Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = GNSS surveying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 48004 KB  
Article
A Method for Determining the Affected Areas of High-Alpine Mountain Trails
by Andrej Bašelj, Damijana Kastelec, Mojca Golobič, Žiga Malek and Žiga Kokalj
Land 2026, 15(1), 200; https://doi.org/10.3390/land15010200 - 22 Jan 2026
Viewed by 15
Abstract
High-mountain areas with sensitive ecosystems are experiencing a steady increase in visitation, with visitors progressively moving outside designated trails, generating pressures on the natural environment. In extensive areas with numerous access points, it is difficult to monitor visitors’ movement and resulting impacts. This [...] Read more.
High-mountain areas with sensitive ecosystems are experiencing a steady increase in visitation, with visitors progressively moving outside designated trails, generating pressures on the natural environment. In extensive areas with numerous access points, it is difficult to monitor visitors’ movement and resulting impacts. This article describes a method for combining various data sources and approaches to determine affected areas, including their locations and extent. The method combines (1) field-mapping, (2) remote-sensing data display analysis, and (3) processing of publicly available GNSS tracks from sports applications, using 46 test plots along a selected trail to Mount Triglav in Slovenia. Affected-area surfaces and their spatial overlap were compared across the three approaches. The usefulness of remote-sensing displays and GNSS tracks for determining and predicting affected areas was assessed by reference to field measurements. A linear regression model showed that the display-analysis approach can explain 52.7% of the variability in field-mapping approach, while GNSS tracks do not provide enough information nor the accuracy comparable to field surveys. This study can help other researchers and nature-protection managers in selecting most suitable data derived from non-traditional sources to improve delineation of hiking trails and estimation of potential pressures on fragile environments. Full article
Show Figures

Figure 1

22 pages, 2001 KB  
Article
A Hybrid CNN-LSTM Architecture for Seismic Event Detection Using High-Rate GNSS Velocity Time Series
by Deniz Başar and Rahmi Nurhan Çelik
Sensors 2026, 26(2), 519; https://doi.org/10.3390/s26020519 - 13 Jan 2026
Viewed by 155
Abstract
Global Navigation Satellite Systems (GNSS) have become essential tools in geomatics engineering for precise positioning, cadastral surveys, topographic mapping, and deformation monitoring. Recent advances integrate GNSS with emerging technologies such as artificial intelligence (AI), machine learning (ML), cloud computing, and unmanned aerial systems [...] Read more.
Global Navigation Satellite Systems (GNSS) have become essential tools in geomatics engineering for precise positioning, cadastral surveys, topographic mapping, and deformation monitoring. Recent advances integrate GNSS with emerging technologies such as artificial intelligence (AI), machine learning (ML), cloud computing, and unmanned aerial systems (UAS), which have greatly improved accuracy, efficiency, and analytical capabilities in managing geospatial big data. In this study, we propose a hybrid Convolutional Neural Network–Long Short Term Memory (CNN-LSTM) architecture for seismic detection using high-rate (5 Hz) GNSS velocity time series. The model is trained on a large synthetic dataset generated by and real high-rate GNSS non-event data. Model performance was evaluated using real event and non-event data through an event-based approach. The results demonstrate that a hybrid deep-learning architecture can provide a reliable framework for seismic detection with high-rate GNSS velocity time series. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

