Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Experimental Diets
2.2. Fish Husbandry
2.3. Sample Collection
2.4. Calculation of Growth Performance
2.5. Analysis of Crude Protein and Moisture Content
2.6. Gene Expression Quantification
2.7. Statistical Analysis
Gene | Primer | Primer Sequence (5′-3′) | Tm (°C) | E-Value (%) |
---|---|---|---|---|
gdh | gdh-F gdh-R | GACGACGACCCCAACTTCT GACCCGCTTCCTCTTCTGC | 58 | 94.3 |
ampd | ampd-F ampd-R | CATTTCCTTCCCGTGTT TCTGTCTGCGGAGTTGGT | 58 | 103.6 |
gk | gk-F gk-R | AAGGTGGAGACCAAGAAC TGCCCTTGTCAATGTCC | 58 | 96.9 |
pk | pk-F pk-R | CGCCCTCGCTGTCCTATTA TGCCGAAGTTGACCCTGTTG | 57 | 99.9 |
hsl | hsl-F hsl-R | ACAAACGCCTGGGAATGGT TGTGGTCCGCCCTGAAGAA | 58 | 99.6 |
agrp | agrp-F agrp-R | GTGCTGCTCTGCTGTTGG AGGTGTCACAGGGGTCGC | 65 | 104 |
npy | npy-F npy-R | GGAAGGATACCCGGTGAAA TCTTGACTGTGGAATCGTG | 52 | 107.2 |
pomc | pomc-F pomc-R | GGCTGAAGATGGTGTGTCTATG ACATGCAGAGGTGAATACAGTC | 58 | 97.7 |
cart | cart-F cart-R | TCTGCACGAAGTGTTGGA GCACATCTTCCCGATACGA | 56 | 95.3 |
mafbx | mafbx-F mafbx-R | AGCAGAACGTTCGTCCCATC GGGCCTGTTGATCTGGATGT | 58 | 94.3 |
murf1 | murf1-F murf1-R | TTTCGCCTGCCAGATCCATT TTGGGTCCAGTGTGCTCTTG | 58 | 98.5 |
mtor | mtor-F mtor-R | GCATCAACGAGAGCACCA CGCTTCAAAATTCATAACCG | 55 | 96.5 |
s6k | s6k-F s6k-R | CCTTCAAACCTTTCCTGCAATC ATTTAACTGGGCTGAGAGGTG | 58 | 101.9 |
pparα | pparα-F pparα-R | GGGTGTGCTCAGACAAGGCT GTTGCGGTTCTTCTTTTGGAT | 58 | 105.4 |
pepck | pepck-F pepck-R | CTGAGTTTGTGAAGAGAGCGG GTCCTTTGGGTCTGTGCGT | 57 | 100.3 |
eef2 | eef2-F eef2-R | TCTGCTGTTATCCCGCCT TCGCCATCACTCCTCCTCT | 57.5 | 98.2 |
lkb1 | lkb1-F lkb1-R | GACGGGGCATTTAAAATC GTGTTACTCCAGCAGACCAAA | 57.5 | 98 |
ampk | ampk-F ampk-R | GGGATGCAAACCAAGATG ACAGACCCAGAGCGGAGC | 57.5 | 101.7 |
tor | tor-F tor-R | GCATCAACGAGAGCACCA CGCTTCAAAATTCATAACGC | 57.5 | 96.5 |
rpl13a | rpl13a-F rpl13a-R | CACCCTATGACAAGAGGAAGC TGTGCCAGACGCCCAAG | 59 | 102.9 |
3. Results
3.1. Growth Performance
3.2. Crude Protein Content
3.3. Expression Level of Feeding-Related Genes
3.4. Expression Level of Protein Metabolism-Related Genes
3.5. Expression Level of Glucose and Lipid Metabolism-Related Genes
3.6. Expression Level of Energy Metabolism-Related Genes
4. Discussion
4.1. Effects of Dietary Choline Supplementation on the Growth Performance and Feeding of Chinese Perch
4.2. Effects of Dietary Choline Supplementation on the Protein and Energy Metabolism Gene Expressions of Chinese Perch
4.3. Effects of Dietary Choline Supplementation on the Glucose and Lipid Metabolism Gene Expressions of Chinese Perch
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Zhang, Y.; Liang, X.F.; He, S.; Tang, S.; Li, L.; Chen, X. mTOR–Mediated protein synthesis by inhibiting protein catabolism in Chinese perch (Siniperca chuatsi). Biochem. Biophys. Res. Commun. 2020, 533, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.L.; Liang, X.F.; Li, L.; Wu, J.; Lu, K. Genome-wide identification and expression patterns of opsin genes during larval development in Chinese perch (Siniperca chuatsi). Gene 2022, 825, 146434. [Google Scholar] [CrossRef]
- Sankian, Z.; Khosravi, S.; Kim, Y.O.; Lee, S.M. Effect of dietary protein and lipid level on growth, feed utilization, and muscle composition in golden mandarin fish Siniperca scherzeri. Fish. Aquatic Sci. 2017, 20, 7. [Google Scholar] [CrossRef]
- Li, J.; Liang, X.F.; Alam, M.S.; Luo, H.; Zhang, Y.; Peng, B.; Xiao, Q.; Zhang, Z.; Liu, L.; He, S. Adaptation of AMPK-mTOR-signal pathways and lipid metabolism in response to low- and high-level rapeseed meal diet in Chinese perch (Siniperca chuatsi). J. Comp. Physiol. B 2021, 191, 881–894. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, W.; Wu, Y.; Han, H.; Qin, J.; Wang, Y. Replacement of dietary fish meal by soybean meal supplemented with crystalline methionine for Japanese seabass (Lateolabrax japonicus). Aquac. Res. 2016, 47, 243–252. [Google Scholar] [CrossRef]
- Alam, M.S.; Liang, X.F.; Liu, L. Indirect effect of different dietary protein to energy ratio of bait fish mori diets on growth performance, body composition, nitrogen metabolism and relative AMPK & mTOR pathway gene expression of Chinese perch. Aquac. Rep. 2020, 16, 100276. [Google Scholar]
- Chen, Q.; Wang, C.; Sun, Y.; Chen, Y.; Chen, S.; Han, T.; Wang, J. Excessive substitution of fish meal with fermented soybean meal induces oxidative stress by impairing glutathione metabolism in largemouth bass (Micropterus salmoides). Antioxidants 2023, 12, 2096. [Google Scholar] [CrossRef]
- Wee, W.; Téllez-Isaías, G.; Abdul Kari, Z.; Cheadoloh, R.; Kabir, M.A.; Mat, K.; Mohamad Sukri, S.A.; Rahman, M.M.; Rusli, N.D.; Wei, L.S. The roles of soybean lecithin in aquafeed: A crucial need and update. Front. Vet. Sci. 2023, 10, 1188659. [Google Scholar] [CrossRef]
- Das, S.; Patra, A.; Mandal, A.; Mondal, N.S.; Dey, S.; Mondal, A.K.; Dey, A.K.; Ghosh, A.R. Choline chloride induces growth performance of indian major carps and air-breathing fish species with an outcome of quality food-fish under a semi-intensive culture system: A biochemical investigation. ACS Omega 2022, 7, 14579–14590. [Google Scholar] [CrossRef]
- Freij, K.; Cleveland, B.; Biga, P. Remodeling of the epigenetic landscape in rainbow trout, Oncorhynchus mykiss, offspring in response to maternal choline intake. Comp. Biochem. Physiol. Part D Genom. Proteom. 2024, 52, 101348. [Google Scholar] [CrossRef]
- Khosravi, S.; Jang, J.W.; Rahimnejad, S.; Song, J.W.; Lee, K.J. Choline essentiality and its requirement in diets for juvenile parrot fish (Oplegnathus fasciatus). Asian-Australas. J. Anim. Sci. 2015, 28, 647–653. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, D.D.; Xu, W.N.; Jiang, G.Z.; Zhang, C.N.; Li, X.F.; Liu, W.B. Effects of dietary choline supplementation on growth performance and hepatic lipid transport in blunt snout bream (Megalobrama amblycephala) fed high-fat diets. Aquaculture 2014, 434, 340–347. [Google Scholar] [CrossRef]
- Zhao, H.F.; Jiang, W.D.; Liu, Y.; Jiang, J.; Wu, P.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhang, Y.A.; Zhou, X.Q.; et al. Dietary choline regulates antibacterial activity, inflammatory response and barrier function in the gills of grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol. 2016, 52, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Yara, M.; Iwao, B.; Hara, N.; Yamanaka, T.; Uchino, H.; Inazu, M. Molecular and functional characterization of choline transporter in the human trophoblastic cell line JEG-3 cells. Placenta 2015, 36, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Caudill, M.A. Pre-and postnatal health: Evidence of increased choline needs. J. Am. Diet. Assoc. 2010, 110, 1198–1206. [Google Scholar] [CrossRef]
- Shiu, Y.L.; Chiu, K.H.; Huynh, T.G.; Liu, P.C.; Liu, C.H. Plasma immune protein analysis in the orange-spotted grouper Epinephelus coioides: Evidence for altered expressions of immune factors associated with a choline-supplemented diet. Fish Shellfish Immunol. 2017, 65, 235–243. [Google Scholar] [CrossRef]
- Liu, A.; Pirozzi, I.; Codabaccus, B.; Hines, B.; Simon, C.; Sammut, J.; Booth, M. Digestible choline requirement of juvenile yellowtail kingfish (Seriola lalandi). Aquaculture 2019, 509, 209–220. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Klatt, K.C.; Caudill, M.A. Choline. Adv. Nutr. 2018, 9, 58–60. [Google Scholar] [CrossRef]
- Li, T.; Yan, X.; Dong, X.; Pan, S.; Tan, B.; Zhang, S.; Suo, X.; Huang, W.; Zhou, M.; Yang, Y. Effects of choline supplementation on growth performance, liver histology, nonspecific immunity and related genes expression of hybrid grouper (♀Epinephelus fuscoguttatus × ♂E. lanceolatu) fed with high-lipid diets. Fish Shellfish Immunol. 2023, 138, 108815. [Google Scholar] [CrossRef]
- Wu, D.; Peng, D.; Liang, X.F.; Xie, R.; Zeng, M.; Chen, J.; Lan, J.; Yang, R.; Hu, J.; Lu, P. Dietary soybean lecithin promoted growth performance and feeding in juvenile Chinese perch (Siniperca chuatsi) could be by optimizing glucolipid metabolism. Fish. Physiol. Biochem. 2023, 49, 1097–1114. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Souza, C.F.; Baldisserotto, B.; Zimmer, F.; Paiano, D.; Petrolli, T.G.; Da Silva, A.S. Vegetable choline improves growth performance, energetic metabolism, and antioxidant capacity of fingerling Nile tilapia (Oreochromis niloticus). Aquaculture 2019, 501, 224–229. [Google Scholar] [CrossRef]
- Jin, M.; Pan, T.; Tocher, D.R.; Betancor, M.B.; Monroig, Ó.; Shen, Y.; Zhu, T.; Sun, P.; Jiao, L.; Zhou, Q. Dietary choline supplementation attenuated high-fat diet-induced inflammation through regulation of lipid metabolism and suppression of NFκB activation in juvenile black seabream (Acanthopagrus schlegelii). J. Nutr. Sci. 2019, 8, e38. [Google Scholar] [CrossRef]
- Hansen, A.K.G.; Kortner, T.M.; Krasnov, A.; Björkhem, I.; Penn, M.; Krogdahl, Å. Choline supplementation prevents diet induced gut mucosa lipid accumulation in post-smolt Atlantic salmon (Salmo salar L.). BMC Vet. Res. 2020, 16, 32. [Google Scholar] [CrossRef]
- Qin, D.G.; Dong, X.H.; Tan, B.P.; Yang, Q.H.; Chi, S.Y.; Liu, H.Y.; Zhang, S. Effects of dietary choline on growth performance, lipid deposition and hepatic lipid transport of grouper (Epinephelus coioides). Aquac. Nutr. 2017, 23, 453–459. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Kuang, S.Y.; Tang, L.; Zhou, X.Q. Choline deficiency decreased the growth performances and damaged the amino acid absorption capacity in juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2020, 518, 734829. [Google Scholar] [CrossRef]
- Song, Y.F.; Bai, Z.Y.; Luo, Z.; Wang, L.J.; Zheng, H. Choline-mediated hepatic lipid homoeostasis in yellow catfish: Unravelling choline’s lipotropic and methyl donor functions and significance of ire-1α signalling pathway. Br. J. Nutr. 2024, 131, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.C.; Bittencourt, F.; Fantini-Hoag, L.; Honorato, C.A.; da Silva, D.M.; Signor, A.; Seno, L.D.O.; de Castro Burbarelli, M.F.; Boscolo, W.R.; Neu, D.H. Effects of choline supplementation in diets on juvenile pacu (Piaractus mesopotamicus): Productive performance, proximate composition and serum lipid level. Recent. Adv. Food Nutr. Agric. 2025, 16, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.C.; Ding, Z.L.; Yang, S.; Fei, H. Insights into the role of choline in farmed fish diet: A short review. Aquac. Int. 2025, 33, 102. [Google Scholar] [CrossRef]
- Liang, X.F.; Oku, H.; Ogata, H.Y.; Liu, J.; He, X.J. Weaning Chinese perch Siniperca chuatsi (Basilewsky) onto artificial diets based upon its specific sensory modality in feeding. Aquac. Res. 2001, 32, 76–82. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, C.; Zhu, X.; Ban, S.; Yu, L.; Tian, J.; Dong, L.; Wen, H.; Lu, X.; Jiang, M. Dietary host-associated Bacillus subtilis supplementation improves intestinal microbiota, health and disease resistance in Chinese perch (Siniperca chuatsi). Anim. Nutr. 2023, 13, 197–205. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, X.F.; He, S.; Wang, J.; Li, L.; Zhang, Z.; Li, J.; Chen, X.; Li, L.; Alam, M.S. Metabolic responses of Chinese perch (Siniperca chuatsi) to different levels of dietary carbohydrate. Fish Physiol. Biochem. 2021, 47, 1449–1465. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Yang, L.; Liang, X.F.; Chai, F. Dietary zinc levels affect growth, appetite, and lipid metabolism of Chinese perch (Siniperca chuatsi). Fish Physiol. Biochem. 2023, 49, 1017–1030. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Ko, D.; Hasanthi, M.; Eom, G.; Lee, K.J. Dietary valine requirement of juvenile olive flounder (Paralichthys olivaceus). Aquac. Nutr. 2024, 2024, 3643845. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, N.S.; Ha, N.; da Cunha, L.; Cipriani, L.A.; Neto, A.T.; Skoronski, E.; Gisbert, E.; Perez Fabregat, T.E.H. Fermentation of soybean meal with Lactobacillus acidophilus allows greater inclusion of vegetable protein in the diet and can reduce Vibrionacea in the intestine of the South American catfish (Rhamdia quelen). Animals 2022, 12, 690. [Google Scholar] [CrossRef]
- Huang, L.; Shui, X.; Wang, H.; Qiu, H.; Tao, C.; Yin, H.; Wang, P. Effects of Bacillus halophilus on growth, intestinal flora and metabolism of Larimichthys crocea. Biochem. Biophys. Rep. 2023, 35, 101546. [Google Scholar] [CrossRef]
- Zhu, W.; Yi, Y.; Zou, Z.; Li, H.; Liang, T.; Shi, Q.; Liu, L.; Su, J. Effects of dietary supplementation with three different probiotics on growth performance, antioxidant capacity, and intestinal microbiota in grass carp (Ctenopharyngodon idella). Microorganisms 2025, 13, 1222. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, L.; Zou, Z.; Su, J.; Liu, L. Effects of dietary carbohydrate levels on growth and ammonia excretion in Chinese perch (Siniperca chuatsi) at low water temperatures. Int. J. Mol. Sci. 2025, 26, 4638. [Google Scholar] [CrossRef]
- Yang, R.; Liu, X.; Liu, Y.; Tian, Q.; Wang, Z.; Zhu, D.; Qian, Z.; Yi, Y.; Hu, J.; Li, Y.; et al. Dissolved oxygen and ammonia affect ammonia production via GDH/AMPK signaling pathway and alter flesh quality in Chinese perch (Siniperca chuatsi). Fish Physiol. Biochem. 2024, 50, 1237–1249. [Google Scholar] [CrossRef]
- Wu, P.; Jiang, J.; Liu, Y.; Hu, K.; Jiang, W.D.; Li, S.H.; Feng, L.; Zhou, X.Q. Dietary choline modulates immune responses, and gene expressions of TOR and eIF4E-binding protein2 in immune organs of juvenile Jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 2013, 35, 697–706. [Google Scholar] [CrossRef]
- Duan, Y.; Zhu, X.; Han, D.; Yang, Y.; Xie, S. Dietary choline requirement in slight methionine—Deficient diet for juvenile gibel carp (Carassius auratus gibelio). Aquac. Nutr. 2012, 18, 620–627. [Google Scholar] [CrossRef]
- Pavlov, D.D.; Chuiko, G.M.; Gerassimov, Y.V.; Tonkopiy, V.D. Feeding behavior and brain acetylcholinesterase activity in bream (Abramis brama L.) as affected by DDVP, an organophosphorus insecticide. Camp. Biochem. Physiol. 1992, 103, 563–568. [Google Scholar] [CrossRef]
- Li, J.Y.; Li, X.F.; Xu, W.N.; Zhang, C.N.; Liu, W.B. Effects of dietary choline supplementation on growth performance, lipid deposition and intestinal enzyme activities of blunt snout bream Megalobrama amblycephal fed high—Lipid diet. Aquac. Nutr. 2016, 22, 181–190. [Google Scholar] [CrossRef]
- Luo, Z.; Wei, C.C.; Ye, H.M.; Zhao, H.P.; Song, Y.F.; Wu, K. Effect of dietary choline levels on growth performance, lipid deposition and metabolism in juvenile yellow catfish Pelteobagrus fulvidraco. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 2016, 202, 1–7. [Google Scholar] [CrossRef]
- Murashita, K.; Kurokawa, T.; Ebbesson, L.O.; Stefansson, S.O.; Rønnestad, I. Characterization, tissue distribution, and regulation of agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART) and neuropeptide Y (NPY) in Atlantic salmon (Salmo salar). Gen. Comp. Endocrinol. 2009, 162, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, J.C.; Fenn, C.M.; Small, B.C. Elucidating the roles of gut neuropeptides on channel catfish feed intake, glycemia, and hypothalamic NPY and POMC expression. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 188, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Twibell, R.G.; Brown, P.B. Dietary choline requirement of juvenile yellow perch (Perca flavescens). J. Nutr. 2000, 130, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.Z.; Wang, M.; Liu, W.B.; Li, G.F.; Qian, Y. Dietary choline requirement for juvenile blunt snout bream, Megalobrama amblycephala. Aquac. Nutr. 2013, 19, 499–505. [Google Scholar] [CrossRef]
- Morais, S.; Caballero, M.J.; Conceição, L.E.; Izquierdo, M.S.; Dinis, M.T. Dietary neutral lipid level and source in Senegalese sole (Solea senegalensis) larvae: Effect on growth, lipid metabolism and digestive capacity. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 144, 57–69. [Google Scholar] [CrossRef]
- Doherty, F.J.; Dawson, S.; Mayer, R.J. The ubiquitin-proteasome pathway of intracellular proteolysis. Essays Biochem. 2002, 38, 51–63. [Google Scholar]
- Hansen, A.K.G.; Kortner, T.M.; Denstadli, V.; Måsøval, K.; Björkhem, I.; Grav, H.J.; Krogdahl, Å. Dose-response relationship between dietary choline and lipid accumulation in pyloric enterocytes of Atlantic salmon (Salmo salar L.) in seawater. Br. J. Nutr. 2020, 123, 1081–1093. [Google Scholar] [CrossRef]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Hall, M.N.; Lin, S.C.; Hardie, D.G. AMPK and TOR: The Yin and Yang of cellular nutrient sensing and growth control. Cell Metab. 2020, 31, 472–492. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.F.; Gao, J.; Cai, W.; He, S.; Zhuang, W. Lysine regulates TOR and NPY through taste receptor T1R1 in Chinese perch (Siniperca chuatsi). Aquaculture 2022, 559, 738445. [Google Scholar] [CrossRef]
- Rito, J.; Viegas, I.; Pardal, M.A.; Metón, I.; Baanante, I.V.; Jones, J.G. Utilization of glycerol for endogenous glucose and glycogen synthesis in seabass (Dicentrarchus labrax): A potential mechanism for sparing amino acid catabolism in carnivorous fish. Aquaculture 2019, 498, 488–495. [Google Scholar] [CrossRef]
- Liu, A.; Pirozzi, I.; Codabaccus, B.M.; Stephens, F.; Francis, D.S.; Sammut, J.; Booth, M.A. Effects of dietary choline on liver lipid composition, liver histology and plasma biochemistry of juvenile yellowtail kingfish (Seriola lalandi). Br. J. Nutr. 2021, 125, 1344–1358. [Google Scholar] [CrossRef]
- Geng, H.; Yang, P.; Chen, Y.; Qin, Y.; Li, X.; He, C.; Mai, K.; Song, F. Dietary choline can partially spare methionine to improve the feeds utilization and immune response in juvenile largemouth bass (Micropterus salmoides): Based on phenotypic response to gene expression. Aquac. Rep. 2023, 30, 101546. [Google Scholar] [CrossRef]
- Hemre, G.I.; Mommsen, T.P.; Krogdahl, Å. Carbohydrates in fish nutrition: Effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2002, 8, 175–194. [Google Scholar] [CrossRef]
- Enes, P.; Panserat, S.; Kaushik, S.; Oliva-Teles, A.A. Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol. Biochem. 2009, 35, 519–539. [Google Scholar] [CrossRef]
Ingredients (%) | P0 | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|---|
Fish meal 1 | 47.00 | 47.00 | 47.00 | 47.00 | 47.00 | 47.00 |
Casein | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 | 20.00 |
Starch | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 | 8.00 |
Fish oil | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Soybean oil | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
Vitamin premix 2 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Mineral premix 3 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Microcrystalline cellulose | 8.00 | 7.92 | 7.84 | 7.68 | 7.36 | 6.72 |
CaHPO4 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
Trialgin 4 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Choline chloride (50%) | 0.00 | 0.08 | 0.16 | 0.32 | 0.64 | 1.28 |
Proximate composition | ||||||
Crude protein | 46.06 | 46.06 | 46.06 | 46.06 | 46.06 | 46.06 |
Crude lipid | 11.88 | 11.88 | 11.88 | 11.88 | 11.88 | 11.88 |
Carbohydrate | 7.98 | 7.98 | 7.98 | 7.98 | 7.98 | 7.98 |
Parameter | P0 | P1 | P2 | P3 | P4 | P5 |
---|---|---|---|---|---|---|
IBW (g) | 86.18 ± 2.46 a | 82.47 ± 1.58 a | 85.45 ± 2.44 a | 83.18 ± 2.38 a | 89.25 ± 2.35 a | 86.91 ± 1.02 a |
FBW (g) | 111.60 ± 2.38 ab | 114.38 ± 3.09 abc | 127.79 ± 5.41 c | 122.24 ± 4.59 bc | 121.08 ± 5.88 bc | 102.57 ± 1.87 a |
WGR (%) | 29.56 ± 3.81 ab | 38.72 ± 3.32 bcd | 49.44 ± 2.35 d | 47.10 ±5.67 cd | 35.41 ± 5.01 bc | 18.02 ± 2.16 a |
SGR (%) | 0.37 ± 0.04 b | 0.47 ± 0.03 bcd | 0.58 ± 0.02 d | 0.56 ± 0.06 cd | 0.44 ± 0.05 bc | 0.24 ± 0.03 a |
FR (%) | 1.14 ± 0.01 ab | 1.28 ± 0.01 abc | 1.49 ± 0.09 d | 1.43 ± 0.15 bc | 1.26 ± 0.16 abc | 1.04 ± 0.06 a |
FCR | 2.74 ± 0.05 d | 2.58 ± 0.03 d | 1.82 ± 0.05 a | 2.10 ± 0.01 b | 2.37 ± 0.06 c | 3.57 ± 0.19 e |
PER (%) | 75.95 ± 1.41 b | 88.34 ± 1.04 c | 114.79 ± 3.06 e | 98.88 ± 0.46 d | 87.94 ± 2.16 c | 30.89 ± 1.60 a |
PRV (%) | 12.74 ± 0.24 b | 14.81 ± 0.17 c | 19.25 ± 0.51 e | 16.58 ± 0.08 d | 14.75 ± 0.36 c | 5.18 ± 0.27 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Yi, Y.; Liu, L.; Zou, Z.; Chen, J.; Su, J. Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi). Animals 2025, 15, 1926. https://doi.org/10.3390/ani15131926
Zhu W, Yi Y, Liu L, Zou Z, Chen J, Su J. Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi). Animals. 2025; 15(13):1926. https://doi.org/10.3390/ani15131926
Chicago/Turabian StyleZhu, Wanjia, Yi Yi, Liwei Liu, Zhiwei Zou, Jianming Chen, and Jianmei Su. 2025. "Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi)" Animals 15, no. 13: 1926. https://doi.org/10.3390/ani15131926
APA StyleZhu, W., Yi, Y., Liu, L., Zou, Z., Chen, J., & Su, J. (2025). Dietary Choline Supplementation Modulates Growth Performance and Protein Metabolism by Promoting Glucose and Lipid Catabolism in Chinese Perch (Siniperca chuatsi). Animals, 15(13), 1926. https://doi.org/10.3390/ani15131926