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Simple Summary: Cancer growth is regulated by receptor tyrosine kinases (RTKs) and G-protein-
coupled receptors (GPCRs). The epidermal growth factor receptor (EGFR) is an RTK that binds
ligands and causes tyrosine phosphorylation of protein substrates. Alternatively, the EGFR can
tyrosine itself, leading to the activation of the ERK pathway, increasing cellular proliferation. The
EGFR is mutated in several lung cancer patients, and these patients can be treated with tyrosine
kinase inhibitors. The neurotensin receptor (NTSR1) is a GPCR, which binds peptides and alters
signal transduction. Adding neurotensin to lung cancer cells increases phosphatidylinositol turnover,
resulting in elevating cytosolic Ca2+ and activating protein kinase C. SR48692 is an NTSR1 antagonist,
which inhibits lung cancer proliferation. RTKs and GPCRs can act independently to alter cancer
growth; however, NTSR1 regulates the tyrosine phosphorylation of RTKs such as the EGFR. RTKs
and GPCRs interact to increase cancer proliferation.

Abstract: The ErbB RTKs (EGFR, HER2, HER3, and HER4) have been well-studied in cancer. EGFR,
HER2, and HER3 stimulate cancer proliferation, principally by activating the phosphatidylinositol-3-
kinase and extracellular signal-regulated kinase (ERK) pathways, resulting in increased cancer cell
survival and proliferation. Cancer cells have high densities of the EGFR, HER2, and HER3 causing
phosphorylation of tyrosine amino acids on protein substrates and tyrosine amino acids near the
C-terminal of the RTKs. After transforming growth factor (TGF) α binds to the EGFR, homodimers
or EGFR heterodimers form. HER2 forms heterodimers with the EGFR, HER3, and HER4. The
EGFR, HER2, and HER3 are overexpressed in lung cancer patient tumors, and monoclonal antibodies
(mAbs), such as Herceptin against HER2, are used to treat breast cancer patients. Patients with
EGFR mutations are treated with tyrosine kinase inhibitors, such as gefitinib or osimertinib. Peptide
GPCRs, such as NTSR1, are present in many cancers, and neurotensin (NTS) stimulates the growth
of cancer cells. Lung cancer proliferation is impaired by SR48692, an NTSR1 antagonist. SR48692
is synergistic with gefitinib at inhibiting lung cancer growth. Adding NTS to lung cancer cells
increases the shedding of TGFα, which activates the EGFR, or neuregulin-1, which activates HER3.
The transactivation process is impaired by SRC, matrix metalloprotease, and reactive oxygen species
inhibitors. While the transactivation process is complicated, it is fast and occurs within minutes after
adding NTS to cancer cells. This review emphasizes the use of tyrosine kinase inhibitors and SR48692
to impair transactivation and cancer growth.

Keywords: G-protein-coupled receptor; receptor tyrosine kinases; transactivation; tyrosine kinase
inhibitors; monoclonal antibodies; cancer

1. Introduction

Receptor tyrosine kinases (RTKs) of the erbB family are large proteins (approximately
1200 amino acids) that are important in regulating cancer proliferation. These include the
epidermal growth factor receptor (EGFR or ErbB1), HER2 (ErbB2), HER3 (ErbB3), and HER4
(ErbB4) [1]. When the EGFR is activated by ligands such as transforming growth factor
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(TGF) a, protein substrates, such as phospholipase C and phosphatidylinositol-3-kinase,
are tyrosine phosphorylated, leading to increased cancer proliferation and survival [2,3].
The RTKs mediate the following reaction:

Protein-OH + MgATP→ Protein-OPO3− + MgADP + H+.