28 pages, 18123 KB  
Article
Surface Deformation Characteristics and Damage Mechanisms of Repeated Mining in Loess Gully Areas: An Integrated Monitoring and Simulation Approach
by Junlei Xue, Fuquan Tang, Zhenghua Tian, Yu Su, Qian Yang, Chao Zhu and Jiawei Yi
Appl. Sci. 2026, 16(2), 709; https://doi.org/10.3390/app16020709 - 9 Jan 2026
Viewed by 204
Abstract
The repeated extraction of coal seams in the Loess Plateau mining region has greatly increased the severity of surface deformation and associated damage. Accurately characterizing the spatio-temporal evolution of subsidence and the underlying mechanisms is a critical engineering challenge for mining safety. Taking [...] Read more.
The repeated extraction of coal seams in the Loess Plateau mining region has greatly increased the severity of surface deformation and associated damage. Accurately characterizing the spatio-temporal evolution of subsidence and the underlying mechanisms is a critical engineering challenge for mining safety. Taking the Dafosi Coal Mine located in the loess gully region as a case study, this paper thoroughly examines the variations in surface deformation and damage characteristics caused by single and repeated seam mining. The analysis integrates surface movement monitoring data, global navigation satellite system (GNSS) dynamic observations, field surveys, unmanned aerial vehicle (UAV) photogrammetry, and numerical simulation methods. Notably, to ensure the accuracy of prediction parameters, a refined Particle Swarm Optimization (PSO) algorithm incorporating a neighborhood-based mechanism was employed specifically for the inversion of probability integral parameters. The results indicate that the subsidence factor and horizontal movement factor increase markedly following repeated mining. The maximum surface subsidence velocity also increases substantially, and this acceleration remains evident after normalizing by mining thickness and face-advance rate. The fore effective angle is smaller in repeated mining than in single-seam mining, and the duration of surface movement is substantially extended. Repeated mining fractured key strata and caused a functional transition from the classic three-zone response to a two-zone connectivity pattern, while the thick loess cover responds as a disturbed discontinuous-deformation layer, which together aggravates step-like and slope-related damage. The severity of surface damage is strongly influenced by topographic features and geotechnical properties. These findings demonstrate that the proposed integrated approach is highly effective for geological hazard assessment and provides a practical reference for engineering applications in similar complex terrains. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 13539 KB  
Article
Morphological Response of a Sheltered Beach to Extreme Wave and Stream Sediment Delivery Events
by Candela Marco-Peretó, Ruth Durán, Gonzalo Simarro and Jorge Guillén
Geosciences 2026, 16(1), 27; https://doi.org/10.3390/geosciences16010027 - 4 Jan 2026
Viewed by 428
Abstract
Morphological variability on Mediterranean embayed sandy beaches is largely driven by wave storms and episodic sediment inputs from local streams during intense rainfall. While storm impacts are well documented, the combined influence of stream discharge, wave forcing and morphological response remains poorly understood. [...] Read more.
Morphological variability on Mediterranean embayed sandy beaches is largely driven by wave storms and episodic sediment inputs from local streams during intense rainfall. While storm impacts are well documented, the combined influence of stream discharge, wave forcing and morphological response remains poorly understood. This study examines these interactions at Castell beach, one of the few non-urbanised, stream-fed embayed beaches on the northwestern Mediterranean, during two high-energy storms with heavy rainfall: December 2019 and January 2020 (Storm Gloria). Morphological changes in the subaerial and submerged beach, and stream dynamics were assessed using repeated RTK–GNSS surveys, orthophotos and echo-sounder bathymetry. Results show the stream mouth shifted along the beach (east, central or west) during heavy rainfall episodes depending on wave direction and pre-existing topography, tending toward more wave-sheltered zones. The storms induced contrasting responses: the first caused slight subaerial accretion, whereas Storm Gloria produced subaerial erosion and nearshore sediment deposition from both beach and stream sources. This material was subsequently reworked and reincorporated into the subaerial beach under calmer conditions, with full recovery by February 2022. These findings highlight the role of stream–wave interactions in sediment dynamics and the capacity of highly protected embayed beaches to adapt to extreme events. Full article
(This article belongs to the Topic Recent Advances in Iberian Coastal Geomorphology)
Show Figures

Graphical abstract

23 pages, 52765 KB  
Article
GNSS NRTK, UAS-Based SfM Photogrammetry, TLS and HMLS Data for a 3D Survey of Sand Dunes in the Area of Caleri (Po River Delta, Italy)
by Massimo Fabris and Michele Monego
Land 2026, 15(1), 95; https://doi.org/10.3390/land15010095 - 3 Jan 2026
Viewed by 268
Abstract
Coastal environments are fragile ecosystems threatened by various factors, both natural and anthropogenic. The preservation and protection of these environments, and in particular, the sand dune systems, which contribute significantly to the defense of the inland from flooding, require continuous monitoring. To this [...] Read more.
Coastal environments are fragile ecosystems threatened by various factors, both natural and anthropogenic. The preservation and protection of these environments, and in particular, the sand dune systems, which contribute significantly to the defense of the inland from flooding, require continuous monitoring. To this end, high-resolution and high-precision multitemporal data acquired with various techniques can be used, such as, among other things, the global navigation satellite system (GNSS) using the network real-time kinematic (NRTK) approach to acquire 3D points, UAS-based structure-from-motion photogrammetry (SfM), terrestrial laser scanning (TLS), and handheld mobile laser scanning (HMLS)-based light detection and ranging (LiDAR). These techniques were used in this work for the 3D survey of a portion of vegetated sand dunes in the Caleri area (Po River Delta, northern Italy) to assess their applicability in complex environments such as coastal vegetated dune systems. Aerial-based and ground-based acquisitions allowed us to produce point clouds, georeferenced using common ground control points (GCPs), measured both with the GNSS NRTK method and the total station technique. The 3D data were compared to each other to evaluate the accuracy and performance of the different techniques. The results provided good agreement between the different point clouds, as the standard deviations of the differences were lower than 9.3 cm. The GNSS NRTK technique, used with the kinematic approach, allowed for the acquisition of the bare-ground surface but at a cost of lower resolution. On the other hand, the HMLS represented the poorest ability in the penetration of vegetation, providing 3D points with the highest elevation value. UAS-based and TLS-based point clouds provided similar average values, with significant differences only in dense vegetation caused by a very different platform of acquisition and point of view. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management, 2nd Edition)
Show Figures

Figure 1

15 pages, 6187 KB  
Article
Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR
by Jiaqi Liu, Jing Wu, Soichiro Okida, Reiji Kimura, Mingyuan Du and Yan Li
Sensors 2026, 26(1), 302; https://doi.org/10.3390/s26010302 - 2 Jan 2026
Viewed by 527
Abstract
Coastal sand dunes, shaped by aeolian and marine processes, are critical to natural ecosystems and human societies, making their morphological monitoring essential for effective conservation. However, large-scale, high-precision monitoring of topographic change remains a persistent challenge, a challenge that advanced sensing technologies can [...] Read more.
Coastal sand dunes, shaped by aeolian and marine processes, are critical to natural ecosystems and human societies, making their morphological monitoring essential for effective conservation. However, large-scale, high-precision monitoring of topographic change remains a persistent challenge, a challenge that advanced sensing technologies can address. In this study, we propose an integrated, sensor-based approach using a UAV-mounted light detection and ranging (LiDAR) system, combined with a GNSS-RTK positioning unit and a novel ground control point (GCP) design to acquire high-resolution topographic data. Field surveys were conducted at four time points between October 2022 and February 2023 in the Tottori Sand Dunes, Japan. The digital elevation models (DEMs) derived from LiDAR point clouds achieved centimeter-level accuracy, enabling reliable detection of subtle topographic changes. Analysis of DEM differencing revealed that wind-driven sand deposition and erosion resulted in elevation changes of up to 0.4 m. These results validate the efficacy of the UAV-LiDAR sensor system for high-resolution, multitemporal monitoring of coastal sand dunes, highlighting its potential to advance the development of environmental sensing frameworks and support data-driven conservation strategies. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

26 pages, 17766 KB  
Article
Impact of Speed and Differential Correction Base Type on Mobile Mapping System Accuracy
by Luis Iglesias, Serafín López-Cuervo, Roberto Rodríguez-Solano and Maria Castro
Remote Sens. 2025, 17(24), 4064; https://doi.org/10.3390/rs17244064 - 18 Dec 2025
Viewed by 343
Abstract
Mobile Mapping Systems (MMSs) have emerged as indispensable instruments for producing high-precision road maps in recent years. Despite incorporating modern devices, their efficacy may be influenced by operational variables such as vehicle speed or the type of GNSS (Global Navigation Satellite System) differential [...] Read more.
Mobile Mapping Systems (MMSs) have emerged as indispensable instruments for producing high-precision road maps in recent years. Despite incorporating modern devices, their efficacy may be influenced by operational variables such as vehicle speed or the type of GNSS (Global Navigation Satellite System) differential correction employed. This study assesses the impact of varying vehicle speeds and differential correction settings on the accuracy of point grids acquired with an MMS on a two-lane rural road. The experiment was performed across a 7 km distance, incorporating two speeds (40 and 60 km/h) and two travel directions. Three correction methodologies were examined: a proximate local base (MBS), a network station solution of the National Geographic Institute (NET), and virtual reference stations (VRSs). The methodology encompassed normality analysis, descriptive statistics, mean comparisons, one- and two-factor analysis of variance (ANOVA), and the computation of the root mean square error (RMSE) as a measure of accuracy. The findings indicate that horizontal discrepancies remain steady and unaffected by the correction technique; however, notable changes are seen in the vertical component, with the NET option proving to be the most effective. The acquisition rate is the primary determinant, exacerbating errors at 60 km/h. In conclusion, the dependability of MMS surveys is contingent upon the correction approach and operational conditions, and it is advisable to sustain moderate speeds to guarantee precise three-dimensional models. Full article
(This article belongs to the Special Issue Advancements in LiDAR Technology and Applications in Remote Sensing)
Show Figures

