Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = GNSS single-frequency signals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4512 KB  
Article
Real-Time Cycle Slip Detection in Single-Frequency GNSS Receivers Using Dual-Index Cross-Validation and Elevation-Dependent Thresholding
by Mireia Carvajal Librado and Kwan-Dong Park
Sensors 2025, 25(19), 6162; https://doi.org/10.3390/s25196162 - 4 Oct 2025
Viewed by 558
Abstract
Cycle slips, abrupt discontinuities in carrier-phase measurements, pose a significant challenge for single-frequency GNSS receivers, particularly in real-time applications where rapid detection is critical. Unlike dual-frequency approaches, these receivers cannot rely on redundant combinations to isolate slips from other errors. This study proposes [...] Read more.
Cycle slips, abrupt discontinuities in carrier-phase measurements, pose a significant challenge for single-frequency GNSS receivers, particularly in real-time applications where rapid detection is critical. Unlike dual-frequency approaches, these receivers cannot rely on redundant combinations to isolate slips from other errors. This study proposes a real-time cycle slip detection algorithm for single-frequency GNSS receivers based solely on short-term differencing of pseudorange and carrier-phase observables. The method employs a two-step logic: first-order differencing of code-minus-carrier and second-order differencing of carrier phase. Both steps employ satellite elevation-dependent adaptive thresholds, enabling robust detection under diverse signal conditions. The method requires no user position, receiver-generated tracking flags, or additional sensor data. Experimental results reveal that the algorithm achieves over 98% detection accuracy for slips exceeding 10 cycles, with no false positives in artificial slip testing, and 87.93% agreement with Loss of Lock Indicators (LLI) during periods in which the receiver indicated signal instability. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

22 pages, 3340 KB  
Article
Microstrip Patch Antenna for GNSS Applications
by Hatice-Andreea Topal and Teodor Lucian Grigorie
Appl. Sci. 2025, 15(19), 10663; https://doi.org/10.3390/app151910663 - 2 Oct 2025
Viewed by 287
Abstract
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a [...] Read more.
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a comparative evaluation of the materials used in the antenna design, assess the geometric configuration and analyze the key performance parameters of the proposed microstrip patch antenna. Prior to the numerical modeling and simulation process, a preliminary assessment was conducted to evaluate how different substrate materials influence antenna efficiency. For instance, a comparison between FR-4 and RT Duroid 5880 dielectric substrates revealed signal attenuation differences of approximately −1 dB at the target frequency. The numerical simulations were carried out using Ansys HFSS design. The antenna was mounted on a dielectric substrate, which was also mounted on a ground plane. The microstrip antenna was fed using a coaxial cable at a single point, strategically positioned to achieve circular polarization within the operating frequency band. The aim of this study is to design and analyze a microstrip antenna that operates within the previously specified frequency range, ensuring optimal impedance matching of 50 Ω with a return loss of S11 < −10 dB at the operating frequency (with these parameters also contributing to the definition of the antenna’s operational bandwidth). Furthermore, the antenna is required to provide a gain greater than 3 dB for integration into GNSS’ receivers and to achieve an Axial Ratio value below 3 dB in order to ensure circular polarization, thereby facilitating the antenna’s integration into GNSSs. Full article
Show Figures

Figure 1

18 pages, 24339 KB  
Article
An Integrated Method for Dynamic Height Error Correction in GNSS-IR Sea Level Retrievals
by Yufeng Hu, Zhiyu Zhang and Xi Liu
Remote Sens. 2025, 17(17), 3076; https://doi.org/10.3390/rs17173076 - 4 Sep 2025
Viewed by 860
Abstract
Sea level is an important variable for studying water cycle and coastal hazards under global warming. Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) has emerged as a relatively new technique for monitoring sea level variations, leveraging signals from GNSS constellations. However, dynamic height [...] Read more.
Sea level is an important variable for studying water cycle and coastal hazards under global warming. Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) has emerged as a relatively new technique for monitoring sea level variations, leveraging signals from GNSS constellations. However, dynamic height errors, primarily caused by non-stationary sea surfaces, compromise the precision of GNSS-IR sea level retrievals and necessitate robust correction. In this study, we propose a new method to correct the dynamic height error by integrating the commonly used tidal analysis method and the cubic spline fitting method. The proposed method is applied to the GNSS-IR sea level retrievals from multiple systems and multiple frequency bands at two coastal GNSS stations, MAYG and HKQT. At MAYG, the results show that our method significantly reduces the Root Mean Square Error (RMSE) of the GNSS-IR sea level retrievals by 42.1% (11.4 cm) to 15.7 cm, performing better than the single tidal analysis method (16.5 cm) and the cubic spline fitting method (21.4 cm). At HKQT, our method improves the accuracy by 21.5% (3.1 cm) to 10.3 cm, which is still better than that of the tidal analysis method (11.3 cm) and the cubic spline fitting method (12.4 cm). Compared to the tidal analysis method and the cubic spline fitting method, our method maintains high retrieval retention while enhancing precision. The effectiveness of our method is further validated in the two storm surge events caused by Typhoon Hato and Typhoon Mangkhut in Hong Kong. Full article
Show Figures

Figure 1

33 pages, 5506 KB  
Article
The Impact of Signal Interference on Static GNSS Measurements
by Željko Bačić, Danijel Šugar and Zvonimir Nevistić
Geomatics 2025, 5(3), 39; https://doi.org/10.3390/geomatics5030039 - 26 Aug 2025
Cited by 1 | Viewed by 1303
Abstract
Global navigation satellite systems (GNSSs) are an integral part of modern society and are used in various industries, providing users with positioning, navigation, and timing (PNT). However, their effectiveness is vulnerable to signal interference, since GNSSs are based on received satellite signals from [...] Read more.
Global navigation satellite systems (GNSSs) are an integral part of modern society and are used in various industries, providing users with positioning, navigation, and timing (PNT). However, their effectiveness is vulnerable to signal interference, since GNSSs are based on received satellite signals from space, and that can severely impact applications that rely on continuous and accurate data. Interference can pose significant risks to sectors dependent on GNSSs, including transportation, telecommunications, finance, geodesy, and others. For this reason, in parallel with the development of GNSSs, various interference protection techniques are being developed to enable users to receive GNSS signals without the risk of interference, which can cause various effects, such as reducing the accuracy of positioning, as well as completely blocking signal reception and making it impossible to obtain positioning. There are various sources and methods of interfering with GNSS signals, and the greatest consequences are caused by intentional interference, which includes jamming, spoofing, and meaconing. This study investigates the effects of jamming devices on static GNSS observations using high-accuracy devices through multiple controlled experiments using both single-frequency (SF) and multi-frequency (MF) jammers. The aim was to identify the distances within which signal interference devices disrupt GNSS signal reception and position accuracy. The research conducted herein was divided into several phases where zones within which the jammer completely blocked the reception of the GNSS signal were determined (blackout zones), as were zones within which it was possible to obtain the position (but the influence of the jammer was present) and the influence of the jammer from different directions/azimuths in relation to the GNSS receiver. Various statistical indicators of the jammer’s influence, such as DOP (dilution of precision), SNR (signal-to-noise-ratio), RMS (root mean square), and others, were obtained through research. The results of this study indicate that commercially available, low-cost jamming devices, when operated within manufacturer-specified distances, completely disrupt the reception of GNSS signals. Their impact is also evident at greater distances, where they significantly reduce SNR values, increase DOP, and decrease the number of visible satellites, leading to reduced measurement reliability and integrity. These results underline the necessity of developing effective protection mechanisms against GNSS interference and strategies to ensure reliable signal reception in GNSS-dependent applications, particularly as the use of jamming devices becomes more prevalent. Full article
Show Figures

Figure 1

20 pages, 3044 KB  
Article
Navigating the Storm: Assessing the Impact of Geomagnetic Disturbances on Low-Cost GNSS Permanent Stations
by Milad Bagheri and Paolo Dabove
Remote Sens. 2025, 17(17), 2933; https://doi.org/10.3390/rs17172933 - 23 Aug 2025
Viewed by 1456
Abstract
As contemporary society and the global economy become increasingly dependent on satellite-based systems, the need for reliable and resilient positioning, navigation, and timing (PNT) services has never been more critical. This study investigates the impact of the geomagnetic storm that occurred in May [...] Read more.
As contemporary society and the global economy become increasingly dependent on satellite-based systems, the need for reliable and resilient positioning, navigation, and timing (PNT) services has never been more critical. This study investigates the impact of the geomagnetic storm that occurred in May 2024 on the performance of global navigation satellite system (GNSS) low-cost permanent stations. The research evaluates the influence of ionospheric disturbances on both positioning performance and raw GNSS observations. Two days were analyzed: 8 May 2024 (DOY 129), representing quiet ionospheric conditions, and 11 May 2024 (DOY 132), coinciding with the peak of the geomagnetic storm. Precise Point Positioning (PPP) and static relative positioning techniques were applied to data from a low-cost GNSS station (DYVA), supported by comparative analysis using a nearby geodetic-grade station (TRDS00NOR). The results showed that while RMS positioning errors remained relatively stable over 24 h, the maximum errors increased significantly during the storm, with the 3D positioning error nearly doubling on DOY 132. Short-term analysis revealed even larger disturbances, particularly in the vertical component, which reached up to 3.39 m. Relative positioning analysis confirmed the vulnerability of single-frequency (L1) solutions to ionospheric disturbances, whereas dual-frequency (L1+L2) configurations substantially mitigated errors, highlighting the effectiveness of ionosphere-free combinations during storm events. In the second phase, raw GNSS observation quality was assessed using detrended GPS L1 carrier-phase residuals and signal strength metrics. The analysis revealed increased phase instability and signal degradation on DOY 132, with visible cycle slips occurring between epochs 19 and 21. Furthermore, the average signal-to-noise ratio (SNR) decreased by approximately 13% for satellites in the northwest sky sector, and a 5% rise in total cycle slips was recorded compared with the quiet day. These indicators confirm the elevated measurement noise and signal disruption associated with geomagnetic activity. These findings provide a quantitative assessment of low-cost GNSS receiver performance under geomagnetic storm conditions. This study emphasizes their utility for densifying GNSS infrastructure, particularly in regions lacking access to geodetic-grade equipment, while also outlining the challenges posed by space weather. Full article
(This article belongs to the Special Issue Geospatial Intelligence in Remote Sensing)
Show Figures

Graphical abstract

19 pages, 1107 KB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 858
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

31 pages, 7790 KB  
Article
Pixel 5 Versus Pixel 9 Pro XL—Are Android Devices Evolving Towards Better GNSS Performance?
by Julián Tomaštík, Jorge Hernández Olcina, Šimon Saloň and Daniel Tunák
Sensors 2025, 25(14), 4452; https://doi.org/10.3390/s25144452 - 17 Jul 2025
Viewed by 2380
Abstract
Smartphone GNSS technology has advanced significantly, but its performance varies considerably among Android devices due to differences in hardware and software. This study compares the GNSS capabilities of the Google Pixel 5 and Pixel 9 Pro XL (Google LLC, Mountain View, CA, USA) [...] Read more.
Smartphone GNSS technology has advanced significantly, but its performance varies considerably among Android devices due to differences in hardware and software. This study compares the GNSS capabilities of the Google Pixel 5 and Pixel 9 Pro XL (Google LLC, Mountain View, CA, USA) using five-hour static measurements under three environmental conditions: open area, canopy, and indoor. Complete raw GNSS data and the tools used for positioning are freely available. The analysis focuses on signal quality and positioning accuracy, derived using raw GNSS measurements. Results show that the Pixel 9 Pro XL provides better signal completeness, a higher carrier-to-noise density (C/N0), and improved L5 frequency reception. However, this enhanced signal quality does not always translate to superior positioning accuracy. In single-point positioning (SPP), the Pixel 5 outperformed the Pixel 9 Pro XL in open conditions when considering mean positional errors, while the Pixel 9 Pro XL performed better under canopy conditions. The precise point positioning results are modest compared to the current state of the art, only achieving accuracies of a few meters. The static method achieved sub-decimeter accuracy for both devices in optimal conditions, with Pixel 9 Pro XL demonstrating a higher fix rate. Findings highlight ongoing challenges in smartphone GNSS, particularly related to the limited quality of signals received by smartphone GNSS receivers. While newer devices show improved signal reception, precise positioning remains limited. Future research should explore software enhancements and the use of various external correction sources to optimize GNSS accuracy for mobile users. Generally, a shift from research to user-ready applications is needed. Full article
Show Figures

Figure 1

14 pages, 2307 KB  
Article
A Joint Decoherence-Based AOA and TDOA Positioning Approach for Interference Monitoring in Global Navigation Satellite System
by Wenjian Wang, Yinghong Wen and Yongxia Liu
Appl. Sci. 2025, 15(13), 7050; https://doi.org/10.3390/app15137050 - 23 Jun 2025
Viewed by 509
Abstract
Global navigation satellite system (GNSS) has been widely used in many fields due to their low cost and high positioning accuracy. Because of the open frequency of navigation signals, the low power of navigation signals, and the growing reliance of many modern wireless [...] Read more.
Global navigation satellite system (GNSS) has been widely used in many fields due to their low cost and high positioning accuracy. Because of the open frequency of navigation signals, the low power of navigation signals, and the growing reliance of many modern wireless systems on satellite-based navigation, GNSS performance may be easily affected by interference signals. Monitoring and troubleshooting of interference sources are important means to guarantee the normal use of satellite navigation applications and are an important part of GNSS operation in complex electromagnetic environments; however, traditional angle of arrival (AOA) algorithms cannot efficiently operate with coherent signals, so a decoherence-based orientation scheme is proposed to optimize the AOA algorithm. Furthermore, a joint AOA and time difference of arrival (TDOA) interference localization algorithm is proposed for problems such as the lack of accuracy in a single interference source localization algorithm. Numerical simulation results show that decoherence-based AOA localization can be well applied to various interference signals, and the accuracy of the joint AOA and TDOA interference localization algorithm is higher than that of single-method interference localization. In addition, the physical verification further verifies the usability and reliability of the GNSS interference source positioning algorithm proposed in this paper. Full article
Show Figures

Figure 1

25 pages, 5598 KB  
Article
Quad-Frequency Wide-Lane, Narrow-Lane and Hatch–Melbourne–Wübbena Combinations: The Beidou Case
by Daniele Borio, Melania Susi and Kinga Wȩzka
Electronics 2025, 14(9), 1805; https://doi.org/10.3390/electronics14091805 - 28 Apr 2025
Viewed by 761
Abstract
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band [...] Read more.
The pseudoranges of a Global Navigation Satellite System (GNSS) meta-signal can be reconstructed from the observations of its side-band components. More specifically, the Hatch–Melbourne–Wübbena (HMW) code-carrier combination is used to solve the ambiguity associated to the wide-lane carrier phase combination of the side-band components, obtaining a high-accuracy pseudorange. The HMW and the wide-lane combinations thus play a key role in constructing meta-signal measurements. The theory of GNSS meta-signals was recently extended to the case with a number of components equal to a power of two. This theory can be used to generalize HMW and wide-lane combinations to the quad-frequency case. This is carried out through a Hadamard matrix of order four, which defines a narrow-lane and three wide-lane combinations. This paper characterizes meta-signal-inspired quad-frequency HMW and wide-lane measurements combinations using Beidou Navigation Satellite System (BDS) observations. Two professional Septentrio PolarRx5S multi-frequency, multi-constellation receivers were set up in a zero-baseline configuration and used to collect observables from all the BDS open frequencies. These measurements are used to characterize different quad-frequency HMW and wide-lane carrier combinations. Some of the combinations analyzed have large equivalent wavelengths and have the potential to enable single-epoch ambiguity resolution in scenarios where short convergence times are required. Full article
(This article belongs to the Special Issue Precision Positioning and Navigation Communication Systems)
Show Figures