The EGFR tyrosine phosphorylation is impaired by tyrosine kinase inhibitors (TKIs),
such as gefitinib or osimertinib [4], which impair ATP binding to the RTK. The EGFR is an
oncogene in lung cancer that is frequently mutated increasing protein kinase activity [5].
Lung cancer patients with EGFR mutations can be treated with gefitinib or osimertinib.
HER2 is an orphan receptor with no known ligands; however, it forms heterodimers
with the EGFR stimulating its protein kinase domain [6]. HER2 is inhibited by the TKI
lapatinib or the monoclonal antibody (mAb) trastuzumab (Herceptin) [7–9]. Breast cancer
patients with HER2 overexpression are often treated with Herceptin. HER3 is activated
by neuregulin-1 or -2; however, HER3 has weak protein kinase activity [10]. HER3 protein
kinase activity is increased when it forms heterodimers with HER2 or other ErbB RTK
members [11]. While the EGFR, HER2, and HER3 stimulate cancer proliferation, the role of
HER4 is more complex. HER4 has four splice variants that can stimulate or inhibit cancer
growth [12,13]. HER4 is stimulated by neuregulins-1, -2, -3, or -4 [1] but inhibited by TKIs,
such as ibrutinib or mAbs [14,15]. RTKs are impaired by TKIs and mAbs, which reduce
tyrosine phosphorylation.

G-protein-coupled receptors (GPCRs) are proteins of moderate size (approximately
400 amino acids), which are embedded in the plasma membrane [16]. While RTKs cross
the plasma membrane once, the GPCRs have seven transmembrane domains. GPCRs
have an extracellular NH2 terminal and an intracellular C-terminal. In addition, there
are three extracellular loops that can interact with ligands and three intracellular loops
that can interact with G proteins. The GPCRs alter signal transduction. Peptides such
as vasoactive intestinal peptide increase cAMP after interacting with the G protein Gs,
which is composed of Gas and Gbg subunits [17]. The Gas subunit stimulates adenylyl
cyclase, causing the metabolism of ATP to cycle AMP, which activates protein kinase
A, causing serine and threonine phosphorylation of protein substrates. The bg subunits
activate phosphatidylinositol-3-kinase and SRC [18]. Lung cancer growth is increased by
VIP and decreased by the antagonist VIPhybrid [19]. VPAC1 is a class B secretin-like GPCR,
whereas the peptide neurotensin (NTS) binds to class A rhodopsin-like GPCR. NTSR1
interacts with Gaq, which stimulates phospholipase C [20], changing the metabolism of
phosphatidylinositol-4,5-bisphosphate into inositol tris-phosphate, which elevates cytosolic
Ca2+ [21]. Another phospholipase C product is diacylglycerol, which activates protein
kinase C [22]. Adding NTS to lung cancer cells stimulates their proliferation, which is
impaired by SR48692 [23]. GPCRs are inhibited by antagonists, which block ligand binding.

GPCRs regulate the tyrosine phosphorylation of the EGFR and other ErbB RTKs via
transactivation [24]. Transactivation can occur through a ligand-dependent or ligand-
independent process [25]. In the ligand-dependent pathway, NTS increased the metabolism
of precursor proteins, resulting in the shedding of TGFa from the plasma membrane into
the extracellular fluids where it binds to the EGFR. After dimerization, the phosphorylation
of the EGFR at tyrosine1068 activates ERK, causing increased proliferation [26]. In the ligand-
independent pathway, SRC is activated, causing EGFR phosphorylation at tyrosine845 [27].
Both pathways are very fast, and the EGFR is phosphorylated within 1 min after ligand
addition. The tyrosine phosphorylation is transient, and within 1 h, phosphatase enzymes
remove phosphate from the EGFR. Reactive oxygen species (ROS) are required for transacti-
vation [28]. GPCRs stimulate NADPH oxidase, which produces ROS [29]. NTSR1 regulates
the transactivation of the EGFR, HER2, and HER3, which is inhibited by GM60001 (matrix
metalloprotease inhibitor), PP2 (SRC inhibitor), and N-acetylcysteine (antioxidant) [30–32].
Transactivation is an important way in which GPCRs and RTKs regulate cancer growth.
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2. RTKs

Figure 1 shows that the ErbBRs have an extracellular N-terminal domain with a ligand
binding site, followed by a single transmembrane domain and a C-terminal intracellular
domain with protein kinase activity [1]. The N-terminal contains approximately 640 amino
acids. The extracellular EGFR is divided into domains I and III, which bind growth factors
and are enriched in leucine amino acids, whereas domains II and IV are enriched in cysteine
amino acids. Domain II is important in forming ErbBR homodimers and heterodimers. The
extracellular domain is followed by a transmembrane domain of approximately 23 amino
acids and an intracellular domain of approximately 550 amino acids. The intracellular
domain contains a juxtamembrane segment, protein kinase domain, and C-terminal that
has tyrosine amino acids, which can be phosphorylated. In contrast, GPCRs such as NTSR1
alter signal transduction (Figure 1).
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Figure 1. GPCR and RTK signal transduction. (A) GPCRs such as NTSR1 interact with Gq, increasing
phospholipase (PL)C activity, resulting in the metabolism of phosphatidylinositol bisphosphosphate
(PIP2). The resulting inositol-3-phosphate (IP3) releases calcium (Ca2+) from the endoplasmic retic-
ulum (ER), whereas the diacylglycerol (DAG) increases protein kinase (PK)C activity. (B) Near
the N-terminal, the EGFR has extracellular domains I and III, which participate in ligand binding,
whereas domain II participates in dimerization. Increased protein kinase (PK) activity leads to
phosphorylation of tyrosine amino acids near the RTK C-terminal, resulting in the phosphorylation
of ERK and/or AKT.

Growth factors bind to the EGFR, HER3, and HER4 [33]. Growth factors for the EGFR
include amphiregulin, betacellulin, epidermal growth factor, epigen, epiregulin, heparin
binding epidermal growth factor, and TGFα. The growth factors are synthesized as pre-
cursor proteins that have a single transmembrane domain. Figure 2 shows that TGFα is
synthesized as a 160-amino-acid precursor protein. Removal of the N-terminal 23 amino
acids through a signal protease generates pro-TGFα, which contains a transmembrane
domain and is metabolized by enzymes to a soluble 50-amino-acid form, which binds the
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EGFR with high affinity [34]. The EGFR ligands are enriched in cysteine amino acids and
contain three disulfide bonds. Ligands for HER3 include neregulin-1 and -2. Figure 2
shows that the N-terminal 19 amino acids of preproneuregulin-1 are removed by a sig-
nal protease. Proneuregulin-1 is metabolized by β-secretase to a soluble 222-amino-acid
form [35]. Neuregulin-1 contains an IgG-like domain and EGF-like domain, which binds
with high affinity to HER3 and HER4. Neuregulin-1 can undergo alternative splicing to 6
different proteins and 31 isoforms. In lung cancer patients, 1% have neuregulin-1 fused
to CD44 [36]. Growth factors for HER4 include neuregulin-1, -2, -3, and -4, epiregulin,
HB-EGF, and betacellulin. The following sub-sections discuss the activation of the EGFR,
HER2, HER3, and HER4.
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Figure 2. Growth factors. (A). TGF alpha is derived from a 160-amino-acid precursor protein. After
removal of the pre- (N-terminal signal peptide), pro-TGFα contains TGFα, a transmembrane (TM)
domain, and a cytosolic domain. (B) NTS is derived from a 170-amino-acid precursor protein. After
removal of the N-terminal signal peptide, pro-NTS contains a cytosolic domain, neuromedin N
(NN), and NTS. (C) Neuregulin-1 (NRG1) is derived from a 640-amino-acid precursor protein. After
removal of the signal peptide, pro–NRG1 contains an immunoglobulin (IgG)-like domain, an EGF-like
domain, a TM domain, and a cytosolic domain.

2.1. EGFR

The EGFR is important in the development of normal mammals. Null mutations of
the EGFR in mice result in embryonic lethality [37]. Knockout of the EGFR gene in mice
results in lung, gastrointestinal, and skin defects. The EGFR is overexpressed in many
cancers relative to normal tissues, including breast cancer, colorectal cancer, esophageal
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cancer, head and neck cancers, glioblastoma, and lung cancer [38–40]. Lung cancer kills
approximately 154,000 citizens in the U.S.A. and 2.1 million in the world annually [41].
It is associated with cigarette smoking and is treated traditionally with chemotherapy;
however, the 5-year survival rate is only 16% [41]. Most lung cancers are detected after
they have undergone metastasis from the lung to the brain, bone, pancreas, and/or liver.
Lung cancer comprises SCLC, a neuroendocrine tumor, and NSCLC, an epithelial tumor.
NSCLC is present in 80% of lung cancer patients, and adenocarcinoma of the lung is most
common. Recently, NSCLC patients benefited from treatment with immune checkpoint
inhibitors [42,43]. NSCLC cells have EGFR mutations in the protein kinase domain, and the
mutations occur in approximately 10% of Caucasian and 35% of Asian NSCLC patients [44].
If the tumor has L858R EGFR mutations or exon 19 deletions, lung cancer patients can be
treated with TKIs, erlotinib, or gefitinib. Unfortunately, after a year, the patients become
resistant to erlotinib or gefitinib due to further lung cancer mutations, such as T790M
EGFR [45]. Osimertinib is an irreversible EGFR TKI that is used to treat patients with
T790M mutations. Osimertinib interacts with cysteine797, impairing ATP binding [46].
Unfortunately, resistance to osimertinib occurs with further C797S EGFR mutations. There
is a need to develop additional TKIs for NSCLC patients with new EGFR mutations.
Glioblastoma has deletions in the EGFR extracellular domain (EGFRvIII) [47]; however,
patients with GBM respond to temozolomide (chemotherapeutic) but not TKIs.

The EGFR contains 1210 amino acids, and extracellular domains I and III bind TGFα
with high affinity (Figure 1). When ATP is metabolized to ADP, an amino acid with a
hydroxyl group, e.g., tyrosine, is phosphorylated [4]. After growth factor binding, the
EGFR changes from a tethered to extended conformation. Extracellular domain II facilitates
the forming of EGFR homodimers or heterodimers [1]. The extended EGFR conformation
has elevated protein kinase activity, increasing to the phosphorylation of phospholipase C
and STAT. Phospholipase C alters phosphatidylinositol turnover, whereas STATs dimerize
and alter gene transcription in the nucleus [48]. The EGFR can be phosphorylated at
10 different tyrosine amino acids such as tyrosine1068, leading to the activation of ERK.
Phosphorylated ERK enters the nucleus and alters gene expression, leading to increased
cellular proliferation. The lung cancer EGFR can be treated with TKIs. In addition, the
mAbs cetuximab and necitumumab prevent ligand binding to the EGFR [4]. Cetuximab is
used to treat certain types of colon cancer, whereas necitumumab is used to treat certain
types of lung cancer.

2.2. HER2

HER2 is important in the development of the heart, and HER2 knockout mice develop
dilated cardiomyopathy [49]. HER2 is overexpressed or amplified in breast cancer and
ovarian cancer [50]. Breast cancer is diagnosed in 234,000 American women each year
and 2.1 M in the world [1]. Because breast cancer is often detected early before tumor
metastasis, there are numerous therapies for breast cancer, and the 5-year survival rate is
approximately 90%. Treatments include surgical resection, trastuzumab (mAb) for patients
with overexpressed HER2, docetaxel (chemotherapeutic), and lapatinib (TKI) [51]. If the
breast cancer cells express estrogen receptors or progesterone receptors, the patients can
be treated with tamoxifen. It is difficult to treat triple-negative breast cancer patients due
to the lack of HER2, progesterone receptors, and estrogen receptors. HER2 is mutated in
approximately 2% of breast cancer patients. Mutations can occur at codons 309 or 310 of
the extracellular domain [52]. G309A-HER2 mutations increase tumor formation due to
excessive formation EGFR/HER2 heterodimers.

HER2 (1255 amino acids) is larger than the EGFR, but it exists in an extended form. In
contrast, the EGFR exists in a tethered conformation where it can bind growth factors. After
binding, the EGFR changes to the extended form where domain II facilitates dimerization.
In HER2, there is no room for growth factors to bind between domains I and III. To increase
protein kinase activity, HER2 must form heterodimers with the EGFR, HER3, and/or
HER4 [53]. These heterodimers form through extracellular domain II interactions. HER2 is
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phosphorylated at eight tyrosine amino acids including tyrosine1248, activating the ERK
pathway, leading to increased cellular proliferation. Even though numerous therapies are
available for breast cancer patients, approximately 41,000 patients die annually from this
disease in the U.S.A. New therapies are needed for triple-negative breast cancer patients,
and the role of immune checkpoint inhibitors is being investigated.

2.3. HER3

Knockout of the HER3 gene results in embryonic lethality [54] and impaired devel-
opment of the ductal gland in the breast [55]. HER3 binds neuregulin-1 and -2; however,
it has weak protein kinase activity [56]. When it forms heterodimers with HER2, 11 tyro-
sine amino acids near the C-terminal of HER3 can be phosphorylated, and tyrosine1289

causes phosphorylation of phosphatidylinositol-3-kinase [57]. HER3 (1342 amino acids)
is overexpressed in many cancers, especially NSCLC [58]. HER3 expression is associated
with increased tumor angiogenesis and metastasis. Patients whose tumors express HER3
have a 1.6-fold higher death risk than patients who are HER3-negative [59]. The G284R-
HER3 mutation increases the growth of cancer cells that express HER2 [60]. Numerous
mAbs have been made against HER3. Seribantumab blocks neuregulin-1 binding to HER3
and increases the survival of patients with high neuregulin-1 levels [61]. Patritumab in-
hibits HER3 growth factor binding and is being tested with erlotinib to treat patients with
advanced NSCLC [62]. Numerous HER3 mAbs are being developed for cancer treatment.

HER3 expression confers resistance to many therapeutic agents [63]. NSCLC patients
who become resistant to TKIs have increased HER2/HER3 dimerization [64]. In breast
cancer, tumor resistance to trastuzumab is driven by HER3 bypass signaling [65]. Patients
with HER2/HER3 heterodimers are resistant to camptothecin, etoposide, and paclitaxel [66].
Because cancers often have multiple ErbB family members, Pan-HER strategies have been
developed for treatment. Pan-HER (Sym013) is a mixture of six antibodies targeting EGFR,
HER2, and HER3 [67]. Unfortunately, a clinical trial failed using Pan-HER due to excessive
drug toxicity. Other studies are in progress using combination inhibitors for the EGFR,
HER2, and HER3 [68].

2.4. HER4

HER4 has both growth stimulatory and growth inhibitory properties, whereas the
EGFR, HER3, and HER2 stimulate cancer growth [69]. HER4 expression is downregulated
in some aggressive tumors [70]. HER4 is essential in normal development and HER4-null
mice die from defective heart development [71]. HER4 has a ligand binding site and protein
kinase activity. Neuregulin-1 -2, -3, and -4 are ligands for HER4. Abnormal neuregulin-1
signaling is associated with schizophrenia [72]. HER4 (1308 amino acids) has 18 tyrosine
amino acids, which can be phosphorylated, and phospho-tyrosine1284 activates the ERK
pathway. Ibrutinib binds irreversibly to cysteine803 of HER4, blocking ATP binding and
reducing the growth of lung cancer cells enriched with WNT5A [14]. Other TKIs for HER4
include afatinib, dacomitinib, and neratinib [73]. An advantage of afatinib, dacomitinib,
and neratinib is that they block the EGFR and HER2, in addition to HER4.

HER4 but not the EGFR, HER2, or HER3 undergoes alternative splicing. An ex-
tracellular splicing site generates JMa or JMb [74]. An intracellular alternative splicing
site generates Cyt1 or Cyt2 [75]. When HER4 binds neuregulin-1, tumor necrosis-alpha
converting enzyme (TACE) is activated, metabolizing JMa but not JMb [76]. Cyt2 lacks
HER41046–1061 and cannot activate phosphatidylinositol-3-kinase, whereas Cyt1 can in-
crease cell survival [77]. JMa-Cyt1 and JMa-Cyt2 are metabolized by γ-secretase to soluble
intracellular domains, which activates STAT5, altering gene expression. Depending on
how HER4 is metabolized, it can inhibit the proliferation of certain breast cancer cells or
stimulate growth [78]. HER4 function results from a signal input layer (growth factors), a
signal transformation layer (protein kinase), and intracellular pathways, including ERK,
AKT, and STAT.
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3. GPCRs

GPCRs contain an extracellular N-terminal of approximately 100 amino acids, 7 trans-
membrane domains each of about 20 amino acids, and a C-terminal of approximately
100 amino acids, which are intracellular [79]. There are three extracellular (EC) loops, which
can participate in ligand binding, and three intracellular (IC) loops, which can participate
in G-protein interactions. When an agonist binds the GPCR, an outward movement of
transmembrane V and VI occurs, creating a cavity of the cytosolic side in which the G pro-
tein docks [80]. Figure 3A shows that when NTS binds to NTSR1, Gq binds GTP. The GPCR
undergoes a conformation change, and Gαq dissociates from Gβγ (Figure 3B). When NTS
binds to NTSR1, Gαq is activated, causing phosphatidylinositol turnover within seconds.
The NTSR1 causes transactivation of the EGFR within minutes. Figure 3C shows that GPCR
signaling is desensitized after G-protein kinases phosphorylate NTSR1 [81]. Subsequently,
P-NTSR1 forms a complex with β-Arrestin, causing signal termination [82] (Figure 3D). The
GPCR is packaged into the endosome where it can be recycled to the plasma membrane or
degraded in the lysosome [83].
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Gq dissociates to Gαq + Gβγ. (C) NTSR1 is serine phosphorylated by GRK. (D) β-Arrestin (Arr)
recognizes the phosphorylated NTSR1 causing ligand dissociation.

The 13-amino-acid NTS is derived from a precursor protein (170 amino acids). Figure 2
shows that the signal peptide at the N-terminal is removed, resulting in a 147-amino-acid-
long fragment NTS (LF-NTS) [84]. Pro-NTS or LF-NTS, which is present in cancer patient
sera, is neutralized by mAb. LF-NTS activates NTSR1 and increases P-EGFR, P-HER2,
and P-HER3. LF-NTS mAb reduces lung cancer proliferation and increased sensitivity to
chemotherapy [85]. Prohormone convertases metabolize proNTS to neuromedin N (NN)
or NTS, which binds to NTSR1. Upon release from brain neurons, NTS has significant
interaction with the dopaminergic system and causes luteinizing hormone and prolactin
release from the normal pituitary [86]. NTS binds with high affinity to NTSR1 and NTSR2,
which interact with Gαq and cause PIP2 turnover [87]. NTSR1 contains 418 amino acids.
The C-terminal of NTS (NTS8–13) is essential for high-affinity binding to NTSR1, and
SR48692 is a small-molecule antagonist [88]. The structure of NTSR1 has been determined,
and NTS8–13 localizes to the top of a binding pocket and interacts with transmembrane
domains 6 and 7 as well as extracellular loops 2 and 3. SR48692 binds deep into the binding
pocket and prevents NTS8–13 from binding with high affinity [88].
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NTSR1 mRNA is present in lung cancer cells but not NTSR2 mRNA. Adding NTS
to lung cancer cells increases phosphatidylinositol–bisphosphate metabolism as well as
Rho GTPase, NFκB, and ERK activity. The phosphorylated ERK increases the expression
of the nuclear oncogenes c-fos and c-jun, leading to increased proliferation [89]. Adding
NTS to lung cancer cells increases WNT signaling, leading to epithelial to mesenchymal
transitions [90]. NTS stimulates the growth of numerous cancers [91]. NTS and NTSR1
immunoreactivity are present in 60% of lung adenocarcinoma tumor specimens [92]. Lung
cancer patients with high NTSR1 have decreased relapse-free survival than patients with
low NTSR1. High NTSR1 expression results in poor prognosis of patients with ductal
breast cancer, prostate cancer, or head and neck squamous carcinoma [93,94]. Gefitinib or
SR48692 inhibits the growth of lung cancer cells [30]. Gefitininb synergizes with SR48692 at
inhibiting lung cancer proliferation. Similarly, lapatinib inhibits the growth of lung cancer
cells and is potentiated by SR48692 [31]. The results indicate that the action of TKIs can be
potentiated by GPCR antagonists.

4. Transactivation

Transactivation occurs in discrete domains of the plasma membrane, termed lipid
rafts. Lipid rafts contain cholesterol, glycolipids, and myelin derivatives and form domains
containing GPCRs and RTKs [95]. The ability of NTSR1 to transactivate the EGFR occurs
within minutes. After EGFR phosphorylation, it localizes to clathrin-coated pits and is
internalized by coated vesicles [96]. The GPCR is in close proximity to the RTK in the
lipid rafts [97]. After transport to endosomes, the EGFR can be degraded in lysosomes or
recycled to the plasma membrane [98].

Adding NTS to NSCLC cells causes the release of TGFα, leading to increases in phos-
phorylation of tyrosine1068 of the EGFR [30]. NTSR1 regulates EGFR transactivation in
several cancer cells [99–101]. Adding NTSR1 siRNA to NSCLC cells impairs phosphoryla-
tion of tyrosine1068-EGFR [30]. Table 1 shows that NTSR1 regulates EGFR transactivation
in gastric, head and neck, neuroendocrine, NSCLC, and prostate cancer cells. Transacti-
vation is enhanced by MMP and ROS but inhibited by TKI or SR48692. NTSR1 regulates
transactivation of HER2 and HER3 in NSCLC cells, leading to ERK and AKT activation,
increasing cancer growth and survival.

Table 1. Mediated transactivation.

RTK Activated Mechanism Cancer Type Reference

EGFR MMP Head and neck cancer [93]
EGFR Arachidonic acid release Prostate cancer [94]
EGFR TKI inhibit Neuroendocrine [100]
EGFR β–χατενιν Gastric [99]
EGFR ERK NSCLC [30]
HER2 ROS NSCLC [31]
HER3 ERK + AKT NSCLC [32]

EGFR, HER2, HER3 TKI inhibit NSCLC [101]
The mechanism and cancer type is indicated for NTSR1 regulation of ErbB RTK transactivation.

Adding NTS to NSCLC cells increases ROS, which is inhibited by SR48692 or dipheny-
lene iodonium (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase
(NOX) and dual oxidase (DUOX) enzymes (Table 2). NOX enzymes catalyze the follow-
ing reaction:

NADPH + 2O2 → NADP+ + 2O2− + H+

Figure 4 shows that activated GPCRs increase NOX activity, which metabolizes oxygen
to superoxide. Extracellular superoxide is metabolized to hydrogen peroxide by superoxide
dismutase. Hydrogen peroxide enters the cytosol where it oxidizes cysteine amino acids in
protein tyrosine phosphatase, inhibiting its activity. Protein tyrosine phosphatase removes
the phosphate from tyrosine on RTKs; however, its activity is impaired by ROS. Adding NTS
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to NSCLC cells significantly increases phosphotyrosine1068-EGFR and phosphotyrosine1248-
HER2 and ROS by 355, 285, and 228%, respectively. Table 2 shows that the increase in ROS,
EGFR, and HER2 phosphorylation is impaired by SR48692 or DPI.

Table 2. Effect of ROS.

Addition % ROS % PY1068-EGFR %PY1248-HER2

None 100 + 7 100 + 8 100 + 6
NTS 228 + 9 ** 355 + 26 ** 285 + 19 **

NTS + DPI 117 + 15 112 + 6 107 + 7
NTS + SR48692 108 + 6 106 + 7 111 + 5

NCI-H838 cells were treated with 5 µM DPI or 5 µM SR48692 and 0.1 µM NTS added. The % ROS, PY1248-HER2
and PY1068-EGFR is indicated. The mean value ± S.D. of 4 determinations is shown; p > 0.01, ** by ANOVA.
NCI-H838 cells have mRNA for NOX1, NOX2, NOX3, NOX5, DUOX1 and DUOX2.
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It remains to be determined if NTS regulates the oxidation of cysteine amino acids in
Src homology-2 tyrosine phosphatase, resulting in reduced enzymatic activity [102]. Alter-
natively, NTS could oxidize cysteine797 of the EGFR, increasing protein kinase activity [103].
Because EGFR/HER2 heterodimers form, NTSR1 regulates the transactivation of HER2 in
an ROS-dependent manner [31]. Adding DPI to NSCLC cells impairs the ability of NTSR1
to regulate RTK transactivation.

While NTSR1 regulates EGFR, HER2, and HER3 transactivation, it is unknown if it af-
fects HER4. Adding bombesin (BB) to NSCLC cells increases phosphotyrosine1284HER4 sig-
nificantly [104]. BB binds to BB2Rs and is antagonized by PD176252 or BW2258U89. Adding
PD176252 or ibrutinib (TKI) impaired the ability of BB to increase phosphotyrosine1284-
HER4. Adding BB to NSCLC cells increases tyrosine phosphorylation of the EGFR, HER2,
and HER3 [105,106]. Additional research is needed on how GPCRs transactivate HER4 in
cancer cells.

Many GPCRs cause transactivation of the ErbB RTKs. Adding vasoactive intestinal
peptide to breast cancer cells stimulates EGFR and HER2 tyrosine phosphorylation [107].
VIP interacts with VPAC1 in breast cancer cells, activating Gs. Adding pituitary adenylate
cyclase-activating polypeptide (PACAP) to NSCLC cells stimulates EGFR, HER2, and
HER3 tyrosine phosphorylation [108–110]. PACAP interacts with PAC1 in lung cancer
cells, activating Gs and Gq. GPCRs cause transactivation of RTKs, other than those of
the ErbB family. Adding WKYMVm to cells causes tyrosine phosphorylation of the HGF
receptor [111]. In addition, the formyl peptide receptor 1 regulates transactivation of the
TrkA and VEGFR2 [112,113]. GPRCRs regulate the phosphorylation of numerous RTKs.
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5. Discussion

The transactivation process links GPCRs with RTKs. When a GPCR agonist such as
NTS binds to NTSR1, signal transduction occurs through Gαq, causing phosphatidylinositol
turnover. SRC and MMP are activated, releasing growth factors. When TGFα binds to the
EGFR, homodimers or heterodimers form with other RTKs, such as HER2, HER3, and HER4.
Adding NTS to NSCLC cells increases tyrosine phosphorylation of protein substrates, such
as phosphatidylinositol-3-kinase and tyrosine amino acids, near the C-terminal of the EGFR.
The transactivation process occurs rapidly after adding NTS to cancer cells, and when
tyrosine1068 of the EGFR is phosphorylated, the MEK/ERK pathway is activated, leading
to increased cancer cellular proliferation. Adding NTS to certain NSCLC cells increases
phosphotyrosine1248HER2 and phosphotyrosine1289HER3, leading to the activation of ERK
and phosphatidylinositol-3-kinase. The transactivation process is impaired by MMP and
SRC inhibitors, such as GM6001 or PP2; however, these agents inhibit signal transduction
in normal cells as well as cancer cells.

Because GPCRs and ErbB RTK are overexpressed in cancer relative to normal cells,
they can serve as molecular targets for diagnosis and treatment. It will be important to
determine which GPCRs and ErbB RTKs are enriched in a patient’s tumor relative to normal
cells. If NTSR1 is overexpressed, SR48692 may be used to treat the patient. If the EGFR
is mutated, osimertinib may be used to treat the patient. If both NTSR1 and EGFR are
enriched in the tumor cells, SR48692 and osimertinib may be used.

The transactivation of RTKs by GPCRs in cancer occurs in an ROS-dependent man-
ner. Oxidative stress is important in carcinogenesis and cancer progression [114]. NOX
metabolizes extracellular oxygen to superoxide, which is then metabolized to hydrogen
peroxide by superoxide dismutase [115]. ROS can oxidize nucleic acids, lipids, glucose,
and proteins, such as the EGFR or protein tyrosine phosphatase [116]. The net result is that
NTS increases tyrosine phosphorylation of ErbB RTKs. NOX2 is inhibited by DPI and the
related analog ebselen [117]. Nox2ds-tat is a peptide that inhibits the assembly of NOX2
subunits, reducing the ability of GPCR agonists to produce superoxide [118]. The NOX2
inhibitors reduce the growth of cancer cells in vitro; however, it remains to be determined
if they will be effective at inhibiting tumor growth in vivo. One goal is to synthesize new
NOX2 inhibitors, which are selective for cancer but not normal cells.

6. Conclusions

NTSR1 regulates transactivation of the EGFR, HER2, and HER3 in NSCLC cells. The
growth of these cells is impaired by TKIs and NTSR1 antagonists. Gefitinib and SR48692
are synergistic at inhibiting NSCLC growth and RTK transactivation in vitro. It remains to
be determined if TKIs and GPCR antagonists are synergistic at inhibiting NSCLC growth
in vivo.
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