector Construction
2.2.3. Generation of Rosa26-CAG-cMyc-hGlo1-IRES2-tdTomato Mice
2.3. Survival Curves
2.4. Novel Object Recognition
2.5. Acoustic Startle Response and Visual Cliff Test
2.6. Western Blot
2.7. Glyoxalase 1 Activity
2.8. Statistical Analysis
3. Results
3.1. Characterizing the SAMP8 Mice Overexpressing Glo1
3.2. Memory and Synaptic Markers
3.3. Mitochondria Markers and Antioxidant Protection
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGEs | advanced glycation end-products |
ATP5A | ATP synthase mitochondrial F1 complex subunit alpha |
DKlac | D-lactyllysine modification of proteins |
ETC | mitochondrial electron transport chain |
FTH1 | ferritin heavy chain 1 |
Glo | glyoxalase |
GPx4 | glutathione peroxidase 4 |
H3 | histone 3 |
MGO | methylglyoxal |
NDUFB8 | NADH:ubiquinone oxidoreductase subunit B8 |
NOR | novel object recognition |
NQO1 | NAD(P)H quinone oxidoreductase 1 |
PSD95 | postsynaptic density protein of 95 kD |
RAGE | receptor for advanced glycation end-products |
SDHB | succinate dehydrogenase B |
SDL | S-D-lactoylglutathione |
SNAP25 | synaptosome-associated protein of 25 kD |
SYP | Synaptophysin |
UQCRC2 | ubiquinol-cytochrome c reductase core protein 2 |
VDAC | voltage-dependent anion channel |
WT | Wild type |
References
- Rabbani, N.; Thornalley, P.J. Dicarbonyl Stress in Cell and Tissue Dysfunction Contributing to Ageing and Disease. Biochem. Biophys. Res. Commun. 2015, 458, 221–226. [Google Scholar] [CrossRef]
- Xue, J.; Ray, R.; Singer, D.; Böhme, D.; Burz, D.S.; Rai, V.; Hoffmann, R.; Shekhtman, A. The Receptor for Advanced Glycation End Products (RAGE) Specifically Recognizes Methylglyoxal-Derived AGEs. Biochemistry 2014, 53, 3327–3335. [Google Scholar] [CrossRef]
- Vitorakis, N.; Piperi, C. Pivotal Role of AGE-RAGE Axis in Brain Aging with Current Interventions. Ageing Res. Rev. 2024, 100, 102429. [Google Scholar] [CrossRef]
- Allaman, I.; Bélanger, M.; Magistretti, P.J. Methylglyoxal, the Dark Side of Glycolysis. Front. Neurosci. 2015, 9, 23. [Google Scholar] [CrossRef]
- Allen, R.E.; Lo, T.W.; Thornalley, P.J. A Simplified Method for the Purification of Human Red Blood Cell Glyoxalase. I. Characteristics, Immunoblotting, and Inhibitor Studies. J. Protein Chem. 1993, 12, 111–119. [Google Scholar] [CrossRef]
- Rabbani, N.; Xue, M.; Weickert, M.O.; Thornalley, P.J. Multiple Roles of Glyoxalase 1-Mediated Suppression of Methylglyoxal Glycation in Cancer Biology—Involvement in Tumour Suppression, Tumour Growth, Multidrug Resistance and Target for Chemotherapy. Semin. Cancer Biol. 2018, 49, 83–93. [Google Scholar] [CrossRef]
- Akram, M. Mini-Review on Glycolysis and Cancer. J. Cancer Educ. Off. J. Am. Assoc. Cancer Educ. 2013, 28, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Alhujaily, M.; Abbas, H.; Xue, M.; de la Fuente, A.; Rabbani, N.; Thornalley, P.J. Studies of Glyoxalase 1-Linked Multidrug Resistance Reveal Glycolysis-Derived Reactive Metabolite, Methylglyoxal, Is a Common Contributor in Cancer Chemotherapy Targeting the Spliceosome. Front. Oncol. 2021, 11, 748698. [Google Scholar] [CrossRef] [PubMed]
