Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = GPCR-antibodies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2014 KiB  
Review
GPR75: Advances, Challenges in Deorphanization, and Potential as a Novel Drug Target for Disease Treatment
by Jingyi Han, Jiaojiao Li, Sirui Yao, Zao Wei, Hui Jiang, Tao Xu, Junwei Zeng, Lin Xu and Yong Han
Int. J. Mol. Sci. 2025, 26(9), 4084; https://doi.org/10.3390/ijms26094084 - 25 Apr 2025
Viewed by 1895
Abstract
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such [...] Read more.
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such as 20-hydroxyeicosatetraenoic acid (20-HETE) and C-C motif chemokine ligand 5 (CCL5/RANTES); however, its definitive endogenous ligand remains unidentified, and GPR75 is currently classified as an orphan receptor by International Union of Basic and Clinical Pharmacology (IUPHAR). Research on GPR75 deorphanization has underscored its critical roles in disease models, particularly in metabolic health, glucose regulation, and stability of the nervous and cardiovascular systems. However, the signaling pathways of GPR75 across different pathological conditions require further investigation. Importantly, ongoing studies are targeting GPR75 for drug development, exploring small molecule inhibitors, antibodies, and gene silencing techniques, positioning GPR75 as a promising GPCR target for treating related diseases. This review summarizes the recent advancements in GPR75 deorphanization research, examines its functions across tissues and systems, and highlights its links to metabolic, cardiovascular, and neurological disorders, thereby providing a resource for researchers to better understand the biological functions of this receptor. Full article
(This article belongs to the Special Issue G Protein-Coupled Receptors)
Show Figures

Figure 1

16 pages, 2849 KiB  
Article
An In-Depth Exploration of the Autoantibody Immune Profile in ME/CFS Using Novel Antigen Profiling Techniques
by Arnaud Germain, Jillian R. Jaycox, Christopher J. Emig, Aaron M. Ring and Maureen R. Hanson
Int. J. Mol. Sci. 2025, 26(6), 2799; https://doi.org/10.3390/ijms26062799 - 20 Mar 2025
Cited by 1 | Viewed by 5529
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by serious physical and cognitive impairments. Recent research underscores the role of immune dysfunction, including the role of autoantibodies, in ME/CFS pathophysiology. Expanding on previous studies, we analyzed 7542 antibody–antigen interactions in ME/CFS [...] Read more.
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disorder characterized by serious physical and cognitive impairments. Recent research underscores the role of immune dysfunction, including the role of autoantibodies, in ME/CFS pathophysiology. Expanding on previous studies, we analyzed 7542 antibody–antigen interactions in ME/CFS patients using two advanced platforms: a 1134 autoantibody Luminex panel from Oncimmune and Augmenta Bioworks, along with Rapid Extracellular Antigen Profiling (REAP), a validated high-throughput method that measures autoantibody reactivity against 6183 extracellular human proteins and 225 human viral pathogen proteins. Unlike earlier reports, our analysis of 172 participants revealed no significant differences in autoantibody reactivities between ME/CFS patients and controls, including against GPCRs such as β-adrenergic receptors. However, subtle trends in autoantibody ratios between male and female ME/CFS subgroups, along with patterns of herpesvirus reactivation, suggest the need for broader and more detailed exploration. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Autoimmune Disorders)
Show Figures

Graphical abstract

34 pages, 1515 KiB  
Review
The Use of Biologics for Targeting GPCRs in Metastatic Cancers
by Cian McBrien and David J. O’Connell
BioTech 2025, 14(1), 7; https://doi.org/10.3390/biotech14010007 - 30 Jan 2025
Cited by 1 | Viewed by 4180
Abstract
A comprehensive review of studies describing the role of G-protein coupled receptor (GPCR) behaviour contributing to metastasis in cancer, and the developments of biotherapeutic drugs towards targeting them, provides a valuable resource toward improving our understanding of the opportunities to effectively target this [...] Read more.
A comprehensive review of studies describing the role of G-protein coupled receptor (GPCR) behaviour contributing to metastasis in cancer, and the developments of biotherapeutic drugs towards targeting them, provides a valuable resource toward improving our understanding of the opportunities to effectively target this malignant tumour cell adaptation. Focusing on the five most common metastatic cancers of lung, breast, colorectal, melanoma, and prostate cancer, we highlight well-studied and characterised GPCRs and some less studied receptors that are also implicated in the development of metastatic cancers. Of the approximately 390 GPCRs relevant to therapeutic targeting, as many as 125 of these have been identified to play a role in promoting metastatic disease in these cancer types. GPCR signalling through the well-characterised pathways of chemokine receptors, to emerging data on signalling by orphan receptors, is integral to many aspects of the metastatic phenotype. Despite having detailed information on many receptors and their ligands, there are only thirteen approved therapeutics specifically for metastatic cancer, of which three are small molecules with the remainder including synthetic and non-synthetic peptides or monoclonal antibodies. This review will cover the existing and potential use of monoclonal antibodies, proteins and peptides, and nanobodies in targeting GPCRs for metastatic cancer therapy. Full article
Show Figures

