Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture
Abstract
1. Introduction
2. Results
2.1. Collagen I, Fibronectin, and Geltrex™ Induced Myogenic Differentiation Comparable to the Control Condition
2.2. Collagen I Enhanced Slow Myofibers Protein Expression, Whereas Fibronectin and Geltrex™ Favored Fast Myofibers Protein Expression
2.3. Collagen I Enhanced Slow Fiber Type Gene Expression, Whereas Fibronectin and Geltrex™ Increased Fast Fiber Type Gene Expression
2.4. Pathways and Key Regulators Potentially Involved in Slow Fiber Transition on the Collagen I Coating and Fast Fiber Transition on the Fibronectin and Geltrex™ Coatings
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Substrate Coating
4.3. Quantitative Polymerase Chain Reaction Analysis
4.4. Western Blot Analysis
4.5. Immunofluorescence
4.6. RNA Sequencing
4.7. Biostatistics and Bioinformatics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMPK | AMP (Adenosine monophosphate)-activated protein kinase |
C2C12GFP | C2C12 (Immortalized mouse myoblast cell line) cells expressing green fluorescent protein |
COPD | Chronic obstructive pulmonary disease |
DEG | Differentially expressed gene |
DMD | Duchenne muscular dystrophy |
DSHB | Developmental Studies Hybridoma Bank |
ERK | Extracellular signal-regulated kinase |
FOXO1 | Forkhead box O1 |
GO | Gene Ontology |
GSEA | Gene Set Enrichment Analysis |
GSKB | Gene Set Knowledge Base |
HIF | Hypoxia-inducible factor |
IPA | Ingenuity Pathway Analysis |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MEF2 | Myocyte enhancer factor 2 |
MYOD | Myogenic differentiation 1 (a muscle-specific transcription factor) |
NFATC | Nuclear factor of activated T-cells, cytoplasmic (specific isoform) |
NFKB1 | Nuclear factor kappa-light-chain-enhancer of activated B cells 1 |
PCA | Principal component analysis |
PI3K | Phosphoinositide 3-kinase |
References
- Talbot, J.; Maves, L. Skeletal muscle fiber type: Using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip. Rev. Dev. Biol. 2016, 5, 518–534. [Google Scholar] [CrossRef]
- Tabebordbar, M.; Wang, E.T.; Wagers, A.J. Skeletal Muscle Degenerative Diseases and Strategies for Therapeutic Muscle Repair. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 441–475. [Google Scholar] [CrossRef]
- Ahn, J.; Jeong, H.E.; Kim, J.; Chung, S. Engineering hydrogel ECM scaffold component for in vitro 3D skeletal muscle tissue. In Proceedings of the 21st International Conference on Miniaturized Systems for Chemistry and Life Sciences MicroTAS 2017, Savannah, GA, USA, 22–26 October 2017; Chemical and Biological Microsystems Society: San Diego, CA, USA, 2020. [Google Scholar]
- Lee, H.; Ju, Y.M.; Kim, I.; Elsangeedy, E.; Lee, J.H.; Yoo, J.J.; Atala, A.; Lee, S.J. A novel decellularized skeletal muscle-derived ECM scaffolding system for in situ muscle regeneration. Methods 2020, 171, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Jin, Y.; He, J.; Jia, Z.; Liu, Y.; Xu, Y. Extracellular matrix in skeletal muscle injury and atrophy: Mechanisms and therapeutic implications. J. Orthop. Transl. 2025, 52, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Schüler, S.C.; Liu, Y.; Dumontier, S.; Grandbois, M.; Le Moal, E.; Cornelison, D.; Bentzinger, C.F. Extracellular matrix: Brick and mortar in the skeletal muscle stem cell niche. Front. Cell Dev. Biol. 2022, 10, 1056523. [Google Scholar] [CrossRef]
- Ahmad, K.; Shaikh, S.; Chun, H.J.; Ali, S.; Lim, J.H.; Ahmad, S.S.; Lee, E.J.; Choi, I. Extracellular matrix: The critical contributor to skeletal muscle regeneration-a comprehensive review. Inflamm. Regen. 2023, 43, 58. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Shimizu, K.; Nagamori, E. Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V. Biotechnol. Bioeng. 2009, 103, 1034–1041. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Park, S.J.; Yi, H.-G.; Lee, H.; Kim, D.S.; Cho, D.-W. Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation. J. Mater. Chem. B 2018, 6, 5530–5539. [Google Scholar] [CrossRef]
- Chan, A.H.P.; Jain, I.; Oropeza, B.P.; Zhou, T.; Nelsen, B.; Geisse, N.A.; Huang, N.F. Combinatorial extracellular matrix cues with mechanical strain induce differential effects on myogenesis in vitro. Biomater. Sci. 2023, 11, 5893–5907. [Google Scholar] [CrossRef]
- Greising, S.M.; Gransee, H.M.; Mantilla, C.B.; Sieck, G.C. Systems Biology of Skeletal Muscle: Fiber Type as an Organizing Principle. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 457–473. [Google Scholar] [CrossRef]
- Khodabukus, A. Tissue-Engineered Skeletal Muscle Models to Study Muscle Function, Plasticity, and Disease. Front. Physiol. 2021, 12, 619710. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, E.M.; Pinniger, G.J.; Murphy, R.M.; Grounds, M.D. Slow or Fast: Implications of Myofiber Type and Associated Differences for Manifestation of Neuromuscular Disorders. Acta Physiol. 2023, 238, e14012. [Google Scholar] [CrossRef] [PubMed]
- Duffy, R.M.; Sun, Y.; Feinberg, A.W. Understanding the Role of ECM Protein Composition and Geometric Micropatterning for Engineering Human Skeletal Muscle. Ann. Biomed. Eng. 2016, 44, 2076–2089. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Lad, H.; Fusto, A.; Tiper, Y.; Datye, A.; Nguyen, C.T.; Jacques, E.; Moyle, L.A.; Nguyen, T.; Musgrave, B.; et al. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater. 2021, 132, 227–244. [Google Scholar] [CrossRef]
- Han, W.M.; Jang, Y.C.; García, A.J. 2.1.5—The Extracellular Matrix and Cell–Biomaterial Interactions. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 701–715. [Google Scholar]
- Iepsen, U.W.; Pedersen, B.K. Development of Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease: Smoking, Inflammation, or Simply Disuse? Am. J. Respir. Cell Mol. Biol. 2020, 62, 134–135. [Google Scholar] [CrossRef]
- Asfour, H.A.; Allouh, M.Z.; Said, R.S. Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp. Biol. Med. 2018, 243, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Zhu, Y.; Guo, J.; Mo, Z.; Zhou, Q.; Hu, C.Y.; Wang, C. MDFI regulates fast-to-slow muscle fiber type transformation via the calcium signaling pathway. Biochem. Biophys. Res. Commun. 2023, 671, 215–224. [Google Scholar] [CrossRef]
- Dessauge, F.; Schleder, C.; Perruchot, M.-H.; Rouger, K. 3D in Vitro Models of Skeletal Muscle: Myopshere, Myobundle and Bioprinted Muscle Construct. Vet. Res. 2021, 52, 72. [Google Scholar] [CrossRef]
- Sun, M.; Chi, G.; Li, P.; Lv, S.; Xu, J.; Xu, Z.; Xia, Y.; Tan, Y.; Xu, J.; Li, L.; et al. Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Med. Sci. 2018, 15, 257–268. [Google Scholar] [CrossRef]
- Thorsteinsdóttir, S.; Deries, M.; Cachaço, A.S.; Bajanca, F. The extracellular matrix dimension of skeletal muscle development. Dev. Biol. 2011, 354, 191–207. [Google Scholar] [CrossRef]
- Goetsch, K.P.; Kallmeyer, K.; Niesler, C.U. Decorin Modulates Collagen I-Stimulated, but Not Fibronectin-Stimulated, Migration of C2C12 Myoblasts. Matrix Biol. 2011, 30, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Niwa, A.; Hou, C.Y.; Tsai, C.M.; Chang, H. Bidirectional myofiber transition through altering the photobiomodulation condition. J. Photochem. Photobiol. B 2020, 212, 112041. [Google Scholar] [CrossRef]
- Lynch, C.J.; Xu, Y.; Hajnal, A.; Salzberg, A.C.; Kawasawa, Y.I. RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. PLoS ONE 2015, 10, e0123966. [Google Scholar] [CrossRef]
- Albuquerque, A.; Óvilo, C.; Núñez, Y.; Benítez, R.; López-Garcia, A.; García, F.; Félix, M.D.R.; Laranjo, M.; Charneca, R.; Martins, J.M. Transcriptomic Profiling of Skeletal Muscle Reveals Candidate Genes Influencing Muscle Growth and Associated Lipid Composition in Portuguese Local Pig Breeds. Animals 2021, 11, 1423. [Google Scholar] [CrossRef] [PubMed]
- Rasbach, K.A.; Gupta, R.K.; Ruas, J.L.; Wu, J.; Naseri, E.; Estall, J.L.; Spiegelman, B.M. PGC-1α regulates a HIF2α-dependent switch in skeletal muscle fiber types. Proc. Natl. Acad. Sci. USA 2010, 107, 21866–21871. [Google Scholar] [CrossRef]
- Yamada, E.; Bastie, C.C.; Koga, H.; Wang, Y.; Cuervo, A.M.; Pessin, J.E. Mouse skeletal muscle fiber-type-specific macroautophagy and muscle wasting are regulated by a Fyn/STAT3/Vps34 signaling pathway. Cell Rep. 2012, 1, 557–569. [Google Scholar] [CrossRef]
- García-Pelagio, K.P.; Muriel, J.; O’Neill, A.; Desmond, P.F.; Lovering, R.M.; Lund, L.; Bond, M.; Bloch, R.J. Myopathic changes in murine skeletal muscle lacking synemin. Am. J. Physiol. Cell Physiol. 2015, 308, C448–C462. [Google Scholar] [CrossRef] [PubMed]
- Lunde, I.G.; Anton, S.L.; Bruusgaard, J.C.; Rana, Z.A.; Ellefsen, S.; Gundersen, K. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats. J. Physiol. 2011, 589, 1443–1454. [Google Scholar] [CrossRef]
- Palmer, S.J.; Taylor, K.M.; Santucci, N.; Widagdo, J.; Chan, Y.K.; Yeo, J.L.; Adams, M.; Gunning, P.W.; Hardeman, E.C. GTF2IRD2 from the Williams-Beuren critical region encodes a mobile-element-derived fusion protein that antagonizes the action of its related family members. J. Cell Sci. 2012, 125, 5040–5050. [Google Scholar] [CrossRef]
- Delling, U.; Tureckova, J.; Lim, H.W.; De Windt, L.J.; Rotwein, P.; Molkentin, J.D. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol. Cell. Biol. 2000, 20, 6600–6611. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; Chen, H.; He, J.; Luo, J.; Zheng, P.; Yu, J.; et al. Leucine promotes porcine myofibre type transformation from fast-twitch to slow-twitch through the protein kinase B (Akt)/forkhead box 1 signalling pathway and microRNA-27a. Br. J. Nutr. 2019, 121, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Pessin, J.E. Mechanisms for fiber-type specificity of skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.K.; Levin, J.B.; Hamilton, A.M.; Borodinsky, L.N. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016, 59, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Mou, K.; Chan, S.M.H.; Vlahos, R. Musculoskeletal crosstalk in chronic obstructive pulmonary disease and comorbidities: Emerging roles and therapeutic potentials. Pharmacol. Ther. 2024, 257, 108635. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Costa, J.M.; Fernández-Garibay, X.; Velasco-Mallorquí, F.; Ramón-Azcón, J. Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies. J. Tissue Eng. 2021, 12, 2041731420981339. [Google Scholar] [CrossRef]
- Grover, C.N.; Gwynne, J.H.; Pugh, N.; Hamaia, S.; Farndale, R.W.; Best, S.M.; Cameron, R.E. Crosslinking and Composition Influence the Surface Properties, Mechanical Stiffness and Cell Reactivity of Collagen-Based Films. Acta Biomater. 2012, 8, 3080–3090. [Google Scholar] [CrossRef]
- Liu, H.; Niu, A.; Chen, S.E.; Li, Y.P. Beta3-integrin mediates satellite cell differentiation in regenerating mouse muscle. Faseb J. 2011, 25, 1914–1921. [Google Scholar] [CrossRef]
- Huang, B.; Jiao, Y.; Zhu, Y.; Ning, Z.; Ye, Z.; Li, Q.X.; Hu, C.; Wang, C. Mdfi Promotes C2C12 Cell Differentiation and Positively Modulates Fast-to-Slow-Twitch Muscle Fiber Transformation. Front. Cell Dev. Biol. 2021, 9, 605875. [Google Scholar] [CrossRef]
- Mittal, A.; Bhatnagar, S.; Kumar, A.; Lach-Trifilieff, E.; Wauters, S.; Li, H.; Makonchuk, D.Y.; Glass, D.J.; Kumar, A. The TWEAK–Fn14 system is a critical regulator of denervation-induced skeletal muscle atrophy in mice. J. Cell Biol. 2010, 188, 833–849. [Google Scholar] [CrossRef]
- Osório Alves, J.; Matta Pereira, L.; Cabral Coutinho do Rêgo Monteiro, I.; Pontes dos Santos, L.H.; Soares Marreiros Ferraz, A.; Carneiro Loureiro, A.C.; Calado Lima, C.; Leal-Cardoso, J.H.; Pires Carvalho, D.; Soares Fortunato, R.; et al. Strenuous Acute Exercise Induces Slow and Fast Twitch-Dependent NADPH Oxidase Expression in Rat Skeletal Muscle. Antioxidants 2020, 9, 57. [Google Scholar] [CrossRef]
- Shiwarski, D.J.; Tashman, J.W.; Tsamis, A.; Bliley, J.M.; Blundon, M.A.; Aranda-Michel, E.; Jallerat, Q.; Szymanski, J.M.; McCartney, B.M.; Feinberg, A.W. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat. Commun. 2020, 11, 5883. [Google Scholar] [CrossRef] [PubMed]
- Chaillou, T. Skeletal Muscle Fiber Type in Hypoxia: Adaptation to High-Altitude Exposure and Under Conditions of Pathological Hypoxia. Front. Physiol. 2018, 9, 1450. [Google Scholar] [CrossRef] [PubMed]
- Koma, R.; Shibaguchi, T.; Araiso, Y.; Yamada, T.; Nonaka, Y.; Jue, T.; Masuda, K. TOM complex-independent transport pathway of myoglobin into mitochondria in C2C12 myotubes. Physiol. Rep. 2023, 11, e15632. [Google Scholar] [CrossRef] [PubMed]
- Wayne, R. ImageJ. Available online: https://imagej.net/ij/ (accessed on 25 April 2018).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riskawati, Y.K.; Lin, C.-Y.; Niwa, A.; Chang, H. Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture. Int. J. Mol. Sci. 2025, 26, 5637. https://doi.org/10.3390/ijms26125637
Riskawati YK, Lin C-Y, Niwa A, Chang H. Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture. International Journal of Molecular Sciences. 2025; 26(12):5637. https://doi.org/10.3390/ijms26125637
Chicago/Turabian StyleRiskawati, Yhusi Karina, Chuang-Yu Lin, Akira Niwa, and Hsi Chang. 2025. "Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture" International Journal of Molecular Sciences 26, no. 12: 5637. https://doi.org/10.3390/ijms26125637
APA StyleRiskawati, Y. K., Lin, C.-Y., Niwa, A., & Chang, H. (2025). Enhancing Skeletal Muscle Fiber Type Transition Through Substrate Coating Alteration in Myoblast Cell Culture. International Journal of Molecular Sciences, 26(12), 5637. https://doi.org/10.3390/ijms26125637