Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,151)

Search Parameters:
Keywords = GFP expression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1415 KiB  
Article
Targeted Overexpression of Mitochondrial ALDH2 in Coronary Endothelial Cells Mitigates HFpEF in a Diabetic Mouse Model
by Guodong Pan, Bipradas Roy, Emmanuel Oppong Yeboah, Thomas Lanigan, Roland Hilgarth, Rajarajan A. Thandavarayan, Michael C. Petriello, Shailendra Giri and Suresh Selvaraj Palaniyandi
Biomolecules 2025, 15(7), 1029; https://doi.org/10.3390/biom15071029 - 16 Jul 2025
Abstract
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF [...] Read more.
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF include oxidative stress, microvascular dysfunction, and chronic unresolved inflammation. Our lab focuses on oxidative stress-mediated cellular dysfunction, particularly the toxic effects of lipid peroxidation products like 4-hydroxy-2-nonenal (4HNE). Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, plays a vital role in detoxifying 4HNE and thereby protecting the heart against pathological stress. ALDH2 activity is reduced in various metabolic stress-mediated cardiac pathologies. The dysfunction of coronary vascular endothelial cells (CVECs) is critical in initiating HFpEF development. Thus, we hypothesized that ectopic overexpression of ALDH2 in CVECs could mitigate metabolic stress-induced HFpEF pathogenesis. In this study, we tested the efficacy of intracardiac injections of the ALDH2 gene into CVECs in db/db mice—a model of obesity-induced type 2 diabetes mellitus (T2DM)—and their controls, db/m mice, by injection with ALDH2 constructs (AAV9-VE-cadherin-hALDH2-HA tag-P2A) or control constructs (AAV9-VE-cadherin-HA tag-P2A-eGFP). We found that intracardiac ALDH2 gene transfer increased ALDH2 levels specifically in CVECs compared to other myocardial cells. Additionally, we observed increased ALDH2 levels and activity, along with decreased 4HNE adducts, in the hearts of mice receiving ALDH2 gene transfer compared to control GFP transfer. Furthermore, ALDH2 gene transfer to CVECs improved diastolic function compared to GFP control alone. In conclusion, ectopic ALDH2 expression in CVECs can contribute, at least partially, to the amelioration of HFpEF. Full article
Show Figures

Figure 1

22 pages, 2521 KiB  
Article
Assessment of Feasibility of the M2 Macrophage-Based Adoptive Gene Transfer Strategy for Osteoarthritis with a Mouse Model
by Matilda H.-C. Sheng, David J. Baylink, Charles H. Rundle and Kin-Hing William Lau
Cells 2025, 14(14), 1067; https://doi.org/10.3390/cells14141067 - 11 Jul 2025
Viewed by 217
Abstract
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted [...] Read more.
Current osteoarthritis (OA) therapies fail to yield long-term clinical benefits, due in part to the lack of a mechanism for the targeted and confined delivery of therapeutics to OA joints. This study evaluates if M2 macrophages are effective cell vehicles for the targeted and confined delivery of therapeutic genes to OA joints. CT bioluminescence in vivo cell tracing and fluorescent microscopy reveal that intraarticularly injected M2 macrophages were recruited to and retained at inflamed synovia. The feasibility of an M2 macrophage-based adoptive gene transfer strategy for OA was assessed using IL-1Ra as the therapeutic gene in a mouse tibial plateau injury model. Mouse M2 macrophages were transduced with lentiviral vectors expressing IL-1Ra or GFP. The transduced macrophages were intraarticularly injected into injured joints at 7 days post-injury and OA progression was monitored with plasma COMP and histology at 4 weeks. The IL-1Ra-expressing M2 macrophage treatment reduced plasma COMP, increased the area and width of the articular cartilage layer, decreased synovium thickness, and reduced the OARSI OA score without affecting the osteophyte maturity and meniscus scores when compared to the GFP-expressing M2 macrophage-treated or PBS-treated controls. When the treatment was given at 5 weeks post-injury, at which time OA should have developed, the IL-1Ra-M2 macrophage treatment also reduced plasma COMP, had a greater articular cartilage area and width, decreased synovial thickness, and reduced the OARSI OA score without an effect on the meniscus and osteophyte maturity scores at 8 weeks post-injury. In conclusion, the IL-1Ra-M2 macrophage treatment, given before or after OA was developed, delayed OA progression, indicating that the M2 macrophage-based adoptive gene transfer strategy for OA is tenable. Full article
(This article belongs to the Section Cell and Gene Therapy)
Show Figures

Figure 1

17 pages, 5753 KiB  
Protocol
Protoplast-Based Regeneration Enables CRISPR/Cas9 Application in Two Temperate Japonica Rice Cultivars
by Marion Barrera, Blanca Olmedo, Matías Narváez, Felipe Moenne-Locoz, Anett Rubio, Catalina Pérez, Karla Cordero-Lara and Humberto Prieto
Plants 2025, 14(13), 2059; https://doi.org/10.3390/plants14132059 - 5 Jul 2025
Viewed by 452
Abstract
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary [...] Read more.
Rice (Oryza sativa L.), a staple food for over half of the global population, plays a pivotal role in food security. Among its two primary groups, japonica and indica, temperate japonica varieties are particularly valued for their high-quality grain and culinary uses. Although some of these varieties are adapted to cooler climates, they often suffer from reduced productivity or increased disease susceptibility when cultivated in warmer productive environments. These limitations underscore the need for breeding programs to incorporate biotechnological tools that can enhance the adaptability and resilience of the plants. However, New Genomic Techniques (NGTs), including CRISPR-Cas9, require robust in vitro systems, which are still underdeveloped for temperate japonica genotypes. In this study, we developed a reproducible and adaptable protocol for protoplast isolation and regeneration from the temperate japonica cultivars ‘Ónix’ and ‘Platino’ using somatic embryos as the starting tissue. Protoplasts were isolated via enzymatic digestion (1.5% Cellulase Onozuka R-10 and 0.75% Macerozyme R-10) in 0.6 M AA medium over 18–20 h at 28 °C. Regeneration was achieved through encapsulation in alginate beads and coculture with feeder extracts in 2N6 medium, leading to embryogenic callus formation within 35 days. Seedlings were regenerated in N6R and N6F media and acclimatized under greenhouse conditions within three months. The isolated protoplast quality displayed viability rates of 70–99% within 48 h and supported transient PEG-mediated transfection with GFP. Additionally, the transient expression of a gene editing CRISPR-Cas9 construct targeting the DROUGHT AND SALT TOLERANCE (OsDST) gene confirmed genome editing capability. This protocol offers a scalable and genotype-adaptable system for protoplast-based regeneration and gene editing in temperate japonica rice, supporting the application of NGTs in the breeding of cold-adapted cultivars. Full article
Show Figures

Graphical abstract

20 pages, 3846 KiB  
Article
Early to Late VSV-G Expression in AcMNPV BV Enhances Transduction in Mammalian Cells but Does Not Affect Virion Yield in Insect Cells
by Jorge Alejandro Simonin, Franco Uriel Cuccovia Warlet, María del Rosario Bauzá, María del Pilar Plastine, Victoria Alfonso, Fernanda Daniela Olea, Carolina Susana Cerrudo and Mariano Nicolás Belaich
Vaccines 2025, 13(7), 693; https://doi.org/10.3390/vaccines13070693 - 26 Jun 2025
Viewed by 336
Abstract
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. [...] Read more.
Background/Objectives: Baculoviruses represent promising gene delivery vectors for mammalian systems, combining high safety profiles with substantial cargo capacity. While pseudotyping with vesicular stomatitis virus G-protein (VSV-G) enhances transduction efficiency, optimal expression strategies during the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection cycle remain unexplored. This study investigates how VSV-G expression timing affects pseudotype incorporation into budded virions (BVs) and subsequent transduction efficacy. Methods: Three recombinant AcMNPV constructs were generated, each expressing VSV-G under distinct baculoviral promoters (ie1, gp64, and p10) and GFP via a CMV promoter. VSV-G incorporation was verified by Western blot, while transduction efficiency was quantified in mammalian cell lines (fluorescence microscopy/flow cytometry) and rat hind limbs. Viral productivity was assessed through production kinetics and plaque assays. Results: All the pseudotyped viruses showed significantly enhanced transduction capacity versus controls, strongly correlating with VSV-G incorporation levels. The p10 promoter drove the highest VSV-G expression and transduction efficiency. Crucially, BV production yields and infectivity remained unaffected by VSV-G expression timing. The in vivo results mirrored the cell culture findings, with p10-driven constructs showing greater GFP expression at low doses (104 virions). Conclusions: Strategic VSV-G expression via very late promoters (particularly p10) maximizes baculoviral transduction without compromising production yields. This study establishes a framework for optimizing pseudotyped BV systems, demonstrating that late-phase glycoprotein expression balances high mammalian transduction with preserved insect-cell productivity—a critical advancement for vaccine vector development. Full article
(This article belongs to the Special Issue Viral Vector-Based Vaccines and Therapeutics)
Show Figures

Graphical abstract

33 pages, 3479 KiB  
Article
Transcriptomic Profiling of Zebrafish Mutant for cdkl5 Reveals Dysregulated Gene Expression Associated with Neuronal, Muscle, Visual and Skeletal Development
by Tatiana Varela, Débora Varela, Natércia Conceição and M. Leonor Cancela
Int. J. Mol. Sci. 2025, 26(13), 6069; https://doi.org/10.3390/ijms26136069 - 24 Jun 2025
Viewed by 434
Abstract
Zebrafish is a well-recognized model for studying human genetic disorders. Recently, we proposed the homozygous cdkl5sa21938 mutant zebrafish as a model of CDKL5 deficiency disorder (CDD), a developmental epileptic encephalopathy with diverse symptoms. This study aimed to explore Cdkl5-associated molecular mechanisms in [...] Read more.
Zebrafish is a well-recognized model for studying human genetic disorders. Recently, we proposed the homozygous cdkl5sa21938 mutant zebrafish as a model of CDKL5 deficiency disorder (CDD), a developmental epileptic encephalopathy with diverse symptoms. This study aimed to explore Cdkl5-associated molecular mechanisms in zebrafish and assess their similarity to those in mammals. We conducted RNA sequencing on whole cdkl5−/− zebrafish and wild-type siblings at 5 and 35 days post-fertilization (dpf) to compare their gene expression profiles. Most significant differentially expressed genes (DEGs) were related to muscle, neuronal, and visual systems which are affected in CDD. Gene Ontology analysis revealed downregulated DEGs enriched in muscle development, extracellular matrix, and actin cytoskeleton functions at both stages, while upregulated DEGs were enriched in eye development functions at 35 dpf. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed enrichment of downregulated DEGs in focal adhesion and extracellular matrix (ECM)-receptor interaction pathways at both stages. Neuronal development DEGs were mainly downregulated at both stages, while synaptic signaling DEGs were upregulated at 35 dpf. Crossing cdkl5−/− mutants with the Hb9:GFP transgenic line showed fewer motor neuron cells with shorter axons compared to the wild type, which may explain the impaired motor phenotype observed in zebrafish and CDD patients. Moreover, we identified key downregulated DEGs related to cartilage development at both stages and bone development at 35 dpf, potentially explaining the skeletal defects seen in zebrafish and CDD individuals. In conclusion, Cdkl5 loss in zebrafish leads to dysregulation of genes involved in CDKL5-associated functions in mammals, providing new insights into its less studied functions and phenotypes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

11 pages, 1440 KiB  
Communication
GAG Protein of Arabidopsis thaliana LTR Retrotransposon Forms Retrosome-like Cytoplasmic Granules and Activates Stress Response Genes
by Alexander Polkhovskiy, Roman Komakhin and Ilya Kirov
Plants 2025, 14(13), 1894; https://doi.org/10.3390/plants14131894 - 20 Jun 2025
Viewed by 478
Abstract
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and [...] Read more.
LTR retrotransposons are widespread genomic elements that significantly impact genome structure and function. In Arabidopsis thaliana, the EVD LTR retrotransposon encodes a GAG protein essential for retrotransposon particle assembly. Here, we present a comprehensive analysis of the structural features, intracellular localization, and transcriptomic effects of the EVD GAG (evdGAG) protein. Using AlphaFold3, we identified canonical capsid (CA-NTD and CA-CTD) and nucleocapsid (NC) domains, with predicted disordered regions likely facilitating oligomerization. Transient expression of GFP-tagged evdGAG in protoplasts of A. thaliana and distant plant species (Nicotiana benthamiana and Helianthus annuus) revealed the formation of multiple large cytoplasmic aggregates resembling retrosomes, often localized near the nucleus. Stable overexpression of evdGAG in wild-type and ddm1 mutant backgrounds induced significant transcriptomic changes, including up-regulation of stress response and defense-related genes and downregulation of photosynthesis and chloroplast-associated pathways. Importantly, genes linked to stress granule formation were also up-regulated, suggesting a role for evdGAG in modulating cellular stress responses. Our findings provide novel insights into the cellular and molecular properties of plant retrotransposon GAG proteins and their influence on host gene expression. Full article
Show Figures

Figure 1

20 pages, 3021 KiB  
Article
Foliar Epichloë gansuensis Endophyte and Root-Originated Bacillus subtilis LZU7 Increases Biomass Accumulation and Synergistically Improve Nitrogen Fixation in Achnatherum inebrians
by Yuanyuan Jin, Zhenjiang Chen, Kamran Malik and Chunjie Li
J. Fungi 2025, 11(7), 466; https://doi.org/10.3390/jof11070466 - 20 Jun 2025
Viewed by 367
Abstract
Although drunken horse grass (Achnatherum inebrians) can be simultaneously infected by the foliar endophyte Epichloë gansuensis and colonized by Bacillus subtilis, it remains unclear whether Epichloë endophyte symbiosis influences B. subtilis colonization, as well as how their interaction affects nitrogen [...] Read more.
Although drunken horse grass (Achnatherum inebrians) can be simultaneously infected by the foliar endophyte Epichloë gansuensis and colonized by Bacillus subtilis, it remains unclear whether Epichloë endophyte symbiosis influences B. subtilis colonization, as well as how their interaction affects nitrogen fixation and assimilation. The purpose of the present study was to investigate whether E. gansuensis endophyte infection facilitates the colonization of B. subtilis in the roots of host plants, with a focus on understanding the interaction effects of the E. gansuensis endophyte and B. subtilis on plant growth and nutrient absorption. In this study, we measured the colony growth rate of B. subtilis LZU7 when co-cultured with E. gansuensis strains. In addition to an in vitro test, we investigated the root colonization of Epichloë endophyte-infected plants (E+) and Epichloë endophyte-free plants (E−) with the GFP-tagged B. subtilis LZU7 in an inoculation test. Furthermore, we evaluated the interactions between E. gansuensis endophyte symbiosis and B. subtilis LZU7 colonization on the dry weight, nitrogen fixation, nitrogen converting-enzyme activity, and nutrients for E+ and E− plants by labeling with 15N2. The results showed that the growth rates of B. subtilis LZU7 were altered and increased in a co-culture with the E. gansuensis endophyte. A significantly greater colonization of GFP-tagged B. subtilis LZU7 was detected in the roots of E+ plants compared with the roots of E− plants, suggesting that E. gansuensis endophyte symbiosis enhances the colonization of beneficial microorganisms. The combination of E. gansuensis endophyte symbiosis and B. subtilis LZU7 inoculation significantly altered the expression of the nitrogenase (nifH) gene, thereby promoting increased biological nitrogen fixation (BNF). The E. gansuensis endophyte infection and inoculation with B. subtilis LZU7 significantly increased δ15NAir in plants. Co-inoculation with the E. gansuensis endophyte and B. subtilis LZU7 significantly elevated NH4+ accumulation in the roots, depleted the NH4+ availability in the surrounding soil, and showed no measurable impact on the foliar NH4+ content. The observed alterations in the NH4+ content were linked to nitrogen-fixing microorganisms that promoted nitrogen fixation, thereby enhancing nitrogen uptake and contributing to greater biomass production in A. inebrians. Our findings highlighted the fact that a foliar symbiosis with the E. gansuensis endophyte enhances the recruitment of beneficial bacteria, and that the resulting interaction significantly impacts nitrogen fixation, assimilation, and allocation in host plants. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

14 pages, 2957 KiB  
Article
Effects of the Ecdysone Receptor on the Regulation of Reproduction in Coccinella septempunctata
by Ying Cheng, Yuhang Zhou and Cao Li
Insects 2025, 16(6), 643; https://doi.org/10.3390/insects16060643 - 19 Jun 2025
Viewed by 490
Abstract
The effects of the gene encoding the ecdysone receptor (EcR) on the reproduction of the ladybug Coccinella septempunctata was evaluated. EcR transcription was measured by quantitative real-time PCR in ladybug adults reared on artificial diets with and without 20-hydroxyecdysone (20E). EcR [...] Read more.
The effects of the gene encoding the ecdysone receptor (EcR) on the reproduction of the ladybug Coccinella septempunctata was evaluated. EcR transcription was measured by quantitative real-time PCR in ladybug adults reared on artificial diets with and without 20-hydroxyecdysone (20E). EcR expression levels in 5 d old male and female ladybugs supplied with the 20E-amended artificial diet were lower than expression levels in ladybugs reared on an artificial diet lacking 20E. However, EcR expression levels in 10 d old ladybugs supplied with the 20E artificial diet were higher than those lacking 20E supplementation. The regulatory effects of EcR were studied in female and male ladybugs by RNA interference. EcR expression in female ladybugs injected with EcR-dsRNA was significantly downregulated after 5 d but remained unaffected in 10 d old females. EcR expression levels in males microinjected with EcR-dsRNA were significantly lower at 5 and 10 d after microinjection than GFP-dsRNA-treated males. The ovary volume in females injected with EcR-dsRNA at 5 d was smaller than females microinjected with GFP-dsRNA, but volumes at 10 d were larger than in GFP-dsRNA-treated females. The testes of males injected with EcR-dsRNA were larger than those injected with GFP-dsRNA at 5 d but the testes at 10 d after injection with EcR-dsRNA were smaller than those injected with GFP-dsRNA. When females were microinjected with EcR-dsRNA and mated with noninjected males, egg production decreased by 34.80% for 20 days. When males were microinjected with EcR-dsRNA and mated with noninjected females, egg production decreased by 30.38% for 20 days. Injection of female and male ladybugs with EcR-dsRNA had no significant effect on egg hatching rates. Our results show that EcR plays an important role in the development of reproductive organs and egg development in C. septempunctata. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

11 pages, 6768 KiB  
Communication
Imaging the Binding Between Dasatinib and Its Target Protein in Living Cells Using an SLP Tag System on Intracellular Compartments
by Da Kyeong Park, Sang-Hee Lee, Hee-Seok Kweon, Zee-Won Lee and Kyung-Bok Lee
Int. J. Mol. Sci. 2025, 26(12), 5705; https://doi.org/10.3390/ijms26125705 - 13 Jun 2025
Viewed by 335
Abstract
Interactions between chemical drugs and their target proteins are fundamental to drug screening and precision therapy in modern clinical medicine. However, elucidating these interactions within living cells remains challenging due to the limited availability of efficient detection methods. Despite substantial efforts, technical limitations [...] Read more.
Interactions between chemical drugs and their target proteins are fundamental to drug screening and precision therapy in modern clinical medicine. However, elucidating these interactions within living cells remains challenging due to the limited availability of efficient detection methods. Despite substantial efforts, technical limitations still impede the identification of direct interactors. In this study, we present a simple method to detect the binding between a chemical drug and its target proteins in live cells. This approach utilizes a self-labeling protein (SLP) tag system, specifically HaloTag which is a modified haloalkane dehalogenase, combined with spatially localized expression of the SLP. To implement this system, dasatinib was conjugated to a HaloTag ligand, and the HaloTag protein was expressed in specific intracellular compartments, such as endosomes or F-actin structures. Upon treatment of cells with the HaloTag ligand-conjugated dasatinib, green fluorescent protein (GFP)-fused cytoplasmic dasatinib target proteins were observed to co-localize with the HaloTag at these subcellular structures, thereby indicating direct drug–target binding. This method provides a good spatial resolution with a high signal-to-noise ratio and low false-positive signals across a high background and false-positive/false-negative signals from endogenous proteins and/or non-specific binding. In this context, we believe that our method is a useful platform for visualizing the binding between chemical drugs and their cytoplasmic targets within living systems. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 4669 KiB  
Article
Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture
by Yhusi Karina Riskawati, Chuang-Yu Lin, Akira Niwa and Hsi Chang
Int. J. Mol. Sci. 2025, 26(12), 5637; https://doi.org/10.3390/ijms26125637 - 12 Jun 2025
Viewed by 511
Abstract
Skeletal muscle diseases often exhibit fiber-type-specific characteristics and pose substantial clinical challenges, necessitating innovative therapies. The extracellular matrix (ECM) plays a pivotal role in muscle physiology and regeneration, influencing cell differentiation. However, its specific role and mechanisms influencing muscle fiber type specification remain [...] Read more.
Skeletal muscle diseases often exhibit fiber-type-specific characteristics and pose substantial clinical challenges, necessitating innovative therapies. The extracellular matrix (ECM) plays a pivotal role in muscle physiology and regeneration, influencing cell differentiation. However, its specific role and mechanisms influencing muscle fiber type specification remain insufficiently understood. In this study, C2C12GFP myoblasts were differentiated into myofibers on plates coated with fibronectin, Collagen I, and Geltrex™. Differentiation occurred successfully across all ECM substrates, resulting in myofiber formation. Quantitative polymerase chain reaction (qPCR) analysis confirmed myogenic marker expression patterns, indicating decreased Pax7 and increased Myog levels by day 7. Protein analysis through Western blot and immunofluorescence assays along with transcriptomic profiling through RNA sequencing consistently indicated that Collagen I promoted slow-type fibers development, as evidenced by increased slow myofiber protein expression and the upregulation of slow fiber-associated genes, potentially mediated by pathways involving calcineurin/NFAT, MEF2, MYOD, AMPK, PI3K/AKT, and ERK1. In contrast, fibronectin and Geltrex™ led to fast-type fiber development, with elevated fast-type fiber protein levels and upregulation of fast fiber-associated genes, possibly through activation of HIF1A, FOXO1, NFKB, and ERK2. These findings elucidate ECM-mediated muscle fiber type differentiation mechanisms, informing future targeted therapies for muscle regeneration. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Biology)
Show Figures

Figure 1

13 pages, 2604 KiB  
Article
A Novel SARS-CoV-2-Derived Infectious Vector System
by Ghada Elfayres, Yong Xiao, Qinghua Pan, Chen Liang, Benoit Barbeau and Lionel Berthoux
Microbiol. Res. 2025, 16(6), 125; https://doi.org/10.3390/microbiolres16060125 - 11 Jun 2025
Viewed by 856
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. The development of antiviral drugs for COVID-19 has been hampered by the requirement of a biosafety level 3 (BSL3) laboratory for experiments related to SARS-CoV-2, and by the lack of easy and precise methods for quantification of infection. Here, we developed a SARS-CoV-2 viral vector composed of all four SARS-CoV-2 structural proteins constitutively expressed in lentivirally transduced cells, combined with an RNA replicon deleted for SARS-CoV-2 structural protein genes S, M, and E, and expressing a luciferase–GFP fusion protein. We show that, after concentrating viral stocks by ultracentrifugation, the SARS-CoV-2 viral vector is able to infect two human cell lines expressing receptors ACE2 and TMPRSS2. Both luciferase activity and GFP fluorescence were detected, and transduction was remdesivir-sensitive. We also show that this vector is inhibited by three type I interferon (IFN-I) subtypes. Although improvements are needed to increase infectious titers, this vector system may prove useful for antiviral drug screening and SARS-CoV-2-related investigations. Full article
Show Figures

Figure 1

10 pages, 1344 KiB  
Article
Establishing a Novel E. coli Heterologous Secretion Expression System Mediated by mScarlet3 for the Expression of a Novel Lipolytic Enzyme
by Jun Yang, Mingjun Yang, Huichen Liu, Xinyu Liu, Fei Wang, Wenqiang Li, Yang Liu, Chao Zhai and Lixin Ma
Biomolecules 2025, 15(6), 842; https://doi.org/10.3390/biom15060842 - 9 Jun 2025
Viewed by 448
Abstract
Our previous study demonstrated that an Escherichia coli heterologous secretion expression system, mediated by superfolder green fluorescent protein (sfGFP) mutants, significantly enhances recombinant lipase yield and reduces large-scale production costs. In this study, we identified mScarlet3, a fast-folding fluorescent protein, as another effective [...] Read more.
Our previous study demonstrated that an Escherichia coli heterologous secretion expression system, mediated by superfolder green fluorescent protein (sfGFP) mutants, significantly enhances recombinant lipase yield and reduces large-scale production costs. In this study, we identified mScarlet3, a fast-folding fluorescent protein, as another effective mediator of secretion expression in E. coli. A novel lipolytic enzyme, named LipHu6, was identified through sequence alignment. Secretion expression of LipHu6 was achieved by fusing mScarlet3 to either its N- or C-terminus. The specific activity of mScarlet3-LipHu6 reached 669,151.75 U/mmol, slightly surpassing that of LipHu6 alone (646,682.69 U/mmol) and markedly exceeding that of sfGFP(-15)-LipHu6 (492,432.39 U/mmol). Notably, N-terminal mScarlet3 fusion had no impact on LipHu6 hydrolytic activity toward short-chain p-nitrophenyl fatty acyl esters (C2–C8). In contrast, mScarlet3-LipHu6 exhibited approximately 1.5- and 1.7-fold increases in hydrolytic activity toward p-nitrophenyl palmitate (p-NPP, C16) and p-nitrophenyl stearate (p-NPS, C18), respectively. In conclusion, this study establishes a novel E. coli heterologous secretion expression system mediated by mScarlet3, offering a highly efficient and cost-effective strategy for the large-scale production of lipolytic enzymes. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

14 pages, 6680 KiB  
Article
Early Vascular Developmental Toxicity and Underlying Mechanisms of 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ) in Zebrafish Larvae
by Jie Gu, Ziyu Gong, Yue Fan, Jun Hu, Liguo Guo, Wenming Pei and Daqiang Yin
Biology 2025, 14(6), 659; https://doi.org/10.3390/biology14060659 - 6 Jun 2025
Viewed by 446
Abstract
Polyhalogenated carbazoles (PHCZs) are emerging persistent organic pollutants that have attracted widespread attention due to their environmental occurrence and potential ecological risks. 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ), which is a typical homolog of PHCZs produced as a byproduct in the dye industry, has been widely detected [...] Read more.
Polyhalogenated carbazoles (PHCZs) are emerging persistent organic pollutants that have attracted widespread attention due to their environmental occurrence and potential ecological risks. 1-Bromo-3,6-dichlorocarbazole (1-B-36-CCZ), which is a typical homolog of PHCZs produced as a byproduct in the dye industry, has been widely detected in various environmental media. In this study, we employed an integrated approach using an in vivo zebrafish model and network toxicology methods to systematically evaluate the vascular developmental toxicity of 1-B-36-CCZ and elucidate its underlying mechanisms. The experimental results revealed that the 96 h-LC50 of 1-B-36-CCZ in zebrafish larvae was 4.52 mg/L. Sublethal exposures (0.045–45 μg/L) significantly induced an increase in heart rate (p < 0.05) and an enlargement of the pericardial edema area (p < 0.01). Using Tg(flk:eGFP) transgenic zebrafish embryos to assess vascular toxicity at concentrations of 0, 0.045, 0.45, 4.5, and 45 μg/L, we observed that 1-B-36-CCZ exposure significantly reduced the length and anastomosis rate of intersegmental vessels (ISVs) at 30 hpf, and inhibited the development of the common cardinal vein (CCV) at 48 and 72 hpf as well as the subintestinal vessel (SIV) at 72 hpf. Quantitative PCR (qPCR) analysis further revealed that the expression of key angiogenic genes (flk, kdr, and vegfa) was significantly downregulated, thus corroborating the phenotypic observations. Moreover, a “compound–target–pathway” network model predicted that SRC kinase is a key molecular target for 1-B-36-CCZ action. Enrichment analysis of target protein-coding genes and verapamil replication experiments indicated that 1-B-36-CCZ may cause damage to early vascular development in zebrafish larvae by altering intracellular calcium ion content through the activation of the SRC-mediated calcium ion signaling pathway. This study provides new experimental evidence for elucidating the toxic mechanisms of PHCZ-type pollutants and offers a theoretical basis for environmental health risk assessments. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

15 pages, 1269 KiB  
Article
Linear DNA–Chitosan Nanoparticles: Formulation Challenges and Transfection Efficiency in Lung Cell Line
by Chiara Migone, Angela Fabiano, Ylenia Zambito, Rebecca Piccarducci, Laura Marchetti, Chiara Giacomelli, Claudia Martini and Anna Maria Piras
Appl. Biosci. 2025, 4(2), 29; https://doi.org/10.3390/applbiosci4020029 - 6 Jun 2025
Viewed by 418
Abstract
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly [...] Read more.
Linear DNA constructs are used in gene delivery and therapy application due to their capacity of integration into the mammalian genome, offering stable transgene expression. Compared to circular plasmids, linear DNA also has the advantage that its dimension and steric hindrance are directly correlated to the length of the nucleotide chain. These considerations make linear DNA an effective choice for gene delivery pilot studies, where formulations and transfection efficiency calculations are studied considering the nucleic acid dimensions. Meanwhile, the development of DNA–chitosan nanoparticles (NPs) has gained significant interest for their potential in nucleic acid delivery, especially as non-viral gene delivery systems and for embedding linear DNA fragments, as well as gene delivery to the lung. This study explored an easy polyelectrolyte complexing preparation of linear DNA-loaded chitosan nanoparticles. Among the different formulations of nanoparticles prepared, the optimal one exhibited a size of approximately 290 nm, an encapsulation efficiency of 86% and a zeta potential of 25 mV. Additionally, this study examined how the concentration of DNA in solution influenced nanoparticle formation, encapsulation efficiency and particle size. In particular, transient transfection of the chitosan–linear DNA fragment complex, encoding for green fluorescent protein (GFP), was conducted in human pulmonary distal lung cells (NCI-H441 cells), demonstrating successful cellular internalization and protein expression. These studies highlight the potential of DNA–chitosan NPs in nucleic acid delivery, particularly for pulmonary applications. Future works will focus on formulating the achieved carrier into an inhalable dosage form to improve its translational application. Full article
Show Figures

Figure 1

24 pages, 6213 KiB  
Article
Transmembrane Protease Serine 11B Modulates Lactate Transport Through SLC16A1 in Pancreatic Ductal Adenocarcinoma—A Functional Link to Phenotype Heterogeneity
by Dinara Baiskhanova, Maike Menzel, Claudia Geismann, Christoph Röcken, Eric Beitz, Susanne Sebens, Anna Trauzold and Heiner Schäfer
Int. J. Mol. Sci. 2025, 26(11), 5398; https://doi.org/10.3390/ijms26115398 - 4 Jun 2025
Viewed by 545
Abstract
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells [...] Read more.
Tumor cell heterogeneity, e.g., in stroma-rich pancreatic ductal adenocarcinoma (PDAC), includes a differential metabolism of lactate. While being secreted as waste product by most cancer cells characterized by the glycolytic Warburg metabolism, it is utilized by a subset of highly malignant cancer cells running the reverse Warburg metabolism. Key drivers of lactate transport are the carrier proteins SLC16A1 (import/export) and SLC16A3 (export). Expression and function of both carriers are controlled by the chaperone Basigin (BSG), which itself is functionally controlled by the transmembrane protease serine 11B (TMPRSS11B). In this study we explored the impact of TMPRSS11B on the phenotype of PDAC cells under reverse Warburg conditions. Amongst a panel of PDAC cell lines, Panc1 and BxPc3 cells were identified to express TMPRSS11B at a high level, whilst other cell lines such as T3M4 did not. ShRNA-mediated TMPRSS11B knock-down in Panc1 and BxPc3 cells enhanced lactate import through SLC16A1, as shown by GFP/iLACCO1 lactate uptake assay, whereas TMPRSS1B overexpression in T3M4 dampened SLC16A1-driven lactate uptake. Moreover, knock-down and overexpression of TMPRSS11B differentially impacted proliferation and chemoresistance under reverse Warburg conditions in Panc1 or BxPc3 and T3M4 cells, respectively, as well as their stemness properties indicated by altered colony formation rates and expression of the stem cell markers Nanog, Sox2, KLF4 and Oct4. These effects of TMPRSS11B depended on both SLC16A1 and BSG as shown by gene silencing. Immunohistochemical analysis revealed a reciprocal expression of TMPRSS11B and BSG together with SLC16A1 in some areas of tumor tissues from PDAC patients. Those regions exhibiting low or no TMPRSS11B expression but concomitant high expression of SLC16A1 and BSG revealed greater amounts of KLF4. In contrast, other tumor areas exhibiting high expression of TMPRSS11B together with BSG and SLC16A1 were largely negative for KLF4 expression. Thus, the differential expression of TMPRSS11B adds to metabolic heterogeneity in PDAC and its absence supports the reverse Warburg metabolism in PDAC cells by the enhancement of BSG-supported lactate uptake through SLC16A1 and subsequent phenotype alterations towards greater stemness. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Pancreatic Cancer: 2nd Edition)
Show Figures

Figure 1

Back to TopTop