Graphical abstract

23 pages, 12327 KB  
Article
Dynamic Deformation Analysis of Super High-Rise Buildings Based on GNSS and Accelerometer Fusion
by Xingxing Xiao, Houzeng Han, Jian Wang, Dong Li, Cai Chen and Lei Wang
Sensors 2025, 25(9), 2659; https://doi.org/10.3390/s25092659 - 23 Apr 2025
Cited by 1 | Viewed by 950
Abstract
To accurately capture the dynamic displacement of super-tall buildings under complex conditions, this study proposes a data fusion algorithm that integrates NRBO-FMD optimization with Adaptive Robust Kalman Filtering (ARKF). The NRBO-FMD method preprocesses GNSS and accelerometer data to mitigate GNSS multipath effects, unmodeled [...] Read more.
To accurately capture the dynamic displacement of super-tall buildings under complex conditions, this study proposes a data fusion algorithm that integrates NRBO-FMD optimization with Adaptive Robust Kalman Filtering (ARKF). The NRBO-FMD method preprocesses GNSS and accelerometer data to mitigate GNSS multipath effects, unmodeled errors, and high-frequency noise in accelerometer signals. Subsequently, ARKF fuses the preprocessed data to achieve high-precision displacement reconstruction. Numerical simulations under varying noise conditions validated the algorithm’s accuracy. Field experiments conducted on the Hairong Square Building in Changchun further demonstrated its effectiveness in estimating three-dimensional dynamic displacement. Key findings are as follows: (1) The NRBO-FMD algorithm significantly reduced noise while preserving essential signal characteristics. For GNSS data, the root mean square error (RMSE) was reduced to 0.7 mm for the 100 s dataset and 1.0 mm for the 200 s dataset, with corresponding signal-to-noise ratio (SNR) improvements of 3.0 dB and 6.0 dB. For accelerometer data, the RMSE was reduced to 3.0 mm (100 s) and 6.2 mm (200 s), with a 4.1 dB SNR gain. (2) The NRBO-FMD–ARKF fusion algorithm achieved high accuracy, with RMSE values of 0.7 mm (100 s) and 1.9 mm (200 s). Consistent PESD and POSD values demonstrated the algorithm’s long-term stability and effective suppression of irregular errors. (3) The algorithm successfully fused 1 Hz GNSS data with 100 Hz accelerometer data, overcoming the limitations of single-sensor approaches. The fusion yielded an RMSE of 3.6 mm, PESD of 2.6 mm, and POSD of 4.8 mm, demonstrating both precision and robustness. Spectral analysis revealed key dynamic response frequencies ranging from 0.003 to 0.314 Hz, facilitating natural frequency identification, structural stiffness tracking, and early-stage performance assessment. This method shows potential for improving the integration of GNSS and accelerometer data in structural health monitoring. Future work will focus on real-time and predictive displacement estimation to enhance monitoring responsiveness and early-warning capabilities. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

14 pages, 2045 KB  
Article
Time to First Fix Robustness of Global Navigation Satellite Systems: Comparison Study
by Carlos Hernando-Ramiro, Óscar Gamallo-Palomares, Javier Junquera-Sánchez and José Antonio Gómez-Sánchez
Sensors 2025, 25(5), 1599; https://doi.org/10.3390/s25051599 - 5 Mar 2025
Viewed by 1831
Abstract
The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon [...] Read more.
The time to first fix (TTFF) measures the time elapsed by a global navigation satellite system (GNSS) receiver from switch-on to provision of a navigation solution. This parameter is crucial for applications where a position, within an acceptable error, is needed as soon as possible after turning the device on. The quality of the TTFF depends mainly on the receiver, the environment, and the GNSS satellites employed. Although all four available GNSSs (BeiDou, Galileo, GLONASS, and GPS) are complementary, their constellations and signals differ, providing different TTFF performances. This becomes even more relevant in hostile environments, where the TTFF degrades from nominal results. In this work, the robustness of the signals of the four GNSSs against different levels of harshness and its influence on the TTFF performance are evaluated in a comparative way. For this purpose, a typical scenario for mass-market GNSS applications, involving cold-start conditions, single-frequency signals, and a low-cost receiver, is considered. The results indicate that GPS provides the most robust TTFF, followed by GLONASS (although at the expense of positioning accuracy), BeiDou, and Galileo, in that order. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

24 pages, 3042 KB  
Article
Global Navigation Satellite System Meta-Signals with an Arbitrary Number of Components
by Daniele Borio
Remote Sens. 2025, 17(4), 571; https://doi.org/10.3390/rs17040571 - 7 Feb 2025
Cited by 1 | Viewed by 1051
Abstract
Global Navigation Satellite System (GNSS) meta-signals are obtained when components from different frequencies are jointly processed as a single entity. While most research work has focused on GNSS meta-signals made of two side-band components, meta-signal theory has been recently extended to the case [...] Read more.
Global Navigation Satellite System (GNSS) meta-signals are obtained when components from different frequencies are jointly processed as a single entity. While most research work has focused on GNSS meta-signals made of two side-band components, meta-signal theory has been recently extended to the case where the number of components is a power of two. This condition was dictated by the use of multicomplex numbers for the representation of GNSS meta-signals. Multicomplex numbers are multi-dimensional extensions of complex numbers whose dimension is a power of two. In this paper, the theory is further extended and a procedure for the construction of GNSS meta-signals with an arbitrary number of components is provided. Also in this case, multicomplex numbers are used to effectively represent a GNSS meta-signal. From this representation, multi-dimensional Cross Ambiguity Functions (CAFs) are obtained and used to derive acquisition and tracking algorithms suitable for the joint processing of components from different frequencies. The specific case with three components is analysed. Theoretical results are supported by experimental findings obtained by jointly processing Galileo E5a, E5b and E6 signals collected using three synchronized Software-Defined Radio (SDR) HackRF One front-ends. Experimental results confirm the validity of the developed theory. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Graphical abstract

22 pages, 2772 KB  
Article
A Low-Cost Communication-Based Autonomous Underwater Vehicle Positioning System
by Raphaël Garin, Pierre-Jean Bouvet, Beatrice Tomasi, Philippe Forjonel and Charles Vanwynsberghe
J. Mar. Sci. Eng. 2024, 12(11), 1964; https://doi.org/10.3390/jmse12111964 - 1 Nov 2024
Cited by 3 | Viewed by 3928
Abstract
Underwater unmanned vehicles are complementary with human presence and manned vehicles for deeper and more complex environments. An autonomous underwater vechicle (AUV) has automation and long-range capacity compared to a cable-guided remotely operated vehicle (ROV). Navigation of AUVs is challenging due to the [...] Read more.
Underwater unmanned vehicles are complementary with human presence and manned vehicles for deeper and more complex environments. An autonomous underwater vechicle (AUV) has automation and long-range capacity compared to a cable-guided remotely operated vehicle (ROV). Navigation of AUVs is challenging due to the high absorption of radio-frequency signals underwater and the absence of a global navigation satellite system (GNSS). As a result, most navigation algorithms rely on inertial and acoustic signals; precise localization is then costly in addition to being independent from acoustic data communication. The purpose of this paper is to propose and analyze the performance of a novel low-cost simultaneous communication and localization algorithm. The considered scenario consists of an AUV that acoustically sends sensor or status data to a single fixed beacon. By estimating the Doppler shift and the range from this data exchange, the algorithm can provide a location estimate of the AUV. Using a robust state estimator, we analyze the algorithm over a survey path used for AUV mission planning both in numerical simulations and at-sea experiments. Full article
(This article belongs to the Special Issue Autonomous Marine Vehicle Operations—2nd Edition)
Show Figures