Figure 1

14 pages, 2033 KiB  
Article
Inflammatory Stimulation Upregulates the Receptor Transporter Protein 4 (RTP4) in SIM-A9 Microglial Cells
by Wakako Fujita and Yusuke Kuroiwa
Int. J. Mol. Sci. 2024, 25(24), 13676; https://doi.org/10.3390/ijms252413676 - 21 Dec 2024
Cited by 1 | Viewed by 1188
Abstract
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role [...] Read more.
The receptor transporter protein 4 (RTP4) is a receptor chaperone protein that targets class A G-protein coupled receptor (GPCR)s. Recently, it has been found to play a role in peripheral inflammatory regulation, as one of the interferon-stimulated genes (ISGs). However, the detailed role of RTP4 in response to inflammatory stress in the central nervous system has not yet been fully understood. While we have previously examined the role of RTP4 in the brain, particularly in neuronal cells, this study focuses on its role in microglial cells, immunoreactive cells in the brain that are involved in inflammation. For this, we examined the changes in the RTP4 levels in the microglial cells after exposure to inflammatory stress. We found that lipopolysaccharide (LPS) treatment (0.1~1 µg/mL, 24 h) significantly upregulated the RTP4 mRNA levels in the microglial cell line, SIM-A9. Furthermore, the interferon (IFN)-β mRNA levels and extracellular levels of IFN-β were also increased by LPS treatment. This upregulation was reversed by treatment with neutralizing antibodies targeting either the interferon receptor (IFNR) or toll-like receptor 4 (TLR4), and with a TLR4 selective inhibitor, or a Janus kinase (JAK) inhibitor. On the other hand, the mitogen-activated protein kinase kinase (MEK) inhibitor, U0126, significantly enhanced the increase in RTP4 mRNA following LPS treatment, whereas the PKC inhibitor, calphostin C, had no effect. These findings suggest that in microglial cells, LPS-induced inflammatory stress activates TLR4, leading to the production of type I IFN, the activation of IFN receptor and JAK, and finally, the induction of RTP4 gene expression. Based on these results, we speculate that RTP4 functions as an inflammation-responsive molecule in the brain. However, further research is needed to fully understand its role. Full article
(This article belongs to the Special Issue Pharmacological Treatment of Neuroinflammation)
Show Figures

Figure 1

17 pages, 983 KiB  
Review
Autoantibodies Targeting G-Protein-Coupled Receptors: Pathogenetic, Clinical and Therapeutic Implications in Systemic Sclerosis
by Marco Binda, Beatrice Moccaldi, Giovanni Civieri, Anna Cuberli, Andrea Doria, Francesco Tona and Elisabetta Zanatta
Int. J. Mol. Sci. 2024, 25(4), 2299; https://doi.org/10.3390/ijms25042299 - 15 Feb 2024
Cited by 5 | Viewed by 3470
Abstract
Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery [...] Read more.
Systemic sclerosis (SSc) is a multifaceted connective tissue disease whose aetiology remains largely unknown. Autoimmunity is thought to play a pivotal role in the development of the disease, but the direct pathogenic role of SSc-specific autoantibodies remains to be established. The recent discovery of functional antibodies targeting G-protein-coupled receptors (GPCRs), whose presence has been demonstrated in different autoimmune conditions, has shed some light on SSc pathogenesis. These antibodies bind to GPCRs expressed on immune and non-immune cells as their endogenous ligands, exerting either a stimulatory or inhibitory effect on corresponding intracellular pathways. Growing evidence suggests that, in SSc, the presence of anti-GPCRs antibodies correlates with specific clinical manifestations. Autoantibodies targeting endothelin receptor type A (ETAR) and angiotensin type 1 receptor (AT1R) are associated with severe vasculopathic SSc-related manifestations, while anti-C-X-C motif chemokine receptors (CXCR) antibodies seem to be predictive of interstitial lung involvement; anti-muscarinic-3 acetylcholine receptor (M3R) antibodies have been found in patients with severe gastrointestinal involvement and anti-protease-activated receptor 1 (PAR1) antibodies have been detected in patients experiencing scleroderma renal crisis. This review aims to clarify the potential pathogenetic significance of GPCR-targeting autoantibodies in SSc, focusing on their associations with the different clinical manifestations of scleroderma. An extensive examination of functional autoimmunity targeting GPCRs might provide valuable insights into the underlying pathogenetic mechanisms of SSc, thus enabling the development of novel therapeutic strategies tailored to target GPCR-mediated pathways. Full article
Show Figures

Figure 1

12 pages, 2133 KiB  
Case Report
“Multisystem Inflammatory Syndrome in Children”-Like Disease after COVID-19 Vaccination (MIS-V) with Potential Significance of Functional Active Autoantibodies Targeting G-Protein-Coupled Receptors (GPCR-fAAb) for Pathophysiology and Therapy
by Marius Schmidt, Steven Hébert, Gerd Wallukat, Rolf Ponader, Tobias Krickau, Matthias Galiano, Heiko Reutter, Joachim Woelfle, Abbas Agaimy, Christian Mardin, André Hoerning and Bettina Hohberger
Children 2023, 10(12), 1836; https://doi.org/10.3390/children10121836 - 22 Nov 2023
Cited by 3 | Viewed by 2917
Abstract
Background: An infection with SARS-CoV-2 can trigger a systemic disorder by pathological autoimmune processes. A certain type of this dysregulation is known as Multisystemic inflammatory syndrome in children (MIS-C). However, similar symptoms may occur and have been described as Multisystemic inflammatory syndrome after [...] Read more.
Background: An infection with SARS-CoV-2 can trigger a systemic disorder by pathological autoimmune processes. A certain type of this dysregulation is known as Multisystemic inflammatory syndrome in children (MIS-C). However, similar symptoms may occur and have been described as Multisystemic inflammatory syndrome after SARS-CoV-2 Vaccination (MIS-V) following vaccination against SARS-CoV-2. We report the case of a 12-year-old boy who was identified with MIS-C symptoms without previous SARS-CoV-2 infection after receiving two doses of the Pfizer–BioNTech COVID-19 vaccine approximately one month prior to the onset of symptoms. He showed polyserositis, severe gastrointestinal symptoms and, consequently, a manifestation of a multiorgan failure. IgG antibodies against spike proteins of SARS-CoV-2 were detected, indicating a successful vaccination, while SARS-CoV-2 Nucleocapsid protein antibodies and SARS-CoV-2 PCR were not detected. Several functional, active autoantibodies against G-protein-coupled receptors (GPCR-fAAb), previously associated with Long COVID disease, were detected in a cardiomyocyte bioassay. Immunosuppression with steroids was initiated. Due to side effects, treatment with steroids and later interleukin 1 receptor antagonists had to be terminated. Instead, immunoadsorption was performed and continued with tacrolimus and mycophenolic acid therapy, leading to improvement and discharge after 79 days. GPCR-fAAb decreased during therapy and remained negative after clinical curing and under continued immunosuppressive therapy with tacrolimus and mycophenolic acid. Follow-up of the patient showed him in good condition after one year. Conclusions: Infection with SARS-CoV-2 shows a broad and severe variety of symptoms, partly due to autoimmune dysregulation, which, in some instances, can lead to multiorgan failure. Despite its rarity, post-vaccine MIS-C-like disease may develop into a serious condition triggered by autoimmune dysregulation. The evidence of circulating GPCR-fAAb and their disappearance after therapy suggests a link of GPCR-fAAb to the clinical manifestations. Thus, we hypothesize a potential role of GPCR-fAAb in pathophysiology and their potential importance for the therapy of MIS-C or MIS-V. However, this observation needs further investigation to prove a causative correlation. Full article
(This article belongs to the Special Issue COVID-19 and Pediatric Emergency Medicine)
Show Figures