- Lu, K.-J.; Yang, C.-H.; Sheu, J.-R.; Chung, C.-L.; Jayakumar, T.; Chen, C.-M.; Hsieh, C.-Y. Overexpressing Glyoxalase 1 Attenuates Acute Hyperglycemia–Exacerbated Neurological Deficits of Ischemic Stroke in Mice. Transl. Res. 2023, 261, 57–68. [Google Scholar] [CrossRef]
- Berends, E.; Pencheva, M.G.; van de Waarenburg, M.P.H.; Scheijen, J.L.J.M.; Hermes, D.J.H.P.; Wouters, K.; van Oostenbrugge, R.J.; Foulquier, S.; Schalkwijk, C.G. Glyoxalase 1 Overexpression Improves Neurovascular Coupling and Limits Development of Mild Cognitive Impairment in a Mouse Model of Type 1 Diabetes. J. Physiol. 2024, 602, 6209–6223. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, O.; de Vos-Houben, J.M.J.; Niessen, P.M.G.; Miyata, T.; van Nieuwenhoven, F.; Janssen, B.J.A.; Hageman, G.; Stehouwer, C.D.A.; Schalkwijk, C.G. Mild Oxidative Damage in the Diabetic Rat Heart Is Attenuated by Glyoxalase-1 Overexpression. Int. J. Mol. Sci. 2013, 14, 15724–15739. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Yruela, C.; Bæk, M.; Monda, F.; Olsen, C.A. Chiral Posttranslational Modification to Lysine ε-Amino Groups. Acc. Chem. Res. 2022, 55, 1456–1466. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Zhang, K.; Wang, Y.; Gu, Y. Comprehensive Review of Histone Lactylation: Structure, Function, and Therapeutic Targets. Biochem. Pharmacol. 2024, 225, 116331. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, Q.; Yao, Q.; Yang, Z.; Li, W.; Cheng, X.; Wen, Y.; Chen, R.; Xu, J.; Wang, X.; et al. Nonenzymatic Lysine D-Lactylation Induced by Glyoxalase II Substrate SLG Dampens Inflammatory Immune Responses. Cell Res. 2025, 35, 97–116. [Google Scholar] [CrossRef]
- Wei, L.; Yang, X.; Wang, J.; Wang, Z.; Wang, Q.; Ding, Y.; Yu, A. H3K18 Lactylation of Senescent Microglia Potentiates Brain Aging and Alzheimer’s Disease through the NFκB Signaling Pathway. J. Neuroinflamm. 2023, 20, 208. [Google Scholar] [CrossRef]
- Shin, M.-G.; Lee, J.-W.; Han, J.-S.; Lee, B.; Jeong, J.-H.; Park, S.-H.; Kim, J.-H.; Jang, S.; Park, M.; Kim, S.-Y.; et al. Bacteria-Derived Metabolite, Methylglyoxal, Modulates the Longevity of C. Elegans through TORC2/SGK-1/DAF-16 Signaling. Proc. Natl. Acad. Sci. USA 2020, 117, 17142–17150. [Google Scholar] [CrossRef]
- Szczepanik, J.C.; de Almeida, G.R.L.; Cunha, M.P.; Dafre, A.L. Repeated Methylglyoxal Treatment Depletes Dopamine in the Prefrontal Cortex, and Causes Memory Impairment and Depressive-Like Behavior in Mice. Neurochem. Res. 2020, 45, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.; Aria, F.; Premoli, M.; Maccarinelli, G.; Mastinu, A.; Bonini, S.; Memo, M.; Uberti, D.; Abate, G. Methylglyoxal Affects Cognitive Behaviour and Modulates RAGE and Presenilin-1 Expression in Hippocampus of Aged Mice. Food Chem. Toxicol. 2021, 158, 112608. [Google Scholar] [CrossRef]
- Szczepanik, J.C.; Garcia, A.F.; Lopes de Almeida, G.R.; Cunha, M.P.; Dafre, A.L. Protective Effects against Memory Impairment Induced by Methylglyoxal in Mice Co-treated with FPS-ZM1, an Advanced Glycation End Products Receptor Antagonist. Acta Neurobiol. Exp. 2020, 80, 364–374. [Google Scholar] [CrossRef]