Figure 1

23 pages, 21723 KB  
Article
Dual-Band Low-Noise Amplifier for GNSS Applications
by Daniel Pietron, Tomasz Borejko and Witold Adam Pleskacz
Electronics 2024, 13(20), 4130; https://doi.org/10.3390/electronics13204130 - 21 Oct 2024
Cited by 1 | Viewed by 2363
Abstract
A new dual-band low-noise amplifier (LNA) operating at L1/E1 1.575 GHz and L5/E5 1.192 GHz center frequencies for global navigation satellite system receivers is proposed. A doubled common-source amplifier architecture is used with a single input, shared gate inductor, and two outputs to [...] Read more.
A new dual-band low-noise amplifier (LNA) operating at L1/E1 1.575 GHz and L5/E5 1.192 GHz center frequencies for global navigation satellite system receivers is proposed. A doubled common-source amplifier architecture is used with a single input, shared gate inductor, and two outputs to split the RF signal into separate RX channels. The main advantage of the proposed circuit is compatibility with widespread multi-band antennas with single RF connectors dedicated to high-precision applications, as well as the possibility to use cheap SAW filters with small footprints to build low-cost, highly accurate GNSS receiver modules. The input and both outputs are well matched to 50 Ω impedance. The LNA is designed with a 110 nm CMOS process, consuming 6.13 mA current from a 1.5 V supply. The measured noise figures and voltage gains of the dual-band LNA are, respectively, NF1/NF5 = 3.23/3.5 dB and G1/G5 = 21.22/18.2 dB in the band of interest for each channel. The measured impedance matching at the input (S11) and output (S22) of the dual-band low-frequency amplifier is as follows: S11_L1 = −23.89, S11_L5 = −8.42, S22_L1 = −12.65, S22_L5 = −15.08. The one-decibel compression points are L1 band PdB1 = −37.71 dBm and L5 band PdB5 = −34.72 dBm, respectively. Full article
(This article belongs to the Special Issue New Advances in Semiconductor Devices/Circuits)
Show Figures

Figure 1

15 pages, 3438 KB  
Communication
Galileo and BeiDou AltBOC Signals and Their Perspectives for Ionospheric TEC Studies
by Chuanfu Chen, Ilya Pavlov, Artem Padokhin, Yury Yasyukevich, Vladislav Demyanov, Ekaterina Danilchuk and Artem Vesnin
Sensors 2024, 24(19), 6472; https://doi.org/10.3390/s24196472 - 8 Oct 2024
Cited by 3 | Viewed by 2070
Abstract
For decades, GNSS code measurements were much noisier than phase ones, limiting their applicability to ionospheric total electron content (TEC) studies. Ultra-wideband AltBOC signals changed the situation. This study revisits the Galileo E5 and BeiDou B2 AltBOC signals and their potential applications in [...] Read more.
For decades, GNSS code measurements were much noisier than phase ones, limiting their applicability to ionospheric total electron content (TEC) studies. Ultra-wideband AltBOC signals changed the situation. This study revisits the Galileo E5 and BeiDou B2 AltBOC signals and their potential applications in TEC estimation. We found that TEC noises are comparable for the single-frequency AltBOC phase-code combination and those of the dual-frequency legacy BPSK/QPSK phase combination, while single-frequency BPSK/QPSK TEC noises are much higher. A two-week high-rate measurement campaign at the ACRG receiver revealed a mean 100 sec TEC RMS (used as the noise proxy) of 0.26 TECU, 0.15 TECU, and 0.09 TECU for the BeiDou B2(a+b) AltBOC signal and satellite elevations 0–30°, 30–60°, and 60–90°, correspondingly, and 0.22 TECU, 0.14 TECU, and 0.09 TECU for the legacy B1/B3 dual-frequency phase combination. The Galileo E5(a+b) AltBOC signal corresponding values were 0.25 TECU, 0.14 TECU, and 0.09 TECU; for the legacy signals’ phase combination, the values were 0.19 TECU, 0.13 TECU, and 0.08 TECU. The AltBOC (for both BeiDou and Galileo) SNR exceeds those of BPSK/QPSK by 7.5 dB-Hz in undisturbed conditions. Radio frequency interference (the 28 August 2022 and 9 May 2024 Solar Radio Burst events in our study) decreased the AltBOC SNR 5 dB-Hz more against QPSK SNR, but, due to the higher initial SNR, the threshold for the loss of the lock was never broken. Today, we have enough BeiDou and Galileo satellites that transmit AltBOC signals for a reliable single-frequency vTEC estimation. This study provides new insights and evidence for using Galileo and BeiDou AltBOC signals in high-precision ionospheric monitoring. Full article
(This article belongs to the Special Issue Advances in GNSS Signal Processing and Navigation)
Show Figures

Figure 1

Back to TopTop