Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (332)

Search Parameters:
Keywords = GK-2A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5975 KiB  
Article
A Detailed Performance Evaluation of the GK2A Fog Detection Algorithm Using Ground-Based Visibility Meter Data (2021–2023, Part I)
by Hyun-Kyoung Lee and Myoung-Seok Suh
Remote Sens. 2025, 17(15), 2596; https://doi.org/10.3390/rs17152596 - 25 Jul 2025
Viewed by 313
Abstract
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood [...] Read more.
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood pixel approaches to the visibility meter, the 3-year average probability of detection (POD) is 0.59 and 0.70, the false alarm ratio (FAR) is 0.86 and 0.81, and the bias is 4.25 and 3.73, respectively. POD is highest during daytime (0.72; bias: 7.34), decreases at night (0.57; bias: 3.89), and is lowest at twilight (0.52; bias: 2.36). The seasonal mean POD is 0.65 in winter, 0.61 in spring and autumn, and 0.47 in summer, with August reaching the minimum value, 0.33. While POD is higher in coastal areas than inland areas, inland regions show lower FAR, indicating more stable performance. Over-detections occurred regardless of geographic location and time, mainly due to the misclassification of low-level clouds and cloud edges as fog. Especially after sunrise, the fog dissipated and transformed into low-level clouds. These findings suggest that there are limitations to improving fog detection levels using satellite data alone, especially when the surface is obscured by clouds, indicating the need to utilize other data sources, such as objective ground-based analysis data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

24 pages, 11580 KiB  
Article
GS24b and GS24bc Ground Motion Models for Active Crustal Regions Based on a Non-Traditional Modeling Approach
by Vladimir Graizer and Scott Stovall
Geosciences 2025, 15(8), 277; https://doi.org/10.3390/geosciences15080277 - 23 Jul 2025
Viewed by 245
Abstract
An expanded Pacific Earthquake Engineering Research (PEER) Center Next Generation Attenuation Phase 2 (NGA-West2) ground motion database, compiled using shallow crustal earthquakes in active crustal regions (ACRs), was used to develop the closed-form GS24b backbone ground motion model (GMM) for the RotD50 horizontal [...] Read more.
An expanded Pacific Earthquake Engineering Research (PEER) Center Next Generation Attenuation Phase 2 (NGA-West2) ground motion database, compiled using shallow crustal earthquakes in active crustal regions (ACRs), was used to develop the closed-form GS24b backbone ground motion model (GMM) for the RotD50 horizontal components of peak ground acceleration (PGA), peak ground velocity (PGV), and 5% damped elastic pseudo-absolute response spectral accelerations (SA). The GS24b model is applicable to earthquakes with moment magnitudes of 4.0 ≤ M ≤ 8.5, at rupture distances of 0 ≤ Rrup ≤ 400 km, with time-averaged S-wave velocity in the upper 30 m of the profile at 150 ≤ VS30 ≤ 1500 m/s, and for periods of 0.01 ≤ T ≤ 10 s. The new backbone model includes VS30 site correction developed based on multiple representative S-wave velocity profiles. For crustal wave attenuation, we used the apparent anelastic attenuation of SA—QSA (f, M). In contrast to the GK17, the GS24b backbone is a generic ACR model designed specifically to be adjusted to any ACRs. The GS24bc is an example of a partially non-ergodic model created by adjusting the backbone GS24b model for magnitude M, S-wave velocity VS30, and fault rupture distance residuals. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

21 pages, 579 KiB  
Article
Evaluation of Seaweed Meal and Konjac Glucomannan Mixture as Feed Ingredients in Largemouth Bass Micropterus salmoides
by Yan-Bo Cheng, Dan Wu, Liang Gao, Shun Rong, Guo-Huan Xu and Xu-Fang Liang
Fishes 2025, 10(7), 345; https://doi.org/10.3390/fishes10070345 - 11 Jul 2025
Viewed by 336
Abstract
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control [...] Read more.
To address the negative effects of high-starch diets on largemouth bass (LMB), this study evaluated the feasibility of using a Gracilaria lemaneiformis-konjac glucomannan mixture (GKM, 2:1) as a substitute for strong flour (SF). Four iso-nitrogenous and iso-lipid diets were formulated: a control (15% SF; GK00) and three other diets replacing 33.3% (GK05), 66.7% (GK10), or 100% (GK15) of SF with GKM. Each diet was randomly administered to triplicate tanks of fish (10.49 ± 0.232 g) for a 10-week feeding trial. Results showed that the GKM inclusion groups significantly improved the fish survival and feed intake. Fish in GK05 and GK10 groups exhibited significantly higher final body weight, weight gain, and specific growth rate than the GK00 group, while GK15 showed no significant increase in these metrics. There was no impairment in protein, lipid, phosphorus, and energy retention efficiency in the GK05 and GK10 groups compared to those of the GK00 group. Apparent digestibility for feed dry matter, protein, lipid, phosphorus, and the 16 amino acids was not decreased in the GK05 and GK10 groups relative to the GK00 group. In addition, this study revealed reduced phosphorus waste per kilogram of weight gain in GK05 and GK10. In conclusion, these findings position GKM as a sustainable alternative to SF in feed for LMB. Full article
Show Figures

Figure 1

17 pages, 3275 KiB  
Article
Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi)
by Wanjia Zhu, Yi Yi, Liwei Liu, Zhiwei Zou, Jianming Chen and Jianmei Su
Animals 2025, 15(13), 1926; https://doi.org/10.3390/ani15131926 - 30 Jun 2025
Viewed by 344
Abstract
An 8-week trial was conducted to investigate the effects of choline on the growth of Chinese perch (85.57 ± 0.54 g) with dietary choline supplementation at 0 (P0), 400 (P1), 800 (P2), 1600 (P3), 3200 (P4), and 6400 mg/kg (P5). Protein efficiency ratio [...] Read more.
An 8-week trial was conducted to investigate the effects of choline on the growth of Chinese perch (85.57 ± 0.54 g) with dietary choline supplementation at 0 (P0), 400 (P1), 800 (P2), 1600 (P3), 3200 (P4), and 6400 mg/kg (P5). Protein efficiency ratio and protein retention value (PRV) were higher in the P1–P4 groups than in the P0 group (p < 0.05). Compared to the P0 group, weight gain rate and specific growth rate (SGR) increased in the P2 and P3 groups (p < 0.05). The orexigenic gene agrp expression level rose in the P2–P4 groups (p < 0.05). The expression level of the lipolysis-related gene hsl or pparα was elevated in the P2 and P4 groups (p < 0.05). Proteolysis-related gene (ampd, mafbx, and murf1) expressions decreased in the P1–P4 groups, while tor and gk gene expressions increased in the P2 and P3 groups (p < 0.05). Broken-line analysis indicated that the optimal choline supplementation level for Chinese perch is 788.38 mg/kg based on SGR and 851.04 mg/kg based on PRV. The results demonstrate that moderate dietary choline supplementation enhances growth performance by promoting glucose and lipid catabolism and inhibiting protein catabolism in Chinese perch. Full article
Show Figures

Figure 1

13 pages, 1307 KiB  
Article
3-Bromopyruvate Impairs Mitochondrial Function in Trypanosoma cruzi
by Rafaella Oliveira da Costa, Davi Barreto-Campos, Juliana Barbosa-de-Barros, Giovanna Frechiani, Luiz Fernando Carvalho-Kelly, Ayra Diandra Carvalho-de-Araújo, José Roberto Meyer-Fernandes and Claudia Fernanda Dick
Pathogens 2025, 14(7), 631; https://doi.org/10.3390/pathogens14070631 - 25 Jun 2025
Viewed by 630
Abstract
Trypanosoma cruzi is a kinetoplastid parasite and etiological agent of Chagas disease. Given the significant morbidity and mortality rates of this parasitic disease, possible treatment alternatives need to be studied. 3-Bromopyruvate (3-BrPA) is a synthetic analog of pyruvate that was introduced in the [...] Read more.
Trypanosoma cruzi is a kinetoplastid parasite and etiological agent of Chagas disease. Given the significant morbidity and mortality rates of this parasitic disease, possible treatment alternatives need to be studied. 3-Bromopyruvate (3-BrPA) is a synthetic analog of pyruvate that was introduced in the early 21st century as an anticancer agent, affecting the proliferation and motility of certain microorganisms. Therefore, this work aims to evaluate the role of 3-BrPA in the energy metabolism, proliferation, and infectivity of T. cruzi, with a primary focus on the mitochondrial state, ATP production, and the key glycolytic pathway enzymes. It was observed that mitochondrial function in 3-BrPA cells was impaired compared to control cells. Accordingly, cells maintained in control conditions have a higher intracellular ATP content than cells maintained with 3-BrPA and higher ecto-phosphatase activity. However, the 3-BrPA reduced ecto-nuclease activity and was capable of hydrolyzing 5′-AMP, ADP, and ATP. When we evaluated two key glycolytic pathway enzymes, glucose kinase (GK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), we observed that 3-BrPA induced higher GAPDH activity but did not alter GK activity. The compensatory energy mechanisms presented in T. cruzi may influence the process of cell metabolism and, consequently, the functional infectious process, suggesting the potential use of 3-BrPA in future clinical applications for Chagas disease. Full article
(This article belongs to the Special Issue Virulence and Molecular Cell Biology of Parasites)
Show Figures

Figure 1

13 pages, 1370 KiB  
Article
Quantifying Football Shooting Precision: The Expected Shot Impact Timing (xSIT) Approach
by Blanca De-la-Cruz-Torres, Miguel Navarro-Castro and Anselmo Ruiz-de-Alarcón-Quintero
Appl. Sci. 2025, 15(12), 6735; https://doi.org/10.3390/app15126735 - 16 Jun 2025
Viewed by 495
Abstract
Background: Current advanced metrics do not sufficiently isolate and quantify the quality of the shooter’s technical execution under match conditions. Objective: This study aimed to develop an Expected Shot Impact Timing (xSIT) model to evaluate the shooting action by considering the spatial configuration [...] Read more.
Background: Current advanced metrics do not sufficiently isolate and quantify the quality of the shooter’s technical execution under match conditions. Objective: This study aimed to develop an Expected Shot Impact Timing (xSIT) model to evaluate the shooting action by considering the spatial configuration of the shooter, the goalkeeper (GK), and all outfield players, as well as incorporating dynamic variables such as ball velocity and player reaction time. Additionally, this study sought to compare the performance and discriminative capacity of two existing post-shot expected goal metrics (xSIT and xGOT, expected goals on target) in evaluating the probability of scoring for shots on target after the moment of execution. Methods: Formal definitions were established for the following: (i) the ball shot location, (ii) the ball velocity, (iii) the GK location, and (iv) the outfield player’s location. An xSIT model incorporating geometric parameters was designed to optimize performance based on ball position and players’ position. The model was tested using all shots from the 2023 Women’s World Cup and the 2022 Men’s World Cup. A 5-fold cross-validation procedure was applied to evaluate the x SIT model’s performance, and an independent Student’s t-test was performed to statistically compare the performance of the xSIT and xGOT models. Results: The k-fold cross-validation yielded an AUC-ROC score of 0.92 and 84% accuracy, confirming the model’s ability to differentiate successful shooter performance. Statistically and clinically significant differences were observed between the xSIT and xGOT metrics across all analyzed variables, including total shots on target, goal shots, and saved shots (p < 0.001 in all cases). Conclusions: The xSIT metric offers a more nuanced and context-sensitive assessment of shot execution by the shooter, representing a significant advancement over existing post-shot evaluation models. Significant differences were observed between men’s and women’s tournaments. Full article
Show Figures

Figure 1

15 pages, 747 KiB  
Article
Influence of Eucommia ulmoides Extract on the Growth, Glucose Metabolism, and Antioxidant Capacity of Largemouth Bass (Micropterus salmoides)
by Shengqi Zhao, Dongyu Huang, Mingchun Ren, Jiaze Gu and Hualiang Liang
Fishes 2025, 10(6), 269; https://doi.org/10.3390/fishes10060269 - 3 Jun 2025
Viewed by 390
Abstract
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on [...] Read more.
This study aimed to evaluate the impact of Eucommia ulmoides extract (EE) supplementation on the expression of genes related to glucose metabolism and antioxidant capacity of M. salmoides in response to different starch levels. In order to evaluate the effect of EE on fish metabolism and especially to enhance the metabolism of M. salmoides towards glucose metabolism, especially in high and low starch formulations, we designed six experimental feed groups: PC (high-starch control), NC (low-starch control), and four groups supplemented with EE on the basis of PC, with EE concentrations of 0.05%, 0.10%, 0.15%, and 0.20%, respectively. Each feed was administered to fish with an average weight of 36.98 ± 0.08 g, which were cultured for seven weeks, and the water temperature was 31–33 °C. The results demonstrated that increasing the EE concentration in the feed significantly influenced fish growth without affecting the body composition. Regarding the antioxidant activity, the highest CAT (catalase) enzyme activity in the intestine was recorded in the 0.15% EE group. Additionally, the mRNA expression of the antioxidant gene keap1 (kelch-like ECH-associated protein1) increased with higher EE supplementation, and sod (superoxide dismutase) mRNA expression was significantly elevated in the 0.10% EE group compared to that in the PC group. A plasma biochemical analysis revealed a significant increase in the ALP (alkaline phosphatase) activity in the 0.05% EE group relative to the PC group, while the TG (triglycerides) levels progressively decreased as the EE levels increased. Furthermore, the GLU (glucose) levels were significantly reduced in both the EE-supplemented and NC groups compared to those in the PC group. Among the genes associated with glucose metabolism, both gk (glucokinase) and pepck (phosphoenol pyruvate carboxykinase) exhibited a pattern of initially decreasing, followed by an increase, as the EE levels rose, with the pepck (phosphoenol pyruvate carboxykinase) expression being lowest in the 0.10% EE group. In conclusion, appropriate EE supplementation in the diet may promote growth performance, enhance antioxidant capacity, and support the expression of genes related to glucose metabolism of M.salmoides in response to different starch levels. Full article
(This article belongs to the Special Issue Largemouth Bass Aquaculture)
Show Figures

Graphical abstract

12 pages, 270 KiB  
Protocol
The Effectiveness of Indoor Residual Spraying for Malaria Control in Sub-Saharan Africa: A Systematic Protocol Review and Meta-Analysis
by Moses Ocan, Kevin Ouma Ojiambo, Loyce Nakalembe, Geofrey Kinalwa, Alison A. Kinengyere, Sam Nsobya, Emmanuel Arinaitwe and Henry Mawejje
Int. J. Environ. Res. Public Health 2025, 22(6), 822; https://doi.org/10.3390/ijerph22060822 - 23 May 2025
Viewed by 779
Abstract
Background: Indoor residual spraying (IRS) is a core insecticide-based vector control tool employed in most malaria-affected settings globally. However, mosquito vectors have developed resistance to nearly all of the insecticides currently used in IRS. This has necessitated a transition to new classes of [...] Read more.
Background: Indoor residual spraying (IRS) is a core insecticide-based vector control tool employed in most malaria-affected settings globally. However, mosquito vectors have developed resistance to nearly all of the insecticides currently used in IRS. This has necessitated a transition to new classes of insecticides, from mostly using dichlorodiphenyltrichloroethane (DDT) and pyrethroids from 1997 to 2010 to carbamates in 2011 and organophosphates in 2013. In addition, other vector control measures, like the use of long-lasting insecticide-treated bed nets (LLINs), have also been employed for malaria control. Despite the implementation of these mosquito vector control interventions, malaria remains a disease of public health concern, especially in sub-Saharan Africa, which bears over 90% of the disease burden. This review will thus collate evidence on the effectiveness of IRS for malaria control in sub-Saharan Africa. Methods and analysis: The systematic review will be conducted following a priori criteria developed using the PRISMA guidelines. Articles will be obtained through a search of the Web of Science, Google Scholar, Medline via PubMed, Scopus and Embase databases. Mesh terms and Boolean operators (“AND”, “OR”) will be used in the article search. Additionally, websites of malaria research institutions will be searched. The article search will be conducted by two independent librarians (AAK and RS). All identified articles will be transferred to EPPI-reviewer v6.15.1.0 software. Article screening and data abstraction will be performed in duplicate by four reviewers (KOO, LN, GK and MO), and any further disagreements will be resolved through discussion and consensus. We shall extract data on the country, region, study design, insecticide combination, season, susceptibility procedure used, vector control interventions, population, mosquito species, malaria incidence or prevalence, insecticide efficacy, susceptibility, genotypic resistance, vector mortality and knockdown effect. Data analysis will be performed using STATA v17.0. Effect sizes will be statistically pooled using inverse-variance-weighted random-effects meta-analysis. Heterogeneity and publication bias in the articles will be assessed using the I2 statistic and a funnel plot, respectively. For the studies that will not be included in the meta-analysis, a narrative synthesis will be written following the Cochrane Consumer and Communication Review Group format. Results: The findings of this review will help generate evidence on the effectiveness of indoor residual spraying using WHO pre-qualified insecticides in malaria control in sub-Saharan Africa. This protocol was registered in PROSPERO, registration number CRD42024517119. Full article
20 pages, 6700 KiB  
Article
The Hypoglycemic Activity of Gracilaria lemaneiformis Polysaccharide Gels Based on IR/IRS-2/PI3k/Akt/Glut4 and Glycometabolism Signaling Pathways in HepG2 Cells
by Xiaoshan Long, Shucheng Liu, Xianqing Yang, Yongqiang Zhao, Shaoling Yang, Ya Wei, Chuang Pan, Shengjun Chen, Peihong Jiang, Bo Qi and Xiao Hu
Gels 2025, 11(5), 366; https://doi.org/10.3390/gels11050366 - 15 May 2025
Viewed by 537
Abstract
The aim of this study was to investigate the hypoglycemic activity and mechanism of G. lemaneiformis polysaccharide gels (GLP and GLP-HV) based on IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways in HepG2 cells. After H2O2-Vc degradation, the molecular weight of G. [...] Read more.
The aim of this study was to investigate the hypoglycemic activity and mechanism of G. lemaneiformis polysaccharide gels (GLP and GLP-HV) based on IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways in HepG2 cells. After H2O2-Vc degradation, the molecular weight of G. lemaneiformis polysaccharide gel declined from 1478 kDa to 16 kDa. Molecular weight chromatogram and distribution indicated that GLP-HV had a high molecular weight homogeneity compared to GLP. G. lemaneiformis polysaccharide gels significantly decreased the TC, TG, LDL-C, MDA, and LDH contents and enhanced the activities of HDL-C, T-AOC, CAT, GSH-PX, SOD, insulin, and glycogen in HepG2 cells. Fluorescent staining results showed that G. lemaneiformis polysaccharide gels reduced ROS and calcium ions levels in HepG2 cells. GLP and GLP-HV displayed excellent hypoglycemic activity, with GLP-HV performing better. Furthermore, qPCR and Western blot analysis revealed that G. lemaneiformis polysaccharide gels remarkably strengthened the levels of IR, IRS-2, PI3K, Akt, Glut4, HK, G6PD, PFK, PEPCK, GK, PK genes, and proteins. Spearman’s correlation analysis revealed that the IR/IRS-2/PI3k/Akt/Glut4 signaling pathway played a dominant role in regulating activity. These results show that G. lemaneiformis polysaccharide gels present a prominent hypoglycemic effect mediated by the IR/IRS-2/PI3k/Akt/Glut4 and glycometabolism signaling pathways, with the former playing a dominant role. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and New Applications)
Show Figures

Figure 1

17 pages, 3850 KiB  
Article
Effects of Dietary Carbohydrate Levels on Growth and Ammonia Excretion in Chinese Perch (Siniperca chuatsi) at Low Water Temperatures
by Yufei Zhang, Lingchen Fang, Zhiwei Zou, Jianmei Su and Liwei Liu
Int. J. Mol. Sci. 2025, 26(10), 4638; https://doi.org/10.3390/ijms26104638 - 13 May 2025
Cited by 2 | Viewed by 478
Abstract
This study investigated the effects of dietary carbohydrate levels (control 8.13%, HG1 12.03%, and HG2 14.15%) on growth performance and glutamate metabolism in Chinese perch (S. chuatsi) (initial weight: 39.12 ± 0.25 g) reared at 12–15 °C. Diets were isonitrogenous (49% [...] Read more.
This study investigated the effects of dietary carbohydrate levels (control 8.13%, HG1 12.03%, and HG2 14.15%) on growth performance and glutamate metabolism in Chinese perch (S. chuatsi) (initial weight: 39.12 ± 0.25 g) reared at 12–15 °C. Diets were isonitrogenous (49% protein). After 8 weeks, the HG1 group optimized weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER), while reducing feed conversion ratio (FCR). HG1 and HG2 groups reduced liver glutamate/glutamine levels while downregulating the expression of key ammonia-metabolizing genes (gs, gdh, and ampd), collectively suppressing glutamate-mediated ammonia excretion. HG1 and HG2 groups enhanced glycolysis (upregulated gk and pk) coupled with suppressed gluconeogenesis (decreased PEPCK and G6Pase activities) in the liver. Concurrent downregulation of proteolytic markers (mafbx and murf1) in the muscle indicated improved protein conservation efficiency in the HG1 and HG2 groups. The HG1 diet optimally enhances growth by promoting glycolysis, reducing ammonia excretion, and improving feed efficiency. The insights gained from this research will be used to refine the low-temperature culture feed for Chinese perch, aiming to decrease ammonia and nitrogen emissions, thereby advancing the practice of low-ammonia emission culture for this species. Full article
(This article belongs to the Special Issue Molecular Biology of Fish Stress)
Show Figures

Graphical abstract

18 pages, 4023 KiB  
Article
Lactobacillus brevis GKJOY Supplementation Ameliorates Oxidative Stress and Reproductive Dysfunction in Male Rats with Polystyrene Microplastics-Induced Reproductive Toxicity
by Yi-Yuh Hwang, Sabri Sudirman, Yu-Chen Hsu, Chin-Chu Chen, Fanbin Kong, Deng-Fwu Hwang and Zwe-Ling Kong
Int. J. Mol. Sci. 2025, 26(10), 4533; https://doi.org/10.3390/ijms26104533 - 9 May 2025
Viewed by 698
Abstract
The growing demand for plastic products has led to an increase in human exposure to microplastics (MPs). MPs have been shown to have detrimental effects on reproductive function, while probiotics have demonstrated promise in enhancing fertility. This study aimed to determine the protective [...] Read more.
The growing demand for plastic products has led to an increase in human exposure to microplastics (MPs). MPs have been shown to have detrimental effects on reproductive function, while probiotics have demonstrated promise in enhancing fertility. This study aimed to determine the protective effects of Lactobacillus brevis GKJOY against reproductive damage induced by polystyrene microplastics (PS-MPs) in male rats. In the cell study, LC540 cells were treated with L. brevis GKJOY postbiotic (PGK), gamma-aminobutyric acid (GABA), and PS-MPs to evaluate their effects on cell viability and reactive oxygen species (ROS) production. In the animal experiment, rats were treated with a low dose of L. brevis GKJOY (GK1X, 50 mg/kg), a medium dose (GK2X, 100 mg/kg), or a high dose (GK4X, 200 mg/kg). The results showed that PGK and GABA reduced the levels of ROS and protected against oxidative stress. In contrast, PS-MPs increased ROS levels and had harmful effects on cell viability. In the animal study, testicular injuries caused by PS-MPs led to disruption of the hypothalamic–pituitary–gonadal (HPG) axis and a decrease in reproductive hormone levels. However, treatment with L. brevis GKJOY reduced oxidative stress and pro-inflammatory cytokine levels, restored hormonal imbalances, and led to significant improvements. L. brevis GKJOY effectively mitigated reproductive damage in male rats due to its dual function as a probiotic and neurotransmitter modulator. In conclusion, L. brevis GKJOY, which functions as both a probiotic and a GABA producer, may offer superior protection against male reproductive damage. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

18 pages, 5475 KiB  
Article
Integrated Transcriptomic Analysis of Liver and Muscle Tissues Reveals Candidate Genes and Pathways Regulating Intramuscular Fat Deposition in Beef Cattle
by Siwei Wang, Tingting Liu, Peng Peng, Yurong Fu, Shaoqing Shi, Shuang Liang, Xi Chen, Kun Wang and Rongyan Zhou
Animals 2025, 15(9), 1306; https://doi.org/10.3390/ani15091306 - 30 Apr 2025
Cited by 1 | Viewed by 546
Abstract
Intramuscular fat (IMF) content in beef cattle is a critical determinant of beef meat quality, as it positively influences juiciness, tenderness, and palatability. In China, the crossbreeding of Wagyu and Angus is a prevalent method for achieving a better marbling level. However, the [...] Read more.
Intramuscular fat (IMF) content in beef cattle is a critical determinant of beef meat quality, as it positively influences juiciness, tenderness, and palatability. In China, the crossbreeding of Wagyu and Angus is a prevalent method for achieving a better marbling level. However, the molecular mechanisms governing IMF regulation in these crossbreeds remain poorly understood. To elucidate the mechanism of IMF deposition in these crossbred cattle, we conducted a comparative transcriptomic analysis of longissimus dorsi muscles and livers from cattle with divergent IMF content. RNA-seq revealed 940 and 429 differentially expressed genes (DEGs) in the liver and muscle, respectively, with 60 genes co-differentially expressed (co-DEGs) in both tissues. Functional enrichment highlighted lipid metabolism pathways including fatty acid β-oxidation, PPAR signaling, and glycerolipid metabolism. A total of eleven genes including ACAA2, ACADL, ACOX2, CPT1B, CPT2, LPL, SLC27A1, ACAT1, GK, ACOX3, and ACSM5, were screened as key candidate genes for IMF deposition. A “liver–muscle” regulatory network of IMF deposition was built to illustrate the tissues’ interaction. The reliability of the transcriptomic data was verified by quantitative reverse real-time PCR (qRT-PCR). Our findings provide novel molecular markers for increasing the IMF content and accelerating the genetic improvement of beef quality traits in crossbred cattle. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 2151 KiB  
Article
Genetic Parameter Estimation of Body Weight and VpAHPND Resistance in Two Strains of Penaeus vannamei
by Guixian Huang, Jie Kong, Jiteng Tian, Sheng Luan, Mianyu Liu, Kun Luo, Jian Tan, Jiawang Cao, Ping Dai, Guangfeng Qiang, Qun Xing, Juan Sui and Xianhong Meng
Animals 2025, 15(9), 1266; https://doi.org/10.3390/ani15091266 - 29 Apr 2025
Viewed by 409
Abstract
This study evaluated the genetic parameters for growth and Vibrio parahaemolyticus (VpAHPND) resistance in both the introduced MK strain and the self-constructed GK strain of Penaeus vannamei, investigating the impact of genotyped female parents on trait estimates under a [...] Read more.
This study evaluated the genetic parameters for growth and Vibrio parahaemolyticus (VpAHPND) resistance in both the introduced MK strain and the self-constructed GK strain of Penaeus vannamei, investigating the impact of genotyped female parents on trait estimates under a single-parent nested mating design. A total of 32 families from the MK strain and 44 families from the GK strain were analyzed. Fifty-four female parents from both strains were genotyped using the “Yellow Sea Chip No. 1” containing 10.0 K SNPs. In the MK strain, heritability estimates ranged from 0.439 to 0.458 for body weight (Bw) and from 0.308 to 0.489 for survival time (ST) and survival rates at 36 h (36 SR), 50% mortality (SS50), and 60 h (60 SR). In the GK strain, heritability for Bw ranged from 0.724 to 0.726, while ST, 36 SR, SS50, and 60 SR had heritability estimates between 0.370 and 0.593. Genetic correlations between Bw and ST were 0.601 to 0.622 in the MK strain and 0.742 to 0.744 in the GK strain. For Bw and survival rates, correlations ranged from 0.120 to 0.547 in the MK strain and from 0.426 to 0.906 in the GK strain. The genetic correlation between ST and survival rates was not significantly different from 1 (p > 0.05) in both strains. High Pearson correlations (0.853 to 0.997, p < 0.01) were observed among survival rates at different points. Predictive accuracies for Bw, ST, and survival rates using single-step genomic best linear unbiased prediction (ssGBLUP) were comparable to pedigree-based best linear unbiased prediction (pBLUP) in the MK strain, while in the GK strain, ssGBLUP improved predictive accuracies for Bw, ST, and SS50 by 0.20%, 0.32%, and 0.38%, respectively. The results indicate that both growth and VpAHPND resistance have significant breeding potential. Although the genetic correlation between weight and resistance varies across different populations, there is a positive genetic correlation between these traits, supporting the feasibility of multi-trait selection. To enhance genetic accuracy, breeding programs should include more genotyped progeny. These findings also suggest that infection frequency and observation time influence resistance performance and breeding selection, emphasizing the need for a tailored resistance evaluation program to improve breeding efficiency and reduce costs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

24 pages, 9947 KiB  
Article
Detection and Spatiotemporal Distribution Analysis of Vertically Developing Convective Clouds over the Tibetan Plateau and East Asia Using GEO-KOMPSAT-2A Observations
by Haokai Kang, Hongqing Wang, Qiong Wu and Yan Zhang
Remote Sens. 2025, 17(8), 1427; https://doi.org/10.3390/rs17081427 - 17 Apr 2025
Viewed by 524
Abstract
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level [...] Read more.
Vertically developing convective clouds (VDCCs), characterized by cloud-top ascent and cooling, are critical precursors to severe convective weather due to their association with intense updrafts. However, existing studies are constrained by limited spatiotemporal resolution of data and tracking methodologies, hindering real-time and pixel-level capture of VDCC evolution. Furthermore, large-scale statistical analyses of VDCC spatiotemporal distribution remain scarce compared with mature convective systems, particularly in topographically complex regions like the Tibetan Plateau (TP). To address these challenges, we integrated an optical flow algorithm (for dense atmospheric motion vector (AMV) retrieval) with cloud-top cooling rates (CTCRs, as indicators of vertical development), leveraging the high spatiotemporal resolution and multispectral capabilities of the GEO-KOMPSAT-2A (GK2A) satellite. This approach achieved pixel-level VDCC detection at 10 min intervals across diurnal cycles, enabling comprehensive statistical analysis. Based on this technical foundation, the most important finding in the study was the distinct convective spatiotemporal distribution over the TP and East Asia (EA) by analyzing VDCC detection data in three summers (2021–2023). Specifically, VDCC diurnal peaks preceded precipitation by 2–3 h, confirming their precursor roles in both study regions. Regional comparisons revealed that topographic and thermal forcing strongly influenced VDCC distribution patterns. The TP exhibited earlier and more frequent daytime convection at middle-to-low levels than EA, driven by intense thermal forcing, yet vertical development was limited by moisture scarcity. In contrast, EA’s monsoonal moisture sustained deeper convection, with more VDCCs penetrating the upper troposphere. The detection and statistical studies of VDCCs offer new insights into convective processes over the TP and surrounding regions, offering potential improvements in severe weather monitoring and early warning systems. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes (2nd Edition))
Show Figures

Graphical abstract

16 pages, 1389 KiB  
Technical Note
Evaluation of Cloud Mask Performance of KOMPSAT-3 Top-of-Atmosphere Reflectance Incorporating Deeplabv3+ with Resnet 101 Model
by Suhwan Kim, Doehee Han, Yejin Lee, Eunsu Doo, Han Oh, Jonghan Ko and Jongmin Yeom
Appl. Sci. 2025, 15(8), 4339; https://doi.org/10.3390/app15084339 - 14 Apr 2025
Viewed by 490
Abstract
Cloud detection is a crucial task in satellite remote sensing, influencing applications such as vegetation indices, land use analysis, and renewable energy estimation. This study evaluates the performance of cloud masks generated for KOMPSAT-3 and KOMPSAT-3A imagery using the DeepLabV3+ deep learning model [...] Read more.
Cloud detection is a crucial task in satellite remote sensing, influencing applications such as vegetation indices, land use analysis, and renewable energy estimation. This study evaluates the performance of cloud masks generated for KOMPSAT-3 and KOMPSAT-3A imagery using the DeepLabV3+ deep learning model with a ResNet-101 backbone. To overcome the limitations of digital number (DN) data, Top-of-Atmosphere (TOA) reflectance was computed and used for model training. Comparative analysis between the DN and TOA reflectance demonstrated significant improvements with the TOA correction applied. The TOA reflectance combined with the NDVI channel achieved the highest precision (69.33%) and F1-score (59.27%), along with a mean Intersection over Union (mIoU) of 46.5%, outperforming all the other configurations. In particular, this combination was highly effective in detecting dense clouds, achieving an mIoU of 48.12%, while the Near-Infrared, green, and red (NGR) combination performed best in identifying cloud shadows with an mIoU of 23.32%. These findings highlight the critical role of radiometric correction and optimal channel selection in enhancing deep learning-based cloud detection. This study demonstrates the crucial role of radiometric correction, optimal channel selection, and the integration of additional synthetic indices in enhancing deep learning-based cloud detection performance, providing a foundation for the development of more refined cloud masking techniques in the future. Full article
Show Figures

Figure 1

Back to TopTop