Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (739)

Search Parameters:
Keywords = GNSS/INS sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7385 KB  
Article
Vision-Aided Velocity Estimation in GNSS Degraded or Denied Environments
by Pierpaolo Serio, Andrea Dan Ryals, Francesca Piana, Lorenzo Gentilini and Lorenzo Pollini
Sensors 2026, 26(3), 786; https://doi.org/10.3390/s26030786 - 24 Jan 2026
Viewed by 63
Abstract
This paper introduces a novel architecture for a navigation system that is designed to estimate the position and velocity of a moving vehicle specifically for remote piloting scenarios where GPS availability is intermittent and can be lost for extended periods of time. The [...] Read more.
This paper introduces a novel architecture for a navigation system that is designed to estimate the position and velocity of a moving vehicle specifically for remote piloting scenarios where GPS availability is intermittent and can be lost for extended periods of time. The purpose of the navigation system is to keep velocity estimation as reliable as possible to allow the vehicle guidance and control systems to maintain close-to-nominal performance. The cornerstone of this system is a landmark-extraction algorithm, which identifies pertinent features within the environment. These features serve as landmarks, enabling continuous and precise adjustments to the vehicle’s estimated velocity. State estimations are performed by a Sequential Kalman filter, which processes camera data regarding the vehicle’s relative position to the identified landmarks. Tracking the landmarks supports a state-of-the-art LiDAR odometry segment and keeps the velocity error low. During an extensive testing phase, the system’s performance was evaluated across various real word trajectories. These tests were designed to assess the system’s capability in maintaining stable velocity estimation under different conditions. The results from these evaluations indicate that the system effectively estimates velocity, demonstrating the feasibility of its application in scenarios where GPS signals are compromised or entirely absent. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 4676 KB  
Article
A Dual-Frame SLAM Framework for Simulation-Based Pre-Adjustment of Ballastless Track Geometry
by Bin Cui, Ran An, Zhao Tan, Chunyu Qi, Debin Shi and Qian Zhao
Appl. Sci. 2026, 16(2), 1148; https://doi.org/10.3390/app16021148 - 22 Jan 2026
Viewed by 54
Abstract
The geometric precision of ballastless tracks critically determines the performance and safety of high-speed railways. Traditional manual fine adjustment methods remain labor-intensive, iterative, and sensitive to human expertise, making it difficult to achieve sub-millimeter accuracy and global consistency. To address these challenges, this [...] Read more.
The geometric precision of ballastless tracks critically determines the performance and safety of high-speed railways. Traditional manual fine adjustment methods remain labor-intensive, iterative, and sensitive to human expertise, making it difficult to achieve sub-millimeter accuracy and global consistency. To address these challenges, this paper proposes a virtual-model–enabled pre-adjustment framework for high-speed ballastless track construction. The framework integrates a dual-frame SLAM-based and multi-sensor measurement system based on RC-SLAM principles and a local attitude compensation model, enabling accurate 3D mapping and reconstruction of long-track segments under extended-range and GNSS-denied conditions typical of linear infrastructure scenarios. A constraint-based global optimization algorithm is further developed to transform empirical fine adjustment into a computable geometric control problem, generating executable adjustment configurations with engineering feasibility. Field validation on a 1 km railway section demonstrates that the proposed method achieves sub-millimeter measurement accuracy, improves adjustment efficiency by over eight times compared with manual operations, and reduces material waste by $2800–$7000 per kilometer. This paper demonstrates a previously unexplored execution-level workflow for long-rail fine adjustment, establishing a closed-loop paradigm from measurement to predictive optimization and paving the way for SLAM-driven, simulation-based, and multi-sensor–integrated precision control in next-generation railway construction. Full article
Show Figures

Figure 1

36 pages, 6410 KB  
Article
Intelligent Fleet Monitoring System for Productivity Management of Earthwork Equipment
by Soomin Lee, Abubakar Sharafat, Sung-Hoon Yoo and Jongwon Seo
Appl. Sci. 2026, 16(2), 1115; https://doi.org/10.3390/app16021115 - 21 Jan 2026
Viewed by 78
Abstract
Earthwork operations constitute a substantial share of infrastructure project costs and are critical to overall project efficiency. However, the construction industry still relies on conventional approaches and there is a lack of integrated fleet management systems for collaboratively working equipment. While telematics is [...] Read more.
Earthwork operations constitute a substantial share of infrastructure project costs and are critical to overall project efficiency. However, the construction industry still relies on conventional approaches and there is a lack of integrated fleet management systems for collaboratively working equipment. While telematics is widely used in other industries, its applications to monitor the complex interactions between excavators, dump trucks, and dozers in real time remain limited. This study proposes an intelligent fleet monitoring system that utilizes only satellite navigation data (GNSS) to analyze the real-time productivity of multiple earthwork machines without relying on additional sensors, such as IMU or accelerometers, thereby eliminating the need for separate measurement procedures. A lightweight site configuration step is required to define the work area/loading/dumping geofences on an existing site map. This research provides novel developed algorithms that facilitate a real-time productivity assessment for several earthwork equipment and provide planning-level recommendations for equipment deployment combinations. Dedicated motion classification algorithms were developed for excavators, dump trucks, and dozers to distinguish activity states, to compute working and idle times, and to quantify operational efficiency. The system integrates a web-based e-Fleet Management platform and a mobile e-Map application for visualization and equipment optimization. Field validation was conducted on two active earthwork projects to evaluate accuracy and feasibility. The results demonstrate that the developed algorithms achieved classification and productivity estimation errors within 2.5%, while enabling optimized equipment combinations and improved cycle time efficiency. The proposed system offers a practical, sensor-independent approach for enhancing productivity monitoring, real-time decision-making, and cost efficiency in large-scale earthwork operations. Full article
(This article belongs to the Special Issue Building Information Modelling: From Theories to Practices)
Show Figures

Figure 1

21 pages, 10154 KB  
Article
Sea Ice Concentration Retrieval in the Arctic and Antarctic Using FY-3E GNSS-R Data
by Tingyu Xie, Cong Yin, Weihua Bai, Dongmei Song, Feixiong Huang, Junming Xia, Xiaochun Zhai, Yueqiang Sun, Qifei Du and Bin Wang
Remote Sens. 2026, 18(2), 285; https://doi.org/10.3390/rs18020285 - 15 Jan 2026
Viewed by 207
Abstract
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite [...] Read more.
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite Systems (GNSS) are utilized to extract characteristic parameters from Delay Doppler Maps (DDMs). By integrating regional partitioning and dynamic thresholding for sea ice detection, a Random Forest Regression (RFR) model incorporating a rolling-window training strategy is developed to estimate SIC. The retrieved SIC products are generated at the native GNSS-R observation resolution of approximately 1 × 6 km, with each SIC estimate corresponding to an individual GNSS-R observation time. Owing to the limited daily spatial coverage of GNSS-R measurements, the retrieved SIC results are further aggregated into monthly composites for spatial distribution analysis. The model is trained and validated across both polar regions, including targeted ice–water boundary zones. Retrieved SIC estimates are compared with reference data from the OSI SAF Special Sensor Microwave Imager Sounder (SSMIS), demonstrating strong agreement. Based on an extensive dataset, the average correlation coefficient (R) reaches 0.9450 in the Arctic and 0.9602 in the Antarctic for the testing set, with corresponding Root Mean Squared Error (RMSE) of 0.1262 and 0.0818, respectively. Even in the more challenging ice–water transition zones, RMSE values remain within acceptable ranges, reaching 0.1486 in the Arctic and 0.1404 in the Antarctic. This study demonstrates the feasibility and accuracy of GNSS-R-based SIC retrieval, offering a robust and effective approach for cryospheric monitoring at high latitudes in both polar regions. Full article
Show Figures

Figure 1

30 pages, 5328 KB  
Article
DTVIRM-Swarm: A Distributed and Tightly Integrated Visual-Inertial-UWB-Magnetic System for Anchor Free Swarm Cooperative Localization
by Xincan Luo, Xueyu Du, Shuai Yue, Yunxiao Lv, Lilian Zhang, Xiaofeng He, Wenqi Wu and Jun Mao
Drones 2026, 10(1), 49; https://doi.org/10.3390/drones10010049 - 9 Jan 2026
Viewed by 274
Abstract
Accurate Unmanned Aerial Vehicle (UAV) positioning is vital for swarm cooperation. However, this remains challenging in situations where Global Navigation Satellite System (GNSS) and other external infrastructures are unavailable. To address this challenge, we propose to use only the onboard Microelectromechanical System Inertial [...] Read more.
Accurate Unmanned Aerial Vehicle (UAV) positioning is vital for swarm cooperation. However, this remains challenging in situations where Global Navigation Satellite System (GNSS) and other external infrastructures are unavailable. To address this challenge, we propose to use only the onboard Microelectromechanical System Inertial Measurement Unit (MIMU), Magnetic sensor, Monocular camera and Ultra-Wideband (UWB) device to construct a distributed and anchor-free cooperative localization system by tightly fusing the measurements. As the onboard UWB measurements under dynamic motion conditions are noisy and discontinuous, we propose an adaptive adjustment method based on chi-squared detection to effectively filter out inconsistent and false ranging information. Moreover, we introduce the pose-only theory to model the visual measurement, which improves the efficiency and accuracy for visual-inertial processing. A sliding window Extended Kalman Filter (EKF) is constructed to tightly fuse all the measurements, which is capable of working under UWB or visual deprived conditions. Additionally, a novel Multidimensional Scaling-MAP (MDS-MAP) initialization method fuses ranging, MIMU, and geomagnetic data to solve the non-convex optimization problem in ranging-aided Simultaneous Localization and Mapping (SLAM), ensuring fast and accurate swarm absolute pose initialization. To overcome the state consistency challenge inherent in the distributed cooperative structure, we model not only the UWB noisy uncertainty but also the neighbor agent’s position uncertainty in the measurement model. Furthermore, we incorporate the Covariance Intersection (CI) method into our UWB measurement fusion process to address the challenge of unknown correlations between state estimates from different UAVs, ensuring consistent and robust state estimation. To validate the effectiveness of the proposed methods, we have established both simulation and hardware test platforms. The proposed method is compared with state-of-the-art (SOTA) UAV localization approaches designed for GNSS-challenged environments. Extensive experiments demonstrate that our algorithm achieves superior positioning accuracy, higher computing efficiency and better robustness. Moreover, even when vision loss causes other methods to fail, our proposed method continues to operate effectively. Full article
(This article belongs to the Special Issue Autonomous Drone Navigation in GPS-Denied Environments)
Show Figures

Figure 1

54 pages, 8516 KB  
Review
Interdisciplinary Applications of LiDAR in Forest Studies: Advances in Sensors, Methods, and Cross-Domain Metrics
by Nadeem Fareed, Carlos Alberto Silva, Izaya Numata and Joao Paulo Flores
Remote Sens. 2026, 18(2), 219; https://doi.org/10.3390/rs18020219 - 9 Jan 2026
Viewed by 474
Abstract
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, [...] Read more.
Over the past two decades, Light Detection and Ranging (LiDAR) technology has evolved from early National Aeronautics and Space Administration (NASA)-led airborne laser altimetry into commercially mature systems that now underpin vegetation remote sensing across scales. Continuous advancements in laser engineering, signal processing, and complementary technologies—such as Inertial Measurement Units (IMU) and Global Navigation Satellite Systems (GNSS)—have yielded compact, cost-effective, and highly sophisticated LiDAR sensors. Concurrently, innovations in carrier platforms, including uncrewed aerial systems (UAS), mobile laser scanning (MLS), Simultaneous Localization and Mapping (SLAM) frameworks, have expanded LiDAR’s observational capacity from plot- to global-scale applications in forestry, precision agriculture, ecological monitoring, Above Ground Biomass (AGB) modeling, and wildfire science. This review synthesizes LiDAR’s cross-domain capabilities for the following: (a) quantifying vegetation structure, function, and compositional dynamics; (b) recent sensor developments encompassing ALS discrete-return (ALSD), and ALS full-waveform (ALSFW), photon-counting LiDAR (PCL), emerging multispectral LiDAR (MSL), and hyperspectral LiDAR (HSL) systems; and (c) state-of-the-art data processing and fusion workflows integrating optical and radar datasets. The synthesis demonstrates that many LiDAR-derived vegetation metrics are inherently transferable across domains when interpreted within a unified structural framework. The review further highlights the growing role of artificial-intelligence (AI)-driven approaches for segmentation, classification, and multitemporal analysis, enabling scalable assessments of vegetation dynamics at unprecedented spatial and temporal extents. By consolidating historical developments, current methodological advances, and emerging research directions, this review establishes a comprehensive state-of-the-art perspective on LiDAR’s transformative role and future potential in monitoring and modeling Earth’s vegetated ecosystems. Full article
(This article belongs to the Special Issue Digital Modeling for Sustainable Forest Management)
Show Figures

Graphical abstract

24 pages, 33749 KB  
Article
Ultra-Wideband System for Museum Visitors Tracking: Towards the Integration of the Positioning System with the Vision Sensors
by Angeliki Makellaraki, Vincenzo Di Pietra, Paolo Dabove and Milad Bagheri
ISPRS Int. J. Geo-Inf. 2026, 15(1), 33; https://doi.org/10.3390/ijgi15010033 - 8 Jan 2026
Viewed by 252
Abstract
Indoor positioning systems (IPSs) are increasingly applied in indoor settings where satellite-based GNSS signals are unavailable, including museums and other cultural heritage spaces. Within the META-MUSEUM project, we present a pilot study integrating an Ultra-Wideband (UWB) positioning system and an eye-tracking device to [...] Read more.
Indoor positioning systems (IPSs) are increasingly applied in indoor settings where satellite-based GNSS signals are unavailable, including museums and other cultural heritage spaces. Within the META-MUSEUM project, we present a pilot study integrating an Ultra-Wideband (UWB) positioning system and an eye-tracking device to monitor and quantify visitor behavior in a real museum environment. The absence of common timestamps between the two systems, and the presence of UWB signal noise, have been the main challenges to address. A cross-correlation–based synchronization method was developed to align the two independent UWB and eye-tracking datasets. Data were collected from 100 visitors, of whom 7 different clusters were considered based on the characteristics of the visitors. The results demonstrate the system’s feasibility and provide two complementary metrics, Normalized Engagement and Collective Engagement, which are used to quantify the duration and spatial distribution of visitor engagement at specific exhibits. This work establishes a scalable multi-sensor foundation by addressing practical deployment challenges under real-world conditions. These findings form the basis for the project’s broader goal of linking spatial visitor behavior with neurophysiological responses, opening new possibilities for improving visitor engagement and supporting interactive cultural heritage experiences. Full article
Show Figures

Figure 1

18 pages, 7305 KB  
Article
SERail-SLAM: Semantic-Enhanced Railway LiDAR SLAM
by Weiwei Song, Shiqi Zheng, Xinye Dai, Xiao Wang, Yusheng Wang, Zihao Wang, Shujie Zhou, Wenlei Liu and Yidong Lou
Machines 2026, 14(1), 72; https://doi.org/10.3390/machines14010072 - 7 Jan 2026
Viewed by 315
Abstract
Reliable state estimation in railway environments presents significant challenges due to geometric degeneracy resulting from repetitive structural layouts and point cloud sparsity caused by high-speed motion. Conventional LiDAR-based SLAM systems frequently suffer from longitudinal drift and mapping artifacts when operating in such feature-scarce [...] Read more.
Reliable state estimation in railway environments presents significant challenges due to geometric degeneracy resulting from repetitive structural layouts and point cloud sparsity caused by high-speed motion. Conventional LiDAR-based SLAM systems frequently suffer from longitudinal drift and mapping artifacts when operating in such feature-scarce and dynamically complex scenarios. To address these limitations, this paper proposes SERail-SLAM, a robust semantic-enhanced multi-sensor fusion framework that tightly couples LiDAR odometry, inertial pre-integration, and GNSS constraints. Unlike traditional approaches that rely on rigid voxel grids or binary semantic masking, we introduce a Semantic-Enhanced Adaptive Voxel Map. By leveraging eigen-decomposition of local point distributions, this mapping strategy dynamically preserves fine-grained stable structures while compressing redundant planar surfaces, thereby enhancing spatial descriptiveness. Furthermore, to mitigate the impact of environmental noise and segmentation uncertainty, a confidence-aware filtering mechanism is developed. This method utilizes raw segmentation probabilities to adaptively weight input measurements, effectively distinguishing reliable landmarks from clutter. Finally, a category-weighted joint optimization scheme is implemented, where feature associations are constrained by semantic stability priors, ensuring globally consistent localization. Extensive experiments in real-world railway datasets demonstrate that the proposed system achieves superior accuracy and robustness compared to state-of-the-art geometric and semantic SLAM methods. Full article
(This article belongs to the Special Issue Dynamic Analysis and Condition Monitoring of High-Speed Trains)
Show Figures

Figure 1

26 pages, 3302 KB  
Article
An Autonomous Land Vehicle Navigation System Based on a Wheel-Mounted IMU
by Shuang Du, Wei Sun, Xin Wang, Yuyang Zhang, Yongxin Zhang and Qihang Li
Sensors 2026, 26(1), 328; https://doi.org/10.3390/s26010328 - 4 Jan 2026
Viewed by 420
Abstract
Navigation errors due to drifting in inertial systems using low-cost sensors are some of the main challenges for land vehicle navigation in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose an autonomous navigation strategy with a wheel-mounted microelectromechanical system (MEMS) [...] Read more.
Navigation errors due to drifting in inertial systems using low-cost sensors are some of the main challenges for land vehicle navigation in Global Navigation Satellite System (GNSS)-denied environments. In this paper, we propose an autonomous navigation strategy with a wheel-mounted microelectromechanical system (MEMS) inertial measurement unit (IMU), referred to as the wheeled inertial navigation system (INS), to effectively suppress drifted navigation errors. The position, velocity, and attitude (PVA) of the vehicle are predicted through the inertial mechanization algorithm, while gyro outputs are utilized to derive the vehicle’s forward velocity, which is treated as an observation with non-holonomic constraints (NHCs) to estimate the inertial navigation error states. To establish a theoretical foundation for wheeled INS error characteristics, a comprehensive system observability analysis is conducted from an analytical point of view. The wheel rotation significantly improves the observability of gyro errors perpendicular to the rotation axis, which effectively suppresses azimuth errors, horizontal velocity, and position errors. This leads to the superior navigation performance of a wheeled INS over the traditional odometer (OD)/NHC/INS. Moreover, a hybrid extended particle filter (EPF), which fuses the extended Kalman filter (EKF) and PF, is proposed to update the vehicle’s navigation states. It has the advantages of (1) dealing with the system’s non-linearity and non-Gaussian noises, and (2) simultaneously achieving both a high level of accuracy in its estimation and tolerable computational complexity. Kinematic field test results indicate that the proposed wheeled INS is able to provide an accurate navigation solution in GNSS-denied environments. When a total distance of over 26 km is traveled, the maximum position drift rate is only 0.47% and the root mean square (RMS) of the heading error is 1.13°. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

15 pages, 6187 KB  
Article
Detection and Monitoring of Topography Changes at the Tottori Sand Dune Using UAV-LiDAR
by Jiaqi Liu, Jing Wu, Soichiro Okida, Reiji Kimura, Mingyuan Du and Yan Li
Sensors 2026, 26(1), 302; https://doi.org/10.3390/s26010302 - 2 Jan 2026
Viewed by 532
Abstract
Coastal sand dunes, shaped by aeolian and marine processes, are critical to natural ecosystems and human societies, making their morphological monitoring essential for effective conservation. However, large-scale, high-precision monitoring of topographic change remains a persistent challenge, a challenge that advanced sensing technologies can [...] Read more.
Coastal sand dunes, shaped by aeolian and marine processes, are critical to natural ecosystems and human societies, making their morphological monitoring essential for effective conservation. However, large-scale, high-precision monitoring of topographic change remains a persistent challenge, a challenge that advanced sensing technologies can address. In this study, we propose an integrated, sensor-based approach using a UAV-mounted light detection and ranging (LiDAR) system, combined with a GNSS-RTK positioning unit and a novel ground control point (GCP) design to acquire high-resolution topographic data. Field surveys were conducted at four time points between October 2022 and February 2023 in the Tottori Sand Dunes, Japan. The digital elevation models (DEMs) derived from LiDAR point clouds achieved centimeter-level accuracy, enabling reliable detection of subtle topographic changes. Analysis of DEM differencing revealed that wind-driven sand deposition and erosion resulted in elevation changes of up to 0.4 m. These results validate the efficacy of the UAV-LiDAR sensor system for high-resolution, multitemporal monitoring of coastal sand dunes, highlighting its potential to advance the development of environmental sensing frameworks and support data-driven conservation strategies. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

29 pages, 5280 KB  
Article
Comparative Analysis of Map-Matching Algorithms for Autonomous Vehicles Under Varying GPS Errors and Network Densities
by Sari Kim and Kyeongpyo Kang
Appl. Sci. 2026, 16(1), 398; https://doi.org/10.3390/app16010398 - 30 Dec 2025
Viewed by 351
Abstract
Reliable traffic-signal information delivery is critical for safe navigation through signalized intersections, particularly for low-cost autonomous vehicles that rely on Vehicle-to-Network (V2N) communication rather than on-board HD maps or expensive perception sensors. Ensuring this selective delivery requires accurate infrastructure-side map-matching, which becomes challenging [...] Read more.
Reliable traffic-signal information delivery is critical for safe navigation through signalized intersections, particularly for low-cost autonomous vehicles that rely on Vehicle-to-Network (V2N) communication rather than on-board HD maps or expensive perception sensors. Ensuring this selective delivery requires accurate infrastructure-side map-matching, which becomes challenging when vehicles operate with only Standard Definition (SD) maps and noisy GNSS measurements. This study comparatively evaluates five infrastructure-side map-matching algorithms under varying GNSS errors and road-network densities using real trajectories from Jeju Island with controlled Gaussian perturbations. The framework includes geometric matching, Extended Kalman Filtering (EKF), route-constrained filtering, grid-based spatial indexing, and a hybrid route–EKF fallback mechanism, executed in real time on a cloud-hosted Kafka pipeline. The hybrid route–EKF algorithm exhibited consistently high and stable link-matching accuracy (0.99308–0.96546 across GPS error groups; 0.9887–0.9777 across density groups) together with strong signal-matching accuracy (0.99394–0.96950; 0.9865–0.9790). Route-constrained and Kalman-based approaches also performed well, while heading-based matching showed clear limitations. These results indicate that infrastructure-side map-matching provides a scalable foundation for cloud-assisted traffic-signal information services and supports the feasibility of delivering reliable traffic-signal information to low-cost autonomous platforms. Full article
Show Figures

Figure 1

29 pages, 46239 KB  
Article
Radar and OpenStreetMap-Aided Consistent Trajectory Estimation in Canopy-Occluded Environments
by Youchen Tang, Bijun Li, Haoran Zhong, Maosheng Yan, Shuiyun Jiang and Jian Zhou
Remote Sens. 2026, 18(1), 70; https://doi.org/10.3390/rs18010070 - 25 Dec 2025
Viewed by 365
Abstract
Accurate localization in canopy-occluded, GNSS-challenged environments is critical for autonomous robots and intelligent vehicles. This paper presents a coarse-to-fine trajectory estimation framework using millimeter-wave radar as the primary sensor, leveraging its foliage penetration and robustness to low visibility. The framework integrates short- and [...] Read more.
Accurate localization in canopy-occluded, GNSS-challenged environments is critical for autonomous robots and intelligent vehicles. This paper presents a coarse-to-fine trajectory estimation framework using millimeter-wave radar as the primary sensor, leveraging its foliage penetration and robustness to low visibility. The framework integrates short- and long-term temporal feature enhancement to improve descriptor distinctiveness and suppress false loop closures, together with adaptive OpenStreetMap-derived priors that provide complementary global corrections in scenarios with sparse revisits. All constraints are jointly optimized within an outlier-robust backend to ensure global trajectory consistency under severe GNSS signal degradation. Evaluations conducted on the MulRan dataset, the OORD forest canopy dataset, and real-world campus experiments with partial and dense canopy coverage demonstrate up to 55.23% reduction in Absolute Trajectory Error (ATE) and a minimum error of 1.83 m compared with baseline radar- and LiDAR-based SLAM systems. The results indicate that the integration of temporally enhanced radar features with adaptive map constraints substantially improves large-scale localization robustness. Full article
(This article belongs to the Special Issue State of the Art in Positioning Under Forest Canopies)
Show Figures

Graphical abstract

24 pages, 4196 KB  
Article
Real-Time Cooperative Path Planning and Collision Avoidance for Autonomous Logistics Vehicles Using Reinforcement Learning and Distributed Model Predictive Control
by Mingxin Li, Hui Li, Yunan Yao, Yulei Zhu, Hailong Weng, Huabiao Jin and Taiwei Yang
Machines 2026, 14(1), 27; https://doi.org/10.3390/machines14010027 - 24 Dec 2025
Viewed by 352
Abstract
In industrial environments such as ports and warehouses, autonomous logistics vehicles face significant challenges in coordinating multiple vehicles while ensuring safe and efficient path planning. This study proposes a novel real-time cooperative control framework for autonomous vehicles, combining reinforcement learning (RL) and distributed [...] Read more.
In industrial environments such as ports and warehouses, autonomous logistics vehicles face significant challenges in coordinating multiple vehicles while ensuring safe and efficient path planning. This study proposes a novel real-time cooperative control framework for autonomous vehicles, combining reinforcement learning (RL) and distributed model predictive control (DMPC). The RL agent dynamically adjusts the optimization weights of the DMPC to adapt to the vehicle’s real-time environment, while the DMPC enables decentralized path planning and collision avoidance. The system leverages multi-source sensor fusion, including GNSS, UWB, IMU, LiDAR, and stereo cameras, to provide accurate state estimations of vehicles. Simulation results demonstrate that the proposed RL-DMPC approach outperforms traditional centralized control strategies in terms of tracking accuracy, collision avoidance, and safety margins. Furthermore, the proposed method significantly improves control smoothness compared to rule-based strategies. This framework is particularly effective in dynamic and constrained industrial settings, offering a robust solution for multi-vehicle coordination with minimal communication delays. The study highlights the potential of combining RL with DMPC to achieve real-time, scalable, and adaptive solutions for autonomous logistics. Full article
(This article belongs to the Special Issue Control and Path Planning for Autonomous Vehicles)
Show Figures

Figure 1

18 pages, 8006 KB  
Article
Optimal Low-Cost MEMS INS/GNSS Integrated Georeferencing Solution for LiDAR Mobile Mapping Applications
by Nasir Al-Shereiqi, Mohammed El-Diasty and Ghazi Al-Rawas
Sensors 2025, 25(24), 7683; https://doi.org/10.3390/s25247683 - 18 Dec 2025
Viewed by 554
Abstract
Mobile mapping systems using LiDAR technology are becoming a reliable surveying technique to generate accurate point clouds. Mobile mapping systems integrate several advanced surveying technologies. This research investigated the development of a low-cost, accurate Microelectromechanical System (MEMS)-based INS/GNSS georeferencing system for LiDAR mobile [...] Read more.
Mobile mapping systems using LiDAR technology are becoming a reliable surveying technique to generate accurate point clouds. Mobile mapping systems integrate several advanced surveying technologies. This research investigated the development of a low-cost, accurate Microelectromechanical System (MEMS)-based INS/GNSS georeferencing system for LiDAR mobile mapping applications, enabling the generation of accurate point clouds. The challenge of using the MEMS IMU is that it is contaminated by high levels of noise and bias instability. To overcome this issue, new denoising and filtering methods were developed using a wavelet neural network (WNN) and an optimal maximum likelihood estimator (MLE) method to achieve an accurate MEMS-based INS/GNSS integration navigation solution for LiDAR mobile mapping applications. Moreover, the final accuracy of the MEMS-based INS/GNSS navigation solution was compared with the ASPRS standards for geospatial data production. It was found that the proposed WNN denoising method improved the MEMS-based INS/GNSS integration accuracy by approximately 11%, and that the optimal MLE method achieved approximately 12% higher accuracy than the forward-only navigation solution without GNSS outages. The proposed WNN denoising outperforms the current state-of-the-art Long Short-Term Memory (LSTM)–Recurrent Neural Network (RNN), or LSTM-RNN, denoising model. Additionally, it was found that, depending on the sensor–object distance, the accuracy of the optimal MLE-based MEMS INS/GNSS navigation solution with WNN denoising ranged from 1 to 3 cm for ground mapping and from 1 to 9 cm for building mapping, which can fulfill the ASPRS standards of classes 1 to 3 and classes 1 to 9 for ground and building mapping cases, respectively. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

21 pages, 5421 KB  
Article
Seamless Quantification of Wet and Dry Riverscape Topography Using UAV Topo-Bathymetric LiDAR
by Craig John MacDonell, Richard David Williams, Jon White and Kenny Roberts
Drones 2025, 9(12), 872; https://doi.org/10.3390/drones9120872 - 17 Dec 2025
Viewed by 496
Abstract
Quantifying riverscape topography is challenging because riverscapes comprise of both wet and dry surfaces. Advances have been made in demonstrating the capability of mounting topo-bathymetric LiDAR (Light Detection and Ranging) sensors on crewed, occupied aircraft to quantify riverscape topography. However, only recently has [...] Read more.
Quantifying riverscape topography is challenging because riverscapes comprise of both wet and dry surfaces. Advances have been made in demonstrating the capability of mounting topo-bathymetric LiDAR (Light Detection and Ranging) sensors on crewed, occupied aircraft to quantify riverscape topography. However, only recently has miniaturisation of electronic components enabled topo-bathymetric LiDAR to be mounted on consumer-grade Unoccupied Aerial Vehicles (UAVs). We evaluate the capability of a demonstration YellowScan Navigator topo-bathymetric, full waveform LiDAR sensor, mounted on a DJI Matrice 600 UAV, to survey a 1 km long reach of the braided River Feshie, Scotland. Ground-truth data, with centimetre accuracy, were collected across wet areas using an echo-sounder, and in wet and dry areas using RTK-GNSS (Real-Time Kinematic Global Navigation Satellite System). The processed point cloud had a density of 62 points/m2. Ground-truth mean errors (and standard deviation) across dry gravel bars were 0.06 ± 0.04 m, along shallow channel beds were −0.03 ± 0.12 m and for deep channels were −0.08 m ± 0.23 m. Geomorphic units with a concave three-dimensional shape (pools, troughs), associated with deeper water, had larger negative errors and wider ranges of residuals than planar or convex units. The case study demonstrates the potential of using UAV topo-bathymetric LiDAR to enhance survey efficiency but a need to evaluate spatial error distribution. Full article
Show Figures

Figure 1

Back to TopTop