Graphical abstract

18 pages, 8006 KB  
Article
Optimal Low-Cost MEMS INS/GNSS Integrated Georeferencing Solution for LiDAR Mobile Mapping Applications
by Nasir Al-Shereiqi, Mohammed El-Diasty and Ghazi Al-Rawas
Sensors 2025, 25(24), 7683; https://doi.org/10.3390/s25247683 - 18 Dec 2025
Viewed by 489
Abstract
Mobile mapping systems using LiDAR technology are becoming a reliable surveying technique to generate accurate point clouds. Mobile mapping systems integrate several advanced surveying technologies. This research investigated the development of a low-cost, accurate Microelectromechanical System (MEMS)-based INS/GNSS georeferencing system for LiDAR mobile [...] Read more.
Mobile mapping systems using LiDAR technology are becoming a reliable surveying technique to generate accurate point clouds. Mobile mapping systems integrate several advanced surveying technologies. This research investigated the development of a low-cost, accurate Microelectromechanical System (MEMS)-based INS/GNSS georeferencing system for LiDAR mobile mapping applications, enabling the generation of accurate point clouds. The challenge of using the MEMS IMU is that it is contaminated by high levels of noise and bias instability. To overcome this issue, new denoising and filtering methods were developed using a wavelet neural network (WNN) and an optimal maximum likelihood estimator (MLE) method to achieve an accurate MEMS-based INS/GNSS integration navigation solution for LiDAR mobile mapping applications. Moreover, the final accuracy of the MEMS-based INS/GNSS navigation solution was compared with the ASPRS standards for geospatial data production. It was found that the proposed WNN denoising method improved the MEMS-based INS/GNSS integration accuracy by approximately 11%, and that the optimal MLE method achieved approximately 12% higher accuracy than the forward-only navigation solution without GNSS outages. The proposed WNN denoising outperforms the current state-of-the-art Long Short-Term Memory (LSTM)–Recurrent Neural Network (RNN), or LSTM-RNN, denoising model. Additionally, it was found that, depending on the sensor–object distance, the accuracy of the optimal MLE-based MEMS INS/GNSS navigation solution with WNN denoising ranged from 1 to 3 cm for ground mapping and from 1 to 9 cm for building mapping, which can fulfill the ASPRS standards of classes 1 to 3 and classes 1 to 9 for ground and building mapping cases, respectively. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

23 pages, 30210 KB  
Article
Local Altimetric Correction of Global DEMs in Data-Scarce Floodplains: A Practical GNSS-Based Approach
by Jose Miguel Fragozo Arevalo, Jorge Escobar-Vargas and Jairo R. Escobar Villanueva
ISPRS Int. J. Geo-Inf. 2025, 14(12), 498; https://doi.org/10.3390/ijgi14120498 - 18 Dec 2025
Viewed by 488
Abstract
A reliable Digital Elevation Model (DEM) is a key input for land use planning and risk management, particularly in floodplains where low-resolution models often fail to represent subtle topographic variations. In many regions worldwide, high-precision elevation data are unavailable, necessitating the development of [...] Read more.
A reliable Digital Elevation Model (DEM) is a key input for land use planning and risk management, particularly in floodplains where low-resolution models often fail to represent subtle topographic variations. In many regions worldwide, high-precision elevation data are unavailable, necessitating the development of methods to enhance existing global digital elevation models (DEM). This study proposes a practical and replicable methodology to improve the vertical accuracy of global DEMs in flat terrains with limited data availability. The approach is based on correcting the altimetric differences between the DEM and GNSS-RTK-surveyed topographic points, incorporating land cover classification to refine adjustments. The methodology was tested in the Ranchería River delta in Riohacha, La Guajira, Colombia, using four global DEMs: FABDEM, SRTM, ASTER, and ALOS. Results showed a significant reduction in root mean square error (RMSE), with improvements of up to 76.691% for ASTER, 55.882% for FABDEM, 55.932% for SRTM, and 36.842% for ALOS. The proposed method requires minimal computational resources and no advanced programming. Due to minimal data requirements, it makes it a scalable and replicable solution for similar floodplain environments. These enhancements in local altimetric accuracy could help to improve the reliability of hydrodynamic modeling, with direct implications for flood risk management and decision-making in vulnerable flatland areas. Full article
Show Figures

Graphical abstract

21 pages, 5421 KB  
Article
Seamless Quantification of Wet and Dry Riverscape Topography Using UAV Topo-Bathymetric LiDAR
by Craig John MacDonell, Richard David Williams, Jon White and Kenny Roberts
Drones 2025, 9(12), 872; https://doi.org/10.3390/drones9120872 - 17 Dec 2025
Viewed by 489
Abstract
Quantifying riverscape topography is challenging because riverscapes comprise of both wet and dry surfaces. Advances have been made in demonstrating the capability of mounting topo-bathymetric LiDAR (Light Detection and Ranging) sensors on crewed, occupied aircraft to quantify riverscape topography. However, only recently has [...] Read more.
Quantifying riverscape topography is challenging because riverscapes comprise of both wet and dry surfaces. Advances have been made in demonstrating the capability of mounting topo-bathymetric LiDAR (Light Detection and Ranging) sensors on crewed, occupied aircraft to quantify riverscape topography. However, only recently has miniaturisation of electronic components enabled topo-bathymetric LiDAR to be mounted on consumer-grade Unoccupied Aerial Vehicles (UAVs). We evaluate the capability of a demonstration YellowScan Navigator topo-bathymetric, full waveform LiDAR sensor, mounted on a DJI Matrice 600 UAV, to survey a 1 km long reach of the braided River Feshie, Scotland. Ground-truth data, with centimetre accuracy, were collected across wet areas using an echo-sounder, and in wet and dry areas using RTK-GNSS (Real-Time Kinematic Global Navigation Satellite System). The processed point cloud had a density of 62 points/m2. Ground-truth mean errors (and standard deviation) across dry gravel bars were 0.06 ± 0.04 m, along shallow channel beds were −0.03 ± 0.12 m and for deep channels were −0.08 m ± 0.23 m. Geomorphic units with a concave three-dimensional shape (pools, troughs), associated with deeper water, had larger negative errors and wider ranges of residuals than planar or convex units. The case study demonstrates the potential of using UAV topo-bathymetric LiDAR to enhance survey efficiency but a need to evaluate spatial error distribution. Full article
Show Figures

Figure 1

26 pages, 6776 KB  
Article
An Improved Adaptive Robust Extended Kalman Filter for Arctic Shipborne Tightly Coupled GNSS/INS Navigation
by Wei Liu, Tengfei Qi, Yuan Hu, Shanshan Fu, Bing Han, Tsung-Hsuan Hsieh and Shengzheng Wang
J. Mar. Sci. Eng. 2025, 13(12), 2395; https://doi.org/10.3390/jmse13122395 - 17 Dec 2025
Viewed by 540
Abstract
In the Arctic region, the navigation and positioning accuracy of shipborne and autonomous underwater vehicle (AUV) integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) solutions is severely degraded due to poor satellite geometry, frequent ionospheric disturbances, non-Gaussian measurement noise, and [...] Read more.
In the Arctic region, the navigation and positioning accuracy of shipborne and autonomous underwater vehicle (AUV) integrated Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) solutions is severely degraded due to poor satellite geometry, frequent ionospheric disturbances, non-Gaussian measurement noise, and strong multipath effects, as well as long-term INS-based dead-reckoning for AUVs when GNSS is unavailable underwater. In addition, the sparse ground-based augmentation infrastructure and the lack of reliable reference trajectories and dedicated test ranges in polar waters hinder the validation and performance assessment of existing marine navigation systems, further complicating the achievement of accurate and reliable navigation in this region. To improve the positioning accuracy of the GNSS/INS shipborne navigation system, this paper adopts a tightly coupled GNSS/INS navigation approach. To further enhance the accuracy and robustness of tightly coupled GNSS/INS positioning, this paper proposes an improved Adaptive Robust Extended Kalman Filter (IAREKF) algorithm to effectively suppress the effects of gross errors and non-Gaussian noise, thereby significantly enhancing the system’s robustness and positioning accuracy. First, the residuals and Mahalanobis distance are calculated using the Adaptive Robust Extended Kalman Filter (AREKF), and the chi-square test is used to assess the anomalies of the observations. Subsequently, the observation noise covariance matrix is dynamically adjusted to improve the filter’s anti-interference capability in the complex Arctic environment. However, the state estimation accuracy of AREKF is still affected by GNSS signal degradation, leading to a decrease in navigation and positioning accuracy. To further improve the robustness and positioning accuracy of the filter, this paper introduces a sliding window mechanism, which dynamically adjusts the observation noise covariance matrix using historical residual information, thereby effectively improving the system’s stability in harsh environments. Field experiments conducted on an Arctic survey vessel demonstrate that the proposed improved adaptive robust extended Kalman filter significantly enhances the robustness and accuracy of Arctic integrated navigation. In the Arctic voyages at latitudes 80.3° and 85.7°, compared to the Loosely coupled EKF, the proposed method reduced the horizontal root mean square error by 61.78% and 21.7%, respectively. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3630 KB  
Article
Enhancing GNSS-INS-Based Surveying with Time of Flight Cameras
by Amna Qayyum, Joël Bachmann and David Eugen Grimm
Metrology 2025, 5(4), 78; https://doi.org/10.3390/metrology5040078 - 16 Dec 2025
Viewed by 370
Abstract
Rapid advancements in surveying technology have necessitated the development of more accurate and efficient tools. Leica Geosystems AG (Heerbrugg, Switzerland), a leading provider of measurement and surveying solutions, has initiated a study to enhance the capabilities of its GNSS INS-based surveying systems. This [...] Read more.
Rapid advancements in surveying technology have necessitated the development of more accurate and efficient tools. Leica Geosystems AG (Heerbrugg, Switzerland), a leading provider of measurement and surveying solutions, has initiated a study to enhance the capabilities of its GNSS INS-based surveying systems. This research focuses on integrating the Leica GS18 I GNSS receiver and the AP20 AutoPole with a Time of Flight (ToF) camera through sensor fusion. The primary objective is to leverage the unique strengths of each device to improve accuracy, efficiency, and usability in challenging surveying environments. Results indicate that the fused AP20 configuration achieves decimetre-level accuracy (2.7–4.4 cm on signalized points; 5.2–20.0 cm on natural features). In contrast, the GS18 I fused configuration shows significantly higher errors (17.5–26.6 cm on signalized points; 16.1–69.4 cm on natural features), suggesting suboptimal spatio-temporal fusion. These findings confirm that the fused AP20 configuration demonstrates superior accuracy in challenging GNSS conditions compared to the GS18 I setup with deviations within acceptable limits for most practical applications, while highlighting the need for further refinement of the GS18 I configuration. Full article
Show Figures

Figure 1

25 pages, 6241 KB  
Article
Evaluation of Hybrid Data Collection for Traffic Accident Site Documentation
by Zdeněk Svatý, Pavel Vrtal, Tomáš Kohout, Luboš Nouzovský and Karel Kocián
Geomatics 2025, 5(4), 77; https://doi.org/10.3390/geomatics5040077 - 10 Dec 2025
Viewed by 307
Abstract
This study examines the possibilities of using hybrid data collection methods based on photogrammetric and LiDAR imaging for documenting traffic accident sites. The evaluation was performed with an iPhone 15 Pro and a viDoc GNSS receiver. Comparative measurements were made against instruments with [...] Read more.
This study examines the possibilities of using hybrid data collection methods based on photogrammetric and LiDAR imaging for documenting traffic accident sites. The evaluation was performed with an iPhone 15 Pro and a viDoc GNSS receiver. Comparative measurements were made against instruments with higher accuracy. The test scenarios included measuring errors along a 25 m line and scanning a larger traffic area. Measurements were conducted under limiting conditions on a homogeneous surface without terrain irregularities or objects. The results show that although hybrid scanning cannot fully replace traditional surveying instruments, it provides accurate results for documenting traffic accident sites. The analysis additionally revealed an almost linear spread of errors on homogeneous asphalt surfaces. Moreover, it was confirmed that the use of a GNSS receiver and control points has a significant impact on the quality of the data. Such a comprehensive assessment of surface homogeneity has not been tested yet. To achieve accuracy, it is recommended to use a scanning mode based on at least 90% image overlap with RTK GNSS. The relative error rate on a linear section ranged from 0.5 to 1.0%, which corresponds to an error of up to 5 cm over a 5 m section. When evaluating a larger area using hybrid data collection, 93.38% of the points had an error below 10 cm, with a mean deviation of 6.2 cm. These findings expand current knowledge and define practical device settings and operational limits for the use of hybrid mobile scanning. Full article
Show Figures

Figure 1

20 pages, 17902 KB  
Article
Managing Coastal Erosion and Exposure in Sandy Beaches of a Tropical Estuarine System
by Rodolfo J. V. Araújo, Tereza C. M. Araújo, Pedro S. Pereira, Heithor Alexandre de Araujo Queiroz and Rodrigo Mikosz Gonçalves
Sustainability 2025, 17(24), 11046; https://doi.org/10.3390/su172411046 - 10 Dec 2025
Viewed by 331
Abstract
Integrated Coastal Zone Management (ICZM) requires multi-scalar, high-resolution monitoring data to effectively address climate change impacts, particularly sea-level rise and accelerated erosion. This study presents an innovative Remote Sensing (RS) and Geoinformatics approach to precisely quantify and contextualize the exposure of sandy beaches. [...] Read more.
Integrated Coastal Zone Management (ICZM) requires multi-scalar, high-resolution monitoring data to effectively address climate change impacts, particularly sea-level rise and accelerated erosion. This study presents an innovative Remote Sensing (RS) and Geoinformatics approach to precisely quantify and contextualize the exposure of sandy beaches. The research focuses on the highly dynamic insular tidal inlet margin of the Pontal Sul da Ilha de Itamaracá, located within a tropical estuarine system in Northeast Brazil that is subject to intense anthropogenic pressure. The methodology of this study integrates high-resolution GNSS-PPK surveys from two seasonal cycles (2017–2018) with a Difference of DEMs (DoD) analysis to precisely quantify seasonal sediment transport. Furthermore, a multi-temporal analysis leverages the Fort Orange Archaeological Site as a stable datum, combining colonial-era maps with modern satellite imagery to trace shoreline evolution. During the 2017–2018 period, maximum erosion (up to ~2.60 m in altimetric losses) affected the southern and central-northern shoreline, while accretion (up to ~2.25 m in altimetric gains) occurred between these erosional sectors and in the northeastern offshore area. This multi-scalar approach provides the robust data necessary for ICZM, effectively prioritizing sustainable, nature-based strategies that align with local administrative capacities. Full article
Show Figures

Figure 1

22 pages, 5278 KB  
Article
Robust Navigation in Multipath Environments Using GNSS/UWB/INS Integration with Anchor Position Estimation Toward eVTOL Operations
by Atsushi Osaka and Toshiaki Tsujii
Sensors 2025, 25(24), 7419; https://doi.org/10.3390/s25247419 - 5 Dec 2025
Viewed by 638
Abstract
Emerging technologies such as urban air mobility and autonomous vehicles increasingly rely on Global Navigation Satellite Systems (GNSS) for accurate positioning. However, GNSS alone suffers from severe degradation in complex environments, particularly due to multipath effects caused by reflections from surrounding structures. These [...] Read more.
Emerging technologies such as urban air mobility and autonomous vehicles increasingly rely on Global Navigation Satellite Systems (GNSS) for accurate positioning. However, GNSS alone suffers from severe degradation in complex environments, particularly due to multipath effects caused by reflections from surrounding structures. These effects distort pseudo-range measurements and, in combination with signal attenuation and blockage, lead to significant positioning errors. To address this challenge, this study proposes a loosely integrated navigation framework that combines GNSS, ultra-wideband (UWB), and inertial navigation system (INS) data. UWB enables high-precision ranging, and we further extend its application to estimate the locations of UWB anchors themselves. This approach alleviates a major technical limitation of UWB systems, which typically require anchor positions near buildings to be precisely surveyed beforehand. Field experiments were conducted in multipath-prone outdoor environments using a drone equipped with GNSS, UWB, and INS sensors. The results demonstrate that the proposed GNSS/UWB/INS integration reduces positioning errors by up to approximately 90% compared with GNSS/INS integration. Moreover, in areas surrounded by UWB anchors (UWB-Anchored Area), submeter-level positioning accuracy was achieved. These findings highlight the robustness of the proposed method against multipath interference and its potential to overcome anchor-dependency issues, thereby contributing to safe and reliable navigation solutions for future urban applications such as eVTOL operations. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop