Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (845)

Search Parameters:
Keywords = GAMs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3015 KiB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 (registering DOI) - 1 Aug 2025
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

10 pages, 3612 KiB  
Communication
Comparison of Habitat Selection Models Between Habitat Utilization Intensity and Presence–Absence Data: A Case Study of the Chinese Pangolin
by Hongliang Dou, Ruiqi Gao, Fei Wu and Haiyang Gao
Biology 2025, 14(8), 976; https://doi.org/10.3390/biology14080976 (registering DOI) - 1 Aug 2025
Abstract
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the [...] Read more.
Identifying habitat characteristics is essential for conserving critically endangered species. When quantifying species habitat characteristics, ignoring data types may lead to misunderstandings about species’ specific habitat requirements. This study focused on the critically endangered Chinese pangolin in Guangdong Province, China, and divided the study area into 600 m × 600 m grids based on its average home range. The burrow number within each grid was obtained through line transect surveys, with burrow numbers/line transect lengths used as direct indicators of habitat utilization intensity. The relationships with sixteen environmental variables, which could be divided into three categories, including topographic, human disturbance and land cover composition, were quantified using the GAM method. We also converted continuous data into binary data (0, 1), constructed GAMs and compared them with habitat utilization intensity models. Our results indicate that the habitat utilization intensity model identified profile curvature and slope as primary factors, showing a nonlinear response to profile curvature (Edf = 5.610, p = 0.014) and a positive relationship with slope (Edf = 1.000, p = 0.006). The presence–absence model emphasized distance to water (Edf = 1.000, p = 0.014), slope (Edf = 1.709, p = 0.043) and aspect (Edf = 2.000, p = 0.026). The intensity model explained significantly more deviance, captured complex nonlinear relationships and supported higher model complexity without overfitting. This study demonstrates that habitat utilization intensity data provides a more ecologically informative basis for in situ conservation (e.g., identifying core habitats), and the process from habitat selection to habitat utilization should be integrated to reveal species’ habitat characteristics. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

32 pages, 3694 KiB  
Article
Decoding Urban Traffic Pollution: Insights on Trends, Patterns, and Meteorological Influences for Policy Action in Bucharest, Romania
by Cristiana Tudor, Alexandra Horobet, Robert Sova, Lucian Belascu and Alma Pentescu
Atmosphere 2025, 16(8), 916; https://doi.org/10.3390/atmos16080916 - 29 Jul 2025
Viewed by 258
Abstract
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. [...] Read more.
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. In this context, municipal authorities in the country, particularly in high-density areas, should place a strong focus on mitigating air pollution. In particular, the capital city, Bucharest, ranks among the most congested cities in the world while registering the highest pollution index in Romania, with traffic pollution responsible for two-thirds of its air pollution. Consequently, studies that assess and model pollution trends are paramount to inform local policy-making processes and assist pollution-mitigation efforts. In this paper, a generalized additive modeling (GAM) framework is employed to model hourly concentrations of nitrogen dioxide (NO2), i.e., a relevant traffic-pollution proxy, at a busy urban traffic location in central Bucharest, Romania. All models are developed on a wide, fine-granularity dataset spanning January 2017–December 2022 and include extensive meteorological covariates. Model robustness is assured by switching between the generalized additive model (GAM) framework and the generalized additive mixed model (GAMM) framework when the residual autoregressive process needs to be specifically acknowledged. Results indicate that trend GAMs explain a large amount of the hourly variation in traffic pollution. Furthermore, meteorological factors contribute to increasing the models’ explanation power, with wind direction, relative humidity, and the interaction between wind speed and the atmospheric pressure emerging as important mitigators for NO2 concentrations in Bucharest. The results of this study can be valuable in assisting local authorities to take proactive measures for traffic pollution control in the capital city of Romania. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

17 pages, 1540 KiB  
Article
Evaluating a Nationally Localized AI Chatbot for Personalized Primary Care Guidance: Insights from the HomeDOCtor Deployment in Slovenia
by Matjaž Gams, Tadej Horvat, Žiga Kolar, Primož Kocuvan, Kostadin Mishev and Monika Simjanoska Misheva
Healthcare 2025, 13(15), 1843; https://doi.org/10.3390/healthcare13151843 - 29 Jul 2025
Viewed by 256
Abstract
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation [...] Read more.
Background/Objectives: The demand for accessible and reliable digital health services has increased significantly in recent years, particularly in regions facing physician shortages. HomeDOCtor, a conversational AI platform developed in Slovenia, addresses this need with a nationally adapted architecture that combines retrieval-augmented generation (RAG) and a Redis-based vector database of curated medical guidelines. The objective of this study was to assess the performance and impact of HomeDOCtor in providing AI-powered healthcare assistance. Methods: HomeDOCtor is designed for human-centered communication and clinical relevance, supporting multilingual and multimedia citizen inputs while being available 24/7. It was tested using a set of 100 international clinical vignettes and 150 internal medicine exam questions from the University of Ljubljana to validate its clinical performance. Results: During its six-month nationwide deployment, HomeDOCtor received overwhelmingly positive user feedback with minimal criticism, and exceeded initial expectations, especially in light of widespread media narratives warning about the risks of AI. HomeDOCtor autonomously delivered localized, evidence-based guidance, including self-care instructions and referral suggestions, with average response times under three seconds. On international benchmarks, the system achieved ≥95% Top-1 diagnostic accuracy, comparable to leading medical AI platforms, and significantly outperformed stand-alone ChatGPT-4o in the national context (90.7% vs. 80.7%, p = 0.0135). Conclusions: Practically, HomeDOCtor eases the burden on healthcare professionals by providing citizens with 24/7 autonomous, personalized triage and self-care guidance for less complex medical issues, ensuring that these cases are self-managed efficiently. The system also identifies more serious cases that might otherwise be neglected, directing them to professionals for appropriate care. Theoretically, HomeDOCtor demonstrates that domain-specific, nationally adapted large language models can outperform general-purpose models. Methodologically, it offers a framework for integrating GDPR-compliant AI solutions in healthcare. These findings emphasize the value of localization in conversational AI and telemedicine solutions across diverse national contexts. Full article
(This article belongs to the Special Issue Application of Digital Services to Improve Patient-Centered Care)
Show Figures

Figure 1

23 pages, 3204 KiB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 204
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

22 pages, 2129 KiB  
Article
Thermodynamic Modeling of Low-Temperature Fischer–Tropsch Synthesis: A Gibbs Free Energy Minimization Study for Hydrocarbon Production
by Julles Mitoura dos Santos Junior, Lucas Pinheiro dos Reis, Annamaria Dória Souza Vidotti, Antonio Carlos Daltro de Freitas, Adriano Pinto Mariano and Reginaldo Guirardello
Processes 2025, 13(8), 2373; https://doi.org/10.3390/pr13082373 - 26 Jul 2025
Viewed by 309
Abstract
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for [...] Read more.
Fischer–Tropsch synthesis (FTS) facilitates the conversion of syngas, derived from feedstocks such as biomass, coal, and natural gas, into valuable hydrocarbons (HCs). This investigation employed optimization methods, specifically Gibbs energy minimization, to perform a thermodynamic characterization of the low-temperature Fischer–Tropsch (LTFT) reaction for HC generation. The CONOPT3 solver within GAMS 23.2.1 software was utilized for solving the developed model. To represent the complex FTS product spectrum, twenty-three compounds, encompassing C2–C20 aliphatic hydrocarbons, were considered using a stoichiometric framework. The study explored the impact of operational parameters, including temperature (350–550 K), pressure (5–30 bar), and H2/CO molar feed ratio (1.0–2.0/0.5–1.0), on hydrocarbon synthesis. Evaluation of the outcomes focused on HC yield and product characteristics. A significant sensitivity of the reaction to operating parameters was observed. Notably, lower temperatures, elevated pressures, and a H2/CO ratio of 2.0/1.0 were identified as optimal for fostering the formation of longer-chain HCs. The developed model demonstrated robustness and efficiency, with rapid computation times across all simulations. Full article
(This article belongs to the Special Issue Advances in Gasification and Pyrolysis of Wastes)
Show Figures

Figure 1

23 pages, 30904 KiB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 - 24 Jul 2025
Viewed by 225
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

19 pages, 7154 KiB  
Article
A Heuristic Exploration of Zonal Flow-like Structures in the Presence of Toroidal Rotation in a Non-Inertial Frame
by Xinