Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,149)

Search Parameters:
Keywords = GOS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3771 KiB  
Article
Enhancing Sustainable Mobility Through Gamified Challenges: Evidence from a School-Based Intervention
by Martina Vacondio, Federica Gini, Simone Bassanelli and Annapaola Marconi
Sustainability 2025, 17(14), 6586; https://doi.org/10.3390/su17146586 - 18 Jul 2025
Abstract
Promoting behavioral change in mobility is essential for sustainable urban development. This study evaluates the effectiveness of gamified challenges in fostering sustainable travel behaviors among high school students and teachers within the High School Challenge (HSC) 2024 campaign in Lecco, Italy. Over a [...] Read more.
Promoting behavioral change in mobility is essential for sustainable urban development. This study evaluates the effectiveness of gamified challenges in fostering sustainable travel behaviors among high school students and teachers within the High School Challenge (HSC) 2024 campaign in Lecco, Italy. Over a 13-week period, participants tracked their commuting habits via gamified mobile application, Play&Go , that awarded points for sustainable mobility choices and introduced weekly challenges. Using behavioral (GPS-based tracking) and self-report data, we assessed the influence of challenge types, player characteristics (HEXAD Player Types, Big Five traits), and user experience evaluations on participation, retention, and behavior change. The results show that challenges, particularly those based on walking distances and framed as intra-team goals, significantly enhanced user engagement and contributed to improved mobility behaviors during participants’ free time. Compared to the 2023 edition without challenges, the 2024 campaign achieved better retention. HEXAD Player Types were more predictive of user appreciation than Personality Traits, though these effects were more evident in subjective evaluations than actual behavior. Overall, findings highlight the importance of tailoring gamified interventions to users’ motivational profiles and structuring challenges around SMART principles. This study contributes to the design of behaviorally informed, scalable solutions for sustainable mobility transitions. Full article
13 pages, 1464 KiB  
Article
Transcriptomic Profiling Reveals Gene Expression Changes in Mouse Liver Tissue During Alveolar Echinococcosis
by Xiongying Zhang, Qing Zhang, Na Liu, Jia Liu, Huixia Cai, Cunzhe Zhao, Kemei Shi, Wen Lei, Wanli Ma, Shuai Guo, Wei Wang, Xiao Ma and Mei Wang
Genes 2025, 16(7), 839; https://doi.org/10.3390/genes16070839 - 18 Jul 2025
Abstract
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, [...] Read more.
Background/Objectives: Alveolar echinococcosis (AE), caused by Echinococcus multilocularis larvae, poses a significant global health concern. Primarily affecting regions in the northern hemisphere, such as northwest China, which are vital for animal husbandry, it often results in severe hepatic impairment in the host. However, there remains a dearth of knowledge concerning changes in gene expression profiles during the progression of AE. In this study, we employed transcriptome sequencing (RNA sequencing, RNA-Seq) to detect alterations in gene expression profiles in the liver tissues of mice with AE. Our aims were to understand the transcriptome differences in the liver during E. multilocularis infection and to explore the molecular mechanisms underlying the early progression of this disease. Methods: We established a mouse model of AE by intraperitoneally injecting protoscoleces of E. multilocularis. All the inoculated mice were randomly divided into four groups. Liver tissues were collected at 6, 12, 19, and 25 weeks after inoculation. Paired non-infected mouse-derived liver tissues were used as controls, and transcriptome sequencing was carried out. Results: A total of 629 differentially expressed genes (DEGs) were identified. Among them, 370 genes were upregulated and 259 genes were downregulated. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that these DEGs were significantly associated with immune system modulation, the cell cycle, and the fibrosis process during the pathological changes. Additionally, weighted gene co-expression network analysis (WGCNA) identified several genes, including CCNA2, BIRC5, KIF2C, OTC, TLR2, and NCKAP1L. These hub genes involved in immunoinflammatory processes may be related to E. multilocularis larvae infection. Conclusions: The findings of this research provide a theoretical foundation for a more in-depth understanding of the molecular mechanisms of AE. They offer valuable insights into the molecular mechanisms and potential key factors involved in the pathogenesis of this disease. Full article
13 pages, 1279 KiB  
Article
Transcriptome Sequencing-Based Analysis of Premature Fruiting in Amomum villosum Lour.
by Yating Zhu, Shuang Li, Hongyou Zhao, Qianxia Li, Yanfang Wang, Chunyong Yang, Ge Li, Yanqian Wang and Lixia Zhang
Biology 2025, 14(7), 883; https://doi.org/10.3390/biology14070883 - 18 Jul 2025
Abstract
Amomum villosum Lour., a perennial medicinal plant in the Zingiber genus, usually requires approximately 3–4 years of vegetative growth from seed germination to first fruiting, resulting in high initial investment costs and a prolonged revenue cycle, which pose significant challenges to the industry’s [...] Read more.
Amomum villosum Lour., a perennial medicinal plant in the Zingiber genus, usually requires approximately 3–4 years of vegetative growth from seed germination to first fruiting, resulting in high initial investment costs and a prolonged revenue cycle, which pose significant challenges to the industry’s sustainable development. Our research team observed a distinct premature fruiting phenomenon in A. villosum. We investigated the regulatory mechanisms underlying premature fruiting in A. villosum by identifying the key differentially expressed genes (DEGs) and metabolic pathways governing the premature fruiting (Precocious) and typical plants (CK) of the ‘Yunsha No.8’ cultivar. Transcriptomic sequencing (RNA-seq) and bioinformatic analyses were performed using the DNBSEQTM platform. The sequencing generated 29.0 gigabases (Gb) of clean data, and 115,965 unigenes were identified, with an average length of 1368 bp. Based on the sequencing results, 1545 DEGs were identified. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were annotated for these DEGs. This study identifies phytohormone signaling, carbohydrate and lipid metabolism, and polysaccharide degradation as critical pathways controlling premature fruiting in A. villosum. Six randomly selected DEGs were validated using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), and the results corroborated the transcriptome data, confirming their reliability. This study lays the foundation for the elucidation of the molecular mechanisms and metabolic pathways driving premature fruiting in A. villosum. Full article
(This article belongs to the Special Issue Young Investigators in Biochemistry and Molecular Biology)
Show Figures

Figure 1

26 pages, 1122 KiB  
Article
Gene Expression Analysis of HPRT-Deficient Cells Maintained with Physiological Levels of Folic Acid
by Rosa J. Torres, Gerard Valentines-Casas, Claudia Cano-Estrada, Neus Ontiveros and José M. López
Cells 2025, 14(14), 1105; https://doi.org/10.3390/cells14141105 - 18 Jul 2025
Abstract
Lesch–Nyhan disease (LND) is associated with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity due to mutations in the HPRT1 gene. Although the physiopathology of LND-related neurological manifestations remains unknown, a defective neuronal developmental process is the most widely accepted hypothesis. We generated [...] Read more.
Lesch–Nyhan disease (LND) is associated with a complete deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) activity due to mutations in the HPRT1 gene. Although the physiopathology of LND-related neurological manifestations remains unknown, a defective neuronal developmental process is the most widely accepted hypothesis. We generated an HPRT-deficient line from the pluripotent human embryonic cell line NT2/D1 by CRISPR-Cas9 and induced its differentiation along neuroectodermal lineages by retinoic acid treatment. As levels of folic acid in the culture media may affect results in LND models, we employed physiological levels of folate. The effect of HPRT deficiency on neural development-related gene expression was evaluated using two methodological approaches: a directed qPCR array of genes related to neuronal differentiation, and global gene expression by RNAseq. HPRT-deficient pluripotent cells presented altered expression of genes related to pluripotency in human embryonic stem cells, such as DPPA3 and CFAP95, along with genes of the homeobox gene family. HPRT-deficient pluripotent cells were able to differentiate along neuro-ectodermal lineages but presented consistent dysregulation of several genes from the homeobox gene family, including EN1 and LMX1A. GO enrichment analysis of up- and downregulated genes in HPRT-deficient cells showed that the most significant biological processes affected are related to development and nervous system development. Full article
Show Figures

Figure 1

32 pages, 8548 KiB  
Article
A Comprehensive Study of the Macro-Scale Performance of Graphene Oxide Enhanced Low Carbon Concrete
by Thusitha Ginigaddara, Pasadi Devapura, Vanissorn Vimonsatit, Michael Booy, Priyan Mendis and Rish Satsangi
Constr. Mater. 2025, 5(3), 47; https://doi.org/10.3390/constrmater5030047 - 18 Jul 2025
Abstract
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and [...] Read more.
This study presents a detailed and comprehensive investigation into the macro-scale performance, strength gain mechanisms, environment and economic performance of graphene oxide (GO)-enhanced low-emission concrete. A comprehensive experimental program evaluated fresh and hardened properties, including slump retention, bleeding, air content, compressive, flexural, and tensile strength, drying shrinkage, and elastic modulus. Scanning Electron Microscopy (SEM), energy-dispersive spectroscopy (EDS), Thermogravimetric analysis (TGA) and proton nuclear magnetic resonance (1H-NMR) was employed to examine microstructural evolution and early age water retention, confirming GO’s role in accelerating cement hydration and promoting C-S-H formation. Optimal performance was achieved at 0.05% GO (by binder weight), resulting in a 25% increase in 28-day compressive strength without compromising workability. This outcome is attributed to a tailored, non-invasive mixing strategy, wherein GO was pre-dispersed during synthesis and subsequently blended without the use of invasive mixing methods such as high shear mixing or ultrasonication. Fourier-transform infrared (FTIR) spectroscopy further validated the chemical compatibility of GO and PCE and confirmed the compatibility and efficiency of the admixture. Sustainability metrics, including embodied carbon and strength-normalized cost indices (USD/MPa), indicated that, although GO increased material cost, the overall cost-performance ratio remained competitive at breakeven GO prices. Enhanced efficiency also led to lower net embodied CO2 emissions. By integrating mechanical, microstructural, and environmental analyses, this study demonstrates GO’s multifunctional benefits and provides a robust basis for its industrial implementation in sustainable infrastructure. Full article
Show Figures

Figure 1

16 pages, 3619 KiB  
Article
Crebanine Induces Cell Death and Alters the Mitotic Process in Renal Cell Carcinoma In Vitro
by Hung-Jen Shih, Hsuan-Chih Hsu, Chien-Te Liu, Ya-Chuan Chang, Chia-Ying Yu and Wen-Wei Sung
Int. J. Mol. Sci. 2025, 26(14), 6896; https://doi.org/10.3390/ijms26146896 - 18 Jul 2025
Abstract
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, [...] Read more.
Advanced renal cell carcinoma (RCC) has a poor prognosis; this drives the exploration of alternative systemic therapies to identify more effective treatment options. Recent research has revealed that crebanine, an alkaloid derivative of the Stephania genus, induces apoptotic effects in various cancers; however, a thorough investigation of the role of crebanine in RCC has not been conducted thus far. For this study, we evaluated tumor cell viability, clonogenicity, cell-cycle distributions, morphological changes, and cell mortality with the aim of exploring the antitumor effects of crebanine in RCC. Furthermore, we compared gene and protein expressions using RNA sequencing analysis and Western blotting. The findings indicated that crebanine significantly inhibited RCC colonies and caused G1-phase cell-cycle arrest with sub-G1-phase accumulation, thus leading to suppressed cell proliferation and cell death. In addition, Hoechst 33342 staining was used to observe apoptotic cells, which revealed chromatin condensation and a reduction in the nuclear volume associated with apoptosis. Further, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that differentially expressed genes are involved in the initiation of DNA replication, centrosome duplication, chromosome congression, and mitotic processes in the cell cycle along with signaling pathways, such as I-kappaB kinase/NF-kappaB signaling, Hippo signaling, and intrinsic apoptotic pathways. Consistent with GO and KEGG analyses, increased levels of cleaved caspase-3, cleaved caspase-7, and cleaved PARP, and decreased levels of cIAP1, BCL2, survivin, and claspin were observed. Finally, the expressions of G1/S phase transition cyclin D1, cyclin E/CDK2, and cyclin A2/CDK2 complexes were downregulated. Overall, these findings supported the potential of crebanine as an adjuvant therapy in RCC. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

15 pages, 3095 KiB  
Article
Effect of Silver/Reduced Graphene Oxide@Titanium Dioxide (Ag/rGO@TiO2) Nanocomposites on the Mechanical Characteristics and Biocompatibility of Poly(Styrene-co-Methyl Methacrylate)-Based Bone Cement
by Mohan Raj Krishnan, Reem M. Alshabib and Edreese H. Alsharaeh
Polymers 2025, 17(14), 1970; https://doi.org/10.3390/polym17141970 - 18 Jul 2025
Abstract
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement [...] Read more.
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) were evaluated using Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nano-indentation, and electron microscopy. FT-IR, XRD, and transmission electron microscopy results confirmed the successful synthesis of the nanocomposite and the nanocomposite-incorporated bone cement. The elastic modulus (E) and hardness (H) of the ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) bone cement were measured to be 5.09 GPa and 0.202 GPa, respectively, compared to the commercial counterparts, which exhibited E and H values of 1.7 GPa to 3.7 GPa and 0.174 GPa, respectively. Incorporating Ag/rGO@TiO2 nanocomposites significantly enhanced the thermal properties of the bone cement. Additionally, in vitro studies demonstrated that the bone cement was non-toxic to the MG63 cell line. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

19 pages, 2051 KiB  
Article
Urinary Extracellular Vesicle Signatures as Biomarkers in Prostate Cancer Patients
by Sigrun Lange, Darryl Ethan Bernstein, Nikolay Dimov, Srinivasu Puttaswamy, Ian Johnston, Igor Kraev, Sarah R. Needham, Nikhil Vasdev and Jameel M. Inal
Int. J. Mol. Sci. 2025, 26(14), 6895; https://doi.org/10.3390/ijms26146895 - 18 Jul 2025
Abstract
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study [...] Read more.
Urinary extracellular vesicles (U-EVs) are gaining increasing interest as non-invasive liquid biopsy tools for clinical use. Prostate cancer (PCa) is amongst the highest cancer-related cause of death in men, and therefore, the identification of non-invasive robust biomarkers is of high importance. This study assessed U-EV profiles from individuals affected by PCa at Gleason scores 6–9, compared with healthy controls. U-EVs were characterised and assessed for proteomic cargo content by LC-MS/MS analysis. The U-EV proteomes were compared for enrichment of gene ontology (GO), KEGG, and Reactome pathways, as well as disease–gene associations. U-EVs ranged in size from 50 to 350 nm, with the majority falling within the 100–200 nm size range for all groups. U-EV protein cargoes from the PCa groups differed significantly from healthy controls, with 16 protein hits unique to the GS 6–7 and 88 hits to the GS 8–9 U-EVs. Pathway analysis showed increased enrichment in the PCa U-EVs of biological process GO (5 and 37 unique to GS 6–7 and GS 8–9, respectively), molecular function GO (3 and 6 unique to GS 6–7 and GS 8–9, respectively), and cellular component GO (10 and 22 unique to GS 6–7 and GS 8–9, respectively) pathways. A similar increase was seen for KEGG pathways (11 unique to GS 8–9) and Reactome pathways (102 unique to GS 8–9). Enrichment of disease–gene associations was also increased in the PCa U-EVs, with highest differences for the GS 8–9 U-EVs (26 unique terms). The pathway enrichment in the PCa U-EVs was related to several key inflammatory, cell differentiation, cell adhesion, oestrogen signalling, and infection pathways. Unique GO and KEGG pathways enriched for the GS 8–9 U-EVs were associated with cell–cell communication, immune and stress responses, apoptosis, peptidase activity, antioxidant activity, platelet aggregation, mitosis, proteasome, mRNA stability oxytocin signalling, cardiomyopathy, and several neurodegenerative diseases. Our findings highlight U-EVs as biomarkers to inform disease pathways in prostate cancer patients and offer a non-invasive biomarker tool for clinical use. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Functions of Extracellular Vesicles)
Show Figures

Figure 1

18 pages, 5293 KiB  
Article
Fluorescent Moieties Through Alkaline Treatment of Graphene Oxide: A Potential Substitute to Replace CRM in wLEDS
by Maria Lucia Protopapa, Emiliano Burresi, Martino Palmisano and Emanuela Pesce
ChemEngineering 2025, 9(4), 73; https://doi.org/10.3390/chemengineering9040073 - 18 Jul 2025
Abstract
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as [...] Read more.
White-light-emitting diodes (wLEDs) are central to next-generation lighting technologies, yet their reliance on critical raw materials (CRMs), such as rare-earth elements, raises concerns regarding sustainability and supply security. In this work, we present a simple, low-cost method to produce photoluminescent carbon-based nanostructures—known as oxidative debris (OD)—via alkaline treatment of graphene oxide (GO) using KOH solutions ranging from 0.04 M to 1.78 M. The resulting OD, isolated from the supernatant after acid precipitation, exhibits strong and tunable photoluminescence (PL) across the visible spectrum. Emission peaks shift from blue (~440 nm) to green (~500 nm) and yellow (~565 nm) as a function of treatment conditions, with excitation wavelengths between 300 and 390 nm. Optical, morphological. and compositional analyses were performed using UV-Vis, AFM, FTIR, and Raman spectroscopy, confirming the presence of highly oxidized aromatic domains. The blue-emitting (S2) and green/yellow-emitting (R2) fractions were successfully separated and characterized, demonstrating potential color tuning by adjusting KOH concentration and treatment time. This study highlights the feasibility of reusing GO-derived byproducts as sustainable phosphor alternatives in wLEDs, reducing reliance on CRMs and aligning with green chemistry principles. Full article
Show Figures

Graphical abstract

13 pages, 1243 KiB  
Review
Evidence-Based Medicine: Past, Present, Future
by Filippos Triposkiadis and Dirk L. Brutsaert
J. Clin. Med. 2025, 14(14), 5094; https://doi.org/10.3390/jcm14145094 - 17 Jul 2025
Abstract
Early medical traditions include those of ancient Babylonia, China, Egypt, and India. The roots of modern Western medicine, however, go back to ancient Greece. During the Renaissance, physicians increasingly relied on observation and experimentation to understand the human body and develop new techniques [...] Read more.
Early medical traditions include those of ancient Babylonia, China, Egypt, and India. The roots of modern Western medicine, however, go back to ancient Greece. During the Renaissance, physicians increasingly relied on observation and experimentation to understand the human body and develop new techniques for diagnosis and treatment. The discovery of antibiotics, antiseptics, and other drugs in the 19th century accelerated the development of modern medicine, the latter being fueled further by advances in technology, research, a better understanding of the human body, and, most recently, the introduction of evidence-based medicine (EBM). The EBM model de-emphasized intuition, unsystematic clinical experience, and pathophysiologic rationale as sufficient grounds for clinical decision-making and stressed the examination of evidence from clinical research. A later EBM model additionally incorporated clinical expertise and the latest model of EBM patients’ preferences and actions. In this review article, we argue that in the era of precision medicine, major EBM principles must be based on (a) the systematic identification, analysis, and utility of big data using artificial intelligence; (b) the magnifying effect of medical interventions by means of the physician–patient interaction, the latter being guided by the physician’s expertise, intuition, and philosophical beliefs; and (c) the patient preferences, since, in healthcare under precision medicine, the patient will be a central stakeholder contributing data and actively participating in shared decision-making. Full article
(This article belongs to the Section Clinical Research Methods)
Show Figures

Figure 1

18 pages, 2644 KiB  
Article
Exploring the Potential of Extracellular Vesicles from Atlantic Cod (Gadus morhua L.) Serum and Mucus for Wound Healing In Vitro
by Stefania D’Alessio, Igor Kraev, Bergljót Magnadóttir and Sigrun Lange
Biology 2025, 14(7), 870; https://doi.org/10.3390/biology14070870 - 17 Jul 2025
Abstract
Novel therapeutic approaches for wound healing have included biomaterials from the Atlantic cod (Gadus morhua L.), with promising results in wound management. The use of extracellular vesicles (EVs), which can be isolated from cod biofluids, remains to be studied. EVs play key [...] Read more.
Novel therapeutic approaches for wound healing have included biomaterials from the Atlantic cod (Gadus morhua L.), with promising results in wound management. The use of extracellular vesicles (EVs), which can be isolated from cod biofluids, remains to be studied. EVs play key roles in cellular communication, and their use both as biomarkers and as therapeutic agents is widely reported in human pathologies, particularly with respect to mesenchymal stem cells. This pilot study characterized the total proteomic cargo content of EVs from cod serum and mucus and assessed the EVs’ potential for regenerative activity in wound-healing processes, using human and mouse fibroblast and keratinocyte in vitro scratch injury models. The pro-regenerative potential of both cod serum EVs and mucus EVs was identified, with differing capacities for accelerating wound closure in fibroblast and keratinocyte cells. This was further supported by varying effects of the cod serum EVs and mucus EVs on cellular vimentin and FGF-2 levels. The serum EV and mucus EV protein cargoes differed with respect to abundance of protein hits and associated enriched functional GO and KEGG pathways, but both were associated with immune, stress and wound-healing processes. Cod EVs may present as innovative therapeutic options for regenerative medicine applications, and our reported findings provide valuable insights for future in-depth studies. Full article
Show Figures

Figure 1

19 pages, 5755 KiB  
Article
A Context-Aware Doorway Alignment and Depth Estimation Algorithm for Assistive Wheelchairs
by Shanelle Tennekoon, Nushara Wedasingha, Anuradhi Welhenge, Nimsiri Abhayasinghe and Iain Murray
Computers 2025, 14(7), 284; https://doi.org/10.3390/computers14070284 - 17 Jul 2025
Abstract
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the [...] Read more.
Navigating through doorways remains a daily challenge for wheelchair users, often leading to frustration, collisions, or dependence on assistance. These challenges highlight a pressing need for intelligent doorway detection algorithm for assistive wheelchairs that go beyond traditional object detection. This study presents the algorithmic development of a lightweight, vision-based doorway detection and alignment module with contextual awareness. It integrates channel and spatial attention, semantic feature fusion, unsupervised depth estimation, and doorway alignment that offers real-time navigational guidance to the wheelchairs control system. The model achieved a mean average precision of 95.8% and a F1 score of 93%, while maintaining low computational demands suitable for future deployment on embedded systems. By eliminating the need for depth sensors and enabling contextual awareness, this study offers a robust solution to improve indoor mobility and deliver actionable feedback to support safe and independent doorway traversal for wheelchair users. Full article
(This article belongs to the Special Issue AI for Humans and Humans for AI (AI4HnH4AI))
Show Figures

Figure 1

8 pages, 1244 KiB  
Protocol
A Simple Way to Quantify Plastic in Bats (Mammalia: Chiroptera) Using an Ultraviolet Flashlight
by Letícia Lima Correia, Ariane de Sousa Brasil, Thiago Bernardi Vieira, Magali Gonçalves Garcia, Daniela de Melo e Silva, Ana Beatriz Alencastre-Santos and Danielle Regina Gomes Ribeiro-Brasil
Methods Protoc. 2025, 8(4), 80; https://doi.org/10.3390/mps8040080 - 17 Jul 2025
Abstract
Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, [...] Read more.
Bats, as key ecological players, interact with a diverse array of organisms and perform essential roles in ecosystems, including pollination, pest control, and seed dispersal. However, their populations face significant threats from habitat contamination, particularly from microplastics (MPs). This study introduces a novel, efficient, and cost-effective method for visualizing transparent microplastics using ultraviolet (UV) light. By employing handheld UV flashlights with a wavelength range of 312 to 400 nm, we enhance the detection of MPs that may otherwise go unnoticed due to color overlap with filtration membranes. All necessary precautions were taken during sampling and analysis to minimize the risk of contamination and ensure the reliability of the results. Our findings demonstrate that the application of UV light significantly improves the visualization and identification of MPs, particularly transparent fibers. This innovative approach contributes to our understanding of plastic contamination in bat habitats and underscores the importance of monitoring environmental pollutants to protect bat populations and maintain ecosystem health. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

18 pages, 5095 KiB  
Article
Fusarium Species Infecting Greenhouse-Grown Cannabis (Cannabis sativa) Plants Show Potential for Mycotoxin Production in Inoculated Inflorescences and from Natural Inoculum Sources
by Zamir K. Punja, Sheryl A. Tittlemier and Sean Walkowiak
J. Fungi 2025, 11(7), 528; https://doi.org/10.3390/jof11070528 - 16 Jul 2025
Viewed by 100
Abstract
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. [...] Read more.
Several species of Fusarium are reported to infect inflorescences of high-THC-containing cannabis (Cannabis sativa L.) plants grown in greenhouses in Canada. These include F. graminearum, F. sporotrichiodes, F. proliferatum, and, to a lesser extent, F. oxysporum and F. solani. The greatest concern surrounding the infection of cannabis by these Fusarium species, which cause symptoms of bud rot, is the potential for the accumulation of mycotoxins that may go undetected. In the present study, both naturally infected and artificially infected inflorescence tissues were tested for the presence of fungal-derived toxins using HPLC-MS/MS analysis. Naturally infected cannabis tissues were confirmed to be infected by both F. avenaceum and F. graminearum using PCR. Pure cultures of these two species and F. sporotrichiodes were inoculated onto detached inflorescences of two cannabis genotypes, and after 7 days, they were dried and assayed for mycotoxin presence. In these assays, all Fusarium species grew prolifically over the tissue surface. Tissues infected by F. graminearum contained 3-acetyl DON, DON, and zearalenone in the ranges of 0.13–0.40, 1.18–1.91, and 31.8 to 56.2 μg/g, respectively, depending on the cannabis genotype. In F. sporotrichiodes-infected samples, HT2 and T2 mycotoxins were present at 13.9 and 10.9 μg/g in one genotype and were lower in the other. In F. avenaceum-inoculated tissues, the mycotoxins enniatin A, enniatin A1, enniatin B, and enniatin B1 were produced at varying concentrations, depending on the isolate and cannabis genotype. Unexpectedly, these tissues also contained detectable levels of 3-acetyl DON, DON, and zearalenone, which was attributed to apre-existing natural infection by F. graminearum that was confirmed by RT-qPCR. Beauvericin was detected in tissues infected by F. avenaceum and F. sporotrichiodes, but not by F. graminearum. Naturally infected, dried inflorescences from which F. avenaceum was recovered contained beauvericin, enniatin A1, enniatin B, and enniatin B1 as expected. Uninoculated cannabis inflorescences were free of mycotoxins except for culmorin at 0.348 μg/g, reflecting pre-existing infection by F. graminearum. The mycotoxin levels were markedly different between the two cannabis genotypes, despite comparable mycelial colonization. Tall fescue plants growing in the vicinity of the greenhouse were shown to harbor F. avenaceum and F. graminearum, suggesting a likely external source of inoculum. Isolates of both species from tall fescue produced mycotoxins when inoculated onto cannabis inflorescences. These findings demonstrate that infection by F. graminearum and F. avenaceum, either from artificial inoculation or natural inoculum originating from tall fescue plants, can lead to mycotoxin accumulation in cannabis inflorescences. However, extensive mycelial colonization following prolonged incubation of infected tissues under high humidity conditions is required. Inoculations with Penicillium citrinum and Aspergillus ochraceus under these conditions produced no detectable mycotoxins. The mycotoxins alternariol and tentoxin were detected in several inflorescence samples, likely as a result of natural infection by Alternaria spp. Fusarium avenaceum is reported to infect cannabis inflorescences for the first time and produces mycotoxins in diseased tissues. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Figure 1

16 pages, 12731 KiB  
Article
RNA-Seq Revealed the Effects of Cold Stress on Different Brain Regions of Leiocassis longirostris
by Senyue Liu, Qiang Li, Yongqiang Deng, Zhongwei Wang, Yang Feng, Zhongmeng Zhao, Han Zhao, Lu Zhang, Yuanliang Duan, Zhipeng Huang, Jian Zhou and Chengyan Mou
Animals 2025, 15(14), 2107; https://doi.org/10.3390/ani15142107 - 16 Jul 2025
Viewed by 46
Abstract
Cold shock represents a prevalent but harmful environmental stress factor that poses significant threats to fish survival and reproductive success. In fish, the brain acts as a central regulator of thermoregulatory processes. Nevertheless, how different brain regions respond molecularly to cold exposure remains [...] Read more.
Cold shock represents a prevalent but harmful environmental stress factor that poses significant threats to fish survival and reproductive success. In fish, the brain acts as a central regulator of thermoregulatory processes. Nevertheless, how different brain regions respond molecularly to cold exposure remains largely unknown. To address this, this study systematically investigated the effects of acute cold stress on five specific brain regions of Leiocassis longirostris using RNA-seq. The findings demonstrated that all five brain regions were significantly impacted by cold treatment, with the mesencephalon (MB) showing the most substantial changes. GO and KEGG enrichment analyses indicated that cold stress disrupted processes including gene expression regulation, circadian rhythms, and immune function within brain tissues. Through Weighted Gene Co-Expression Network Analysis (WGCNA), the MB was identified as the core responsive region, and the brain’s reaction to cold stress was strongly correlated with circadian rhythm, spliceosome, and ubiquitination. In summary, our investigation demonstrates that the MB represents a principal region for cold stress response in L. longirostris, involving alterations in circadian clocks, immune function, and inflammatory responses, alongside suppression of gene expression processes and ubiquitination-mediated proteolysis. Full article
Show Figures

Figure 1

Back to TopTop