- Cely, I.; Blencowe, M.; Shu, L.; Diamante, G.; Ahn, I.S.; Zhang, G.; LaGuardia, J.; Liu, R.; Saleem, Z.; Wang, S.; et al. Glo1 Reduction in Mice Results in Age- and Sex-Dependent Metabolic Dysfunction. bioRxiv 2025, 25, 2025.01.24.634754. [Google Scholar] [CrossRef]
- Patil, G.; Kulsange, S.; Kazi, R.; Chirmade, T.; Kale, V.; Mote, C.; Aswar, M.; Koratkar, S.; Agawane, S.; Kulkarni, M. Behavioral and Proteomic Studies Reveal Methylglyoxal Activate Pathways Associated with Alzheimer’s Disease. ACS Pharmacol. Transl. Sci. 2023, 6, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Y.; Lee, C.Y.; Lee, K.M.; Zhang, G.; Lyu, A.; Yue, K.K.M. Advanced Glycation End-Product Precursor Methylglyoxal May Lead to Development of Alzheimer’s Disease. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 3153–3166. [Google Scholar] [CrossRef]
- Srikanth, V.; Westcott, B.; Forbes, J.; Phan, T.G.; Beare, R.; Venn, A.; Pearson, S.; Greenaway, T.; Parameswaran, V.; Münch, G. Methylglyoxal, Cognitive Function and Cerebral Atrophy in Older People. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Perrotte, M.; Khedher, M.R.B.; Demongin, C.; Lepage, A.; Fülöp, T.; Ramassamy, C. Methylglyoxal and Glyoxal as Potential Peripheral Markers for MCI Diagnosis and Their Effects on the Expression of Neurotrophic, Inflammatory and Neurodegenerative Factors in Neurons and in Neuronal Derived-Extracellular Vesicles. Int. J. Mol. Sci. 2019, 20, 4906. [Google Scholar] [CrossRef]
- He, Y.; Zhou, C.; Huang, M.; Tang, C.; Liu, X.; Yue, Y.; Diao, Q.; Zheng, Z.; Liu, D. Glyoxalase System: A Systematic Review of Its Biological Activity, Related-Diseases, Screening Methods and Small Molecule Regulators. Biomed. Pharmacother. 2020, 131, 110663. [Google Scholar] [CrossRef]
- Currais, A.; Prior, M.; Lo, D.; Jolivalt, C.; Schubert, D.; Maher, P. Diabetes Exacerbates Amyloid and Neurovascular Pathology in Aging-Accelerated Mice. Aging Cell 2012, 11, 1017–1026. [Google Scholar] [CrossRef]
- Maher, P.; Currais, A.; Schubert, D. Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chem. Biol. 2020, 27, 1456–1471. [Google Scholar] [CrossRef]
- Costa, I.; Barbosa, D.J.; Benfeito, S.; Silva, V.; Chavarria, D.; Borges, F.; Remião, F.; Silva, R. Molecular Mechanisms of Ferroptosis and Their Involvement in Brain Diseases. Pharmacol. Ther. 2023, 244, 108373. [Google Scholar] [CrossRef]
- Li, J.; Cao, F.; Yin, H.; Huang, Z.; Lin, Z.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, Present and Future. Cell Death Dis. 2020, 11, 88. [Google Scholar] [CrossRef]
- Alrouji, M.; Anwar, S.; Venkatesan, K.; Shahwan, M.; Hassan, M.I.; Islam, A.; Shamsi, A. Iron Homeostasis and Neurodegeneration in the Ageing Brain: Insight into Ferroptosis Pathways. Ageing Res. Rev. 2024, 102, 102575. [Google Scholar] [CrossRef] [PubMed]
- Majerníková, N.; den Dunnen, W.F.A.; Dolga, A.M. The Potential of Ferroptosis-Targeting Therapies for Alzheimer’s Disease: From Mechanism to Transcriptomic Analysis. Front. Aging Neurosci. 2021, 13, 745406. [Google Scholar] [CrossRef]
- Shao, L.; Dong, C.; Geng, D.; He, Q.; Shi, Y. Ginkgolide B Protects against Cognitive Impairment in Senescence-Accelerated P8 Mice by Mitigating Oxidative Stress, Inflammation and Ferroptosis. Biochem. Biophys. Res. Commun. 2021, 572, 7–14. [Google Scholar] [CrossRef]
- Yang, S.; Wang, L.; Zeng, Y.; Wang, Y.; Pei, T.; Xie, Z.; Xiong, Q.; Wei, H.; Li, W.; Li, J.; et al. Salidroside Alleviates Cognitive Impairment by Inhibiting Ferroptosis via Activation of the Nrf2/GPX4 Axis in SAMP8 Mice. Phytomedicine 2023, 114, 154762. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, M.; Zhou, C.; Sun, L.; Cai, W.; Li, X. Ferroptosis and Its Implications in Treating Cognitive Impairment Caused by Aging: A Study on the Mechanism of Repetitive Transcranial Magnetic Stimulation. Exp. Gerontol. 2024, 192, 112443. [Google Scholar] [CrossRef]
- Meng, X.; Zhao, W.; Yang, R.; Xu, S.-Q.; Wang, S.-Y.; Li, M.-M.; Jiang, Y.-K.; Hao, Z.-C.; Guan, W.; Kuang, H.-X.; et al. Lignans from Schisandra Chinensis (Turcz.) Baill Ameliorates Cognitive Impairment in Alzheimer’s Disease and Alleviates Ferroptosis by Activating the Nrf2/FPN1 Signaling Pathway and Regulating Iron Levels. J. Ethnopharmacol. 2025, 341, 119335. [Google Scholar] [CrossRef]
- Lin, L.; Ling, X.; Chen, T.; Zhou, Q.; Huang, J.; Huang, L.; Lin, X.; Lin, L. Inhibition of Hippocampal Neuronal Ferroptosis by Liproxstatin-1 Improves Learning and Memory Function in Aged Mice with Perioperative Neurocognitive Dysfunction. J. Inflamm. Res. 2025, 18, 2991–3007. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Hildebrand, B.A.; Sun, M.; Rockwood, M.R.; Rose, R.A.; Rockwood, K.; Howlett, S.E. A Clinical Frailty Index in Aging Mice: Comparisons with Frailty Index Data in Humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 621–632. [Google Scholar] [CrossRef]
- Hatori, M.; Le, H.; Vollmers, C.; Keding, S.R.; Tanaka, N.; Buch, T.; Waisman, A.; Schmedt, C.; Jegla, T.; Panda, S. Inducible Ablation of Melanopsin-Expressing Retinal Ganglion Cells Reveals Their Central Role in Non-Image Forming Visual Responses. PLoS ONE 2008, 3, e2451. [Google Scholar] [CrossRef]
- Dos Santos, B.; Bion, M.C.; Goujon-Svrzic, M.; Maher, P.; Dafre, A.L. REAP+: A Single Preparation for Rapid Isolation of Nuclei, Cytoplasm, and Mitochondria. Anal. Biochem. 2024, 687, 115445. [Google Scholar] [CrossRef]
- Arnér, E.S.; Zhong, L.; Holmgren, A. Preparation and Assay of Mammalian Thioredoxin and Thioredoxin Reductase. Methods Enzymol. 1999, 300, 226–239. [Google Scholar] [CrossRef]
- Peters, A.; Sethares, C.; Luebke, J.I. Synapses Are Lost during Aging in the Primate Prefrontal Cortex. Neuroscience 2008, 152, 970–981. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-J.; Wu, Y.; Zhang, Q.; Yu, K.-W.; Wang, Y.-Y. An Enriched Environment Promotes Synaptic Plasticity and Cognitive Recovery after Permanent Middle Cerebral Artery Occlusion in Mice. Neural Regen. Res. 2019, 14, 462–469. [Google Scholar] [CrossRef]
- Li, C.; Ke, C.; Su, Y.; Wan, C. Exercise Intervention Promotes the Growth of Synapses and Regulates Neuroplasticity in Rats With Ischemic Stroke Through Exosomes. Front. Neurol. 2021, 12, 752595. [Google Scholar] [CrossRef]
- Wang, C.; Yang, B.; Fang, D.; Zeng, H.; Chen, X.; Peng, G.; Cheng, Q.; Liang, G. The Impact of SNAP25 on Brain Functional Connectivity Density and Working Memory in ADHD. Biol. Psychol. 2018, 138, 35–40. [Google Scholar] [CrossRef]
- Valtorta, F.; Pennuto, M.; Bonanomi, D.; Benfenati, F. Synaptophysin: Leading Actor or Walk-on Role in Synaptic Vesicle Exocytosis? BioEssays News Rev. Mol. Cell. Dev. Biol. 2004, 26, 445–453. [Google Scholar] [CrossRef]
- Coley, A.A.; Gao, W.-J. PSD95: A Synaptic Protein Implicated in Schizophrenia or Autism? Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 82, 187–194. [Google Scholar] [CrossRef]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef] [PubMed]
- Warpsinski, G.; Smith, M.J.; Srivastava, S.; Keeley, T.P.; Siow, R.C.M.; Fraser, P.A.; Mann, G.E. Nrf2-Regulated Redox Signaling in Brain Endothelial Cells Adapted to Physiological Oxygen Levels: Consequences for Sulforaphane Mediated Protection against Hypoxia-Reoxygenation. Redox Biol. 2020, 37, 101708. [Google Scholar] [CrossRef]
- Kuhla, A.; Hauke, M.; Sempert, K.; Vollmar, B.; Zechner, D. Senescence-Dependent Impact of Anti-RAGE Antibody on Endotoxemic Liver Failure. AGE 2013, 35, 2153–2163. [Google Scholar] [CrossRef]
- Li, J.; Zhou, Y.; Du, G.; Qin, X.; Gao, L. Integration of Transcriptomics and Network Analysis Deciphers the Mechanisms of Baicalein in Improving Learning and Memory Impairment in Senescence-Accelerated Mouse Prone 8 (SAMP8). Eur. J. Pharmacol. 2019, 865, 172789. [Google Scholar] [CrossRef]
- Ong, J.; Sasaki, K.; Ferdousi, F.; Suresh, M.; Isoda, H.; Szele, F.G. Senescence Accelerated Mouse-Prone 8: A Model of Neuroinflammation and Aging with Features of Sporadic Alzheimer’s Disease. Stem Cells 2025, 43, sxae091. [Google Scholar] [CrossRef]
- Cheng, Q.; Fan, Y.; Zhang, P.; Liu, H.; Han, J.; Yu, Q.; Wang, X.; Wu, S.; Lu, Z. Biomarkers of Synaptic Degeneration in Alzheimer’s Disease. Ageing Res. Rev. 2025, 104, 102642. [Google Scholar] [CrossRef]
- Grillo, F.W. Long Live the Axon. Parallels between Ageing and Pathology from a Presynaptic Point of View. J. Chem. Neuroanat. 2016, 76, 28–34. [Google Scholar] [CrossRef]
- Srivastava, S. The Mitochondrial Basis of Aging and Age-Related Disorders. Genes 2017, 8, 398. [Google Scholar] [CrossRef]
- Pahal, S.; Mainali, N.; Balasubramaniam, M.; Shmookler Reis, R.J.; Ayyadevara, S. Mitochondria in Aging and Age-Associated Diseases. Mitochondrion 2025, 82, 102022. [Google Scholar] [CrossRef]
- Zecca, L.; Youdim, M.B.H.; Riederer, P.; Connor, J.R.; Crichton, R.R. Iron, Brain Ageing and Neurodegenerative Disorders. Nat. Rev. Neurosci. 2004, 5, 863–873. [Google Scholar] [CrossRef]
- Raven, E.P.; Lu, P.H.; Tishler, T.A.; Heydari, P.; Bartzokis, G. Increased Iron Levels and Decreased Tissue Integrity in Hippocampus of Alzheimer’s Disease Detected in Vivo with Magnetic Resonance Imaging. J. Alzheimers Dis. JAD 2013, 37, 127–136. [Google Scholar] [CrossRef]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The Role of Iron in Brain Ageing and Neurodegenerative Disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef]
- Ross, D.; Siegel, D. The Diverse Functionality of NQO1 and Its Roles in Redox Control. Redox Biol. 2021, 41, 101950. [Google Scholar] [CrossRef]
- Soriano-Castell, D.; Liang, Z.; Maher, P.; Currais, A. Profiling the Chemical Nature of Anti-Oxytotic/Ferroptotic Compounds with Phenotypic Screening. Free Radic. Biol. Med. 2021, 177, 313–325. [Google Scholar] [CrossRef]
- Li, J.; Jia, B.; Cheng, Y.; Song, Y.; Li, Q.; Luo, C. Targeting Molecular Mediators of Ferroptosis and Oxidative Stress for Neurological Disorders. Oxidative Med. Cell. Longev. 2022, 2022, 3999083. [Google Scholar] [CrossRef] [PubMed]
- Dar, N.J.; John, U.; Bano, N.; Khan, S.; Bhat, S.A. Oxytosis/Ferroptosis in Neurodegeneration: The Underlying Role of Master Regulator Glutathione Peroxidase 4 (GPX4). Mol. Neurobiol. 2024, 61, 1507–1526. [Google Scholar] [CrossRef]
- Liu, Y.; Wan, Y.; Jiang, Y.; Zhang, L.; Cheng, W. GPX4: The Hub of Lipid Oxidation, Ferroptosis, Disease and Treatment. Biochim. Biophys. Acta Rev. Cancer 2023, 1878, 188890. [Google Scholar] [CrossRef]
- Monroe, G.R.; van Eerde, A.M.; Tessadori, F.; Duran, K.J.; Savelberg, S.M.C.; van Alfen, J.C.; Terhal, P.A.; van der Crabben, S.N.; Lichtenbelt, K.D.; Fuchs, S.A.; et al. Identification of Human D Lactate Dehydrogenase Deficiency. Nat. Commun. 2019, 10, 1477. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, P.; Liu, Z.; Xie, J. L- and D-Lactate: Unveiling Their Hidden Functions in Disease and Health. Cell Commun. Signal. 2025, 23, 134. [Google Scholar] [CrossRef]
- Gaffney, D.O.; Jennings, E.Q.; Anderson, C.C.; Marentette, J.O.; Shi, T.; Schou Oxvig, A.-M.; Streeter, M.D.; Johannsen, M.; Spiegel, D.A.; Chapman, E.; et al. Non-Enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem. Biol. 2020, 27, 206–213.e6. [Google Scholar] [CrossRef]
- Moreno-Yruela, C.; Zhang, D.; Wei, W.; Bæk, M.; Liu, W.; Gao, J.; Danková, D.; Nielsen, A.L.; Bolding, J.E.; Yang, L.; et al. Class I Histone Deacetylases (HDAC1–3) Are Histone Lysine Delactylases. Sci. Adv. 2022, 8, eabi6696. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dafre, A.L.; Taguchi, T.; Dayn, Y.; Currais, A.; Maher, P. Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice. Antioxidants 2025, 14, 946. https://doi.org/10.3390/antiox14080946
Dafre AL, Taguchi T, Dayn Y, Currais A, Maher P. Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice. Antioxidants. 2025; 14(8):946. https://doi.org/10.3390/antiox14080946
Chicago/Turabian StyleDafre, Alcir Luiz, Taketo Taguchi, Yelena Dayn, Antonio Currais, and Pamela Maher. 2025. "Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice" Antioxidants 14, no. 8: 946. https://doi.org/10.3390/antiox14080946
APA StyleDafre, A. L., Taguchi, T., Dayn, Y., Currais, A., & Maher, P. (2025). Gender-Dependent Cognitive and Metabolic Benefits Due to Glyoxalase 1 (Glo1) Overexpression in Age-Accelerated SAMP8 Mice. Antioxidants, 14(8), 946. https://doi.org/10.3390/antiox14080946