Figure 1

13 pages, 4183 KiB  
Communication
Lumpy Skin Disease (LSD) in Yak (Bos grunniens): An Evidence of Species Spillover from Cattle in India
by Gundallahalli Bayyappa Manjunatha Reddy, Sai Mounica Pabbineedi, Sudeep Nagaraj, Shraddha Bijalwan, Sunil Tadakod, Zeruiah Bhutia, Diki Palmu, Seema Rai, Pempa Doma Bhutia, Pem Tshering Bhutia, Emila Shenga and Baldev Raj Gulati
Microorganisms 2023, 11(12), 2823; https://doi.org/10.3390/microorganisms11122823 - 21 Nov 2023
Cited by 23 | Viewed by 3124
Abstract
Lumpy skin disease (LSD), caused by the lumpy skin disease virus (LSDV), is a global concern that affects cattle and buffalo. Recently, the disease has been reported in new species such as the Indian Gazelle, Camel, Banteng, Gaur, and Giraffe from various parts [...] Read more.
Lumpy skin disease (LSD), caused by the lumpy skin disease virus (LSDV), is a global concern that affects cattle and buffalo. Recently, the disease has been reported in new species such as the Indian Gazelle, Camel, Banteng, Gaur, and Giraffe from various parts of the world. This report provides an insight into the occurrence of LSD in Yak from Sikkim, a North-Eastern state of India. During the investigation, both cattle and yak exhibited typical clinical signs of LSD, including skin nodular lesions. The morbidity, mortality, and case fatality rates for cattle were 9.08%, 1.84%, and 20.24%, respectively. Similarly, the morbidity, mortality, and case fatality rates in yak were 7.57%, 1.24%, and 16.33%, respectively. The virus isolation and amplification of LSDV-specific genes confirmed the presence of LSDV in cattle, yak, and vectors. Further, demonstrated antibodies in randomly collected sera from naïve and unvaccinated cattle and yak using indirect Enzyme Linked Immuno-sorbent Assay (iELISA) and Serum Neutralisation test (SNT) from this region. Sequencing and phylogenetic analysis of P32, GPCR, and RPO30 genes revealed that the virus isolated from both species was 100% identical to each other and also closely related to the field LSDV isolates circulating in the Indian subcontinent. The study highlighted the emergence of LSDV in unconventional hosts and underscored the need to include other bovine species in national disease control programs, encompassing disease surveillance initiatives. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

9 pages, 1326 KiB  
Brief Report
Observational Study of Repeat Immunoadsorption (RIA) in Post-COVID ME/CFS Patients with Elevated ß2-Adrenergic Receptor Autoantibodies—An Interim Report
by Elisa Stein, Cornelia Heindrich, Kirsten Wittke, Claudia Kedor, Laura Kim, Helma Freitag, Anne Krüger, Markus Tölle and Carmen Scheibenbogen
J. Clin. Med. 2023, 12(19), 6428; https://doi.org/10.3390/jcm12196428 - 9 Oct 2023
Cited by 16 | Viewed by 4964
Abstract
There is increasing evidence for an autoimmune aetiology in post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SARS-CoV-2 has now become the main trigger for ME/CFS. We have already conducted two small proof-of-concept studies on IgG depletion by immunoadsorption (IA) in post-infectious ME/CFS, which showed [...] Read more.
There is increasing evidence for an autoimmune aetiology in post-infectious Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). SARS-CoV-2 has now become the main trigger for ME/CFS. We have already conducted two small proof-of-concept studies on IgG depletion by immunoadsorption (IA) in post-infectious ME/CFS, which showed efficacy in most patients. This observational study aims to evaluate the efficacy of IA in patients with post-COVID-19 ME/CFS. The primary objective was to assess the improvement in functional ability. Due to the urgency of finding therapies for post-COVID-Syndrome (PCS), we report here the interim results of the first ten patients, with seven responders defined by an increase of between 10 and 35 points in the Short-Form 36 Physical Function (SF36-PF) at week four after IA. The results of this observational study will provide the basis for patient selection for a randomised controlled trial (RCT), including sham apheresis, and for an RCT combining IA with B-cell depletion therapy. Trial registration number: NCT05629988. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

15 pages, 1216 KiB  
Review
Peptide G-Protein-Coupled Receptors and ErbB Receptor Tyrosine Kinases in Cancer
by Terry W. Moody, Irene Ramos-Alvarez and Robert T. Jensen
Biology 2023, 12(7), 957; https://doi.org/10.3390/biology12070957 - 4 Jul 2023
Cited by 7 | Viewed by 4015
Abstract
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high [...] Read more.
The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR, HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies (mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692 is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3. The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692 to impair transactivation and cancer growth. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

9 pages, 644 KiB  
Communication
Identification of the Binding Epitope of an Anti-Mouse CCR6 Monoclonal Antibody (C6Mab-13) Using 1× Alanine Scanning
by Tomohiro Tanaka, Mayuki Tawara, Hiroyuki Suzuki, Mika K. Kaneko and Yukinari Kato
Antibodies 2023, 12(2), 32; https://doi.org/10.3390/antib12020032 - 28 Apr 2023
Cited by 1 | Viewed by 2972
Abstract
CC chemokine receptor 6 (CCR6) is one of the members of the G-protein-coupled receptor (GPCR) family that is upregulated in many immune-related cells, such as B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. The coordination between CCR6 [...] Read more.
CC chemokine receptor 6 (CCR6) is one of the members of the G-protein-coupled receptor (GPCR) family that is upregulated in many immune-related cells, such as B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. The coordination between CCR6 and its ligand CC motif chemokine ligand 20 (CCL20) is deeply involved in the pathogenesis of various diseases, such as cancer, psoriasis, and autoimmune diseases. Thus, CCR6 is an attractive target for therapy and is being investigated as a diagnostic marker for various diseases. In a previous study, we developed an anti-mouse CCR6 (mCCR6) monoclonal antibody (mAb), C6Mab-13 (rat IgG1, kappa), that was applicable for flow cytometry by immunizing a rat with the N-terminal peptide of mCCR6. In this study, we investigated the binding epitope of C6Mab-13 using an enzyme-linked immunosorbent assay (ELISA) and the surface plasmon resonance (SPR) method, which were conducted with respect to the synthesized point-mutated-peptides within the 1–20 amino acid region of mCCR6. In the ELISA results, C6Mab-13 lost its ability to react to the alanine-substituted peptide of mCCR6 at Asp11, thereby identifying Asp11 as the epitope of C6Mab-13. In our SPR analysis, the dissociation constants (KD) could not be calculated for the G9A and D11A mutants due to the lack of binding. The SPR analysis demonstrated that the C6Mab-13 epitope comprises Gly9 and Asp11. Taken together, the key binding epitope of C6Mab-13 was determined to be located around Asp11 on mCCR6. Based on the epitope information, C6Mab-13 could be useful for further functional analysis of mCCR6 in future studies. Full article
(This article belongs to the Special Issue Antibodies: 10th Anniversary)
Show Figures

Figure 1

16 pages, 1239 KiB  
Review
CCR6 as a Potential Target for Therapeutic Antibodies for the Treatment of Inflammatory Diseases
by Sara Gómez-Melero and Javier Caballero-Villarraso
Antibodies 2023, 12(2), 30; https://doi.org/10.3390/antib12020030 - 20 Apr 2023
Cited by 22 | Viewed by 8917
Abstract
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor (GPCR) involved in a wide range of biological processes. When CCR6 binds to its sole ligand CCL20, a signaling network is produced. This pathway is implicated in mechanisms related to many diseases, [...] Read more.
The CC chemokine receptor 6 (CCR6) is a G protein-coupled receptor (GPCR) involved in a wide range of biological processes. When CCR6 binds to its sole ligand CCL20, a signaling network is produced. This pathway is implicated in mechanisms related to many diseases, such as cancer, psoriasis, multiple sclerosis, HIV infection or rheumatoid arthritis. The CCR6/CCL20 axis plays a fundamental role in immune homeostasis and activation. Th17 cells express the CCR6 receptor and inflammatory cytokines, including IL-17, IL-21 and IL-22, which are involved in the spread of inflammatory response. The CCL20/CCR6 mechanism plays a crucial role in the recruitment of these pro-inflammatory cells to local tissues. To date, there are no drugs against CCR6 approved, and the development of small molecules against CCR6 is complicated due to the difficulty in screenings. This review highlights the potential as a therapeutic target of the CCR6 receptor in numerous diseases and the importance of the development of antibodies against CCR6 that could be a promising alternative to small molecules in the treatment of CCR6/CCL20 axis-related pathologies. Full article
(This article belongs to the Special Issue Antibodies: 10th Anniversary)
Show Figures

Figure 1

21 pages, 3450 KiB  
Review
Molecular Characterization and Pharmacology of Melatonin Receptors in Animals
by Erika Cecon, Jean A. Boutin and Ralf Jockers
Receptors 2023, 2(2), 127-147; https://doi.org/10.3390/receptors2020008 - 14 Apr 2023
Cited by 10 | Viewed by 4748
Abstract
Melatonin, the hormone of darkness, is secreted in minute amounts during the night and is virtually undetectable during the day. Melatonin mainly acts on high-affinity G protein-coupled receptors. The present review will trace the path of the discovery of melatonin receptors from their [...] Read more.
Melatonin, the hormone of darkness, is secreted in minute amounts during the night and is virtually undetectable during the day. Melatonin mainly acts on high-affinity G protein-coupled receptors. The present review will trace the path of the discovery of melatonin receptors from their cloning, expression and purification to the development of recent radioactive and fluorescent tracers. We will then report on the state-of-the-art of melatonin receptor functional properties, including ligand bias and system bias due to receptor-associated proteins and receptor heteromers. Currently available antibodies raised against melatonin receptors will be critically reviewed here for the first time. The review will close with future perspectives in terms of the discovery of allosteric ligands and the in vivo validation of a range of melatonin receptor-associated signaling complexes to improve future drug development. Full article
Show Figures

Figure 1

21 pages, 2596 KiB  
Article
Rapid One-Step Capturing of Native, Cell-Free Synthesized and Membrane-Embedded GLP-1R
by Lisa Haueis, Marlitt Stech, Eberhard Schneider, Thorsten Lanz, Nicole Hebel, Anne Zemella and Stefan Kubick
Int. J. Mol. Sci. 2023, 24(3), 2808; https://doi.org/10.3390/ijms24032808 - 1 Feb 2023
Cited by 6 | Viewed by 3248
Abstract
G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are [...] Read more.
G protein-coupled receptors (GPCRs) are of outstanding pharmacological interest as they are abundant in cell membranes where they perform diverse functions that are closely related to the vitality of cells. The analysis of GPCRs in natural membranes is laborious, as established methods are almost exclusively cell culture-based and only a few methods for immobilization in a natural membrane outside the cell are known. Within this study, we present a one-step, fast and robust immobilization strategy of the GPCR glucagon-like peptide 1 receptor (GLP-1R). GLP-1R was synthesized in eukaryotic lysates harboring endogenous endoplasmic reticulum-derived microsomes enabling the embedment of GLP-1R in a natural membrane. Interestingly, we found that these microsomes spontaneously adsorbed to magnetic Neutravidin beads thus providing immobilized membrane protein preparations which required no additional manipulation of the target receptor or its supporting membrane. The accessibility of the extracellular domain of membrane-embedded and bead-immobilized GLP-1R was demonstrated by bead-based enzyme-linked immunosorbent assay (ELISA) using GLP-1R-specific monoclonal antibodies. In addition, ligand binding of immobilized GLP-1R was verified in a radioligand binding assay. In summary, we present an easy and straightforward synthesis and immobilization methodology of an active GPCR which can be beneficial for studying membrane proteins in general. Full article
Show Figures

Figure 1

24 pages, 4665 KiB  
Article
Characterization of Antibodies against Receptor Activity-Modifying Protein 1 (RAMP1): A Cautionary Tale
by Erica R. Hendrikse, Tayla A. Rees, Zoe Tasma, Michael L. Garelja, Andrew Siow, Paul W. R. Harris, John B. Pawlak, Kathleen M. Caron, Elizabeth S. Blakeney, Andrew F. Russo, Levi P. Sowers, Thomas A. Lutz, Christelle Le Foll, Christopher S. Walker and Debbie L. Hay
Int. J. Mol. Sci. 2022, 23(24), 16035; https://doi.org/10.3390/ijms232416035 - 16 Dec 2022
Cited by 6 | Viewed by 3612
Abstract
Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and [...] Read more.
Calcitonin gene-related peptide (CGRP) is a key component of migraine pathophysiology, yielding effective migraine therapeutics. CGRP receptors contain a core accessory protein subunit: receptor activity-modifying protein 1 (RAMP1). Understanding of RAMP1 expression is incomplete, partly due to the challenges in identifying specific and validated antibody tools. We profiled antibodies for immunodetection of RAMP1 using Western blotting, immunocytochemistry and immunohistochemistry, including using RAMP1 knockout mouse tissue. Most antibodies could detect RAMP1 in Western blotting and immunocytochemistry using transfected cells. Two antibodies (844, ab256575) could detect a RAMP1-like band in Western blots of rodent brain but not RAMP1 knockout mice. However, cross-reactivity with other proteins was evident for all antibodies. This cross-reactivity prevented clear conclusions about RAMP1 anatomical localization, as each antibody detected a distinct pattern of immunoreactivity in rodent brain. We cannot confidently attribute immunoreactivity produced by RAMP1 antibodies (including 844) to the presence of RAMP1 protein in immunohistochemical applications in brain tissue. RAMP1 expression in brain and other tissues therefore needs to be revisited using RAMP1 antibodies that have been comprehensively validated using multiple strategies to establish multiple lines of convincing evidence. As RAMP1 is important for other GPCR/ligand pairings, our results have broader significance beyond the CGRP field. Full article
(This article belongs to the Special Issue Molecular and Cellular Neurobiology of Migraine)
Show Figures

Figure 1

15 pages, 2597 KiB  
Article
A Novel Antibody Targeting the Second Extracellular Loop of the Serotonin 5-HT2A Receptor Inhibits Platelet Function
by Jean E. M. Ramirez, Ahmed B. Alarabi, Fadi T. Khasawneh and Fatima Z. Alshbool
Int. J. Mol. Sci. 2022, 23(15), 8794; https://doi.org/10.3390/ijms23158794 - 8 Aug 2022
Cited by 9 | Viewed by 3407
Abstract
Serotonin (5-hydroxytriptamine or 5-HT) is known to be a weak platelet agonist, and is involved in thrombus formation. While 5-HT cannot induce platelet aggregation on its own, when secreted from the alpha granules, it binds to its G-protein Coupled Receptor (GPCR; i.e., 5HT [...] Read more.
Serotonin (5-hydroxytriptamine or 5-HT) is known to be a weak platelet agonist, and is involved in thrombus formation. While 5-HT cannot induce platelet aggregation on its own, when secreted from the alpha granules, it binds to its G-protein Coupled Receptor (GPCR; i.e., 5HT2AR), thereby acting to amplify platelet functional responses (e.g., aggregation). Thus, 5HT2AR-mediated responses are more involved in the secondary amplification of platelet aggregation in the growing thrombus. Therefore, even though 5-HT can be seen as a weak inducer of platelet activation, it is an important amplifier of aggregation triggered by agonists such as ADP, collagen, and epinephrine, thereby enhancing thrombogenesis. The 5HT2AR/5HT2A signaling pathway is of clinical interest to the scientific and medical communities as it has been implicated in the genesis of several forms of cardiovascular disorders. However, efforts to develop antagonists for 5HT2AR as therapeutic agents in cardiovascular diseases have thus far failed due to these reagents having deleterious side-effects, and/or to lack of selectivity, amongst other reasons. In light of research efforts that identified that the 5HT2AR ligand binding domain resides in the second extracellular loop (EL2; amino acids P209-N233), we developed an antibody, i.e., referred to as 5HT2ARAb, against the EL2 region, and characterized its pharmacological activity in the context of platelets. Thus, we utilized platelets from healthy human donors, as well as C57BL/6J mice (10–12 weeks old) to analyze the inhibitory effects of the 5HT2ARAb on platelet activation in vitro, ex vivo, and on thrombogenesis in vivo as well as on 5HT2AR ligand binding. Our results indicate that the 5HT2ARAb inhibits 5-HT-enhanced platelet activation in vitro and ex vivo, but has no apparent effects on that which is agonist-induced. The 5HT2ARAb was also found to prolong the thrombus occlusion time, and it did so without modulating the tail bleeding time, in mice unlike the P2Y12 antagonist clopidogrel and the 5HT2AR antagonist ketanserin. Moreover, it was found that the 5HT2ARAb does so by directly antagonizing the platelet 5HT2AR. Our findings document that the custom-made 5HT2ARAb exhibits platelet function blocking activity and protects against thrombogenesis without impairing normal hemostasis. Full article
(This article belongs to the Special Issue Molecular Research on Platelet Activity in Health and Disease 2024)
Show Figures

Figure 1

Back to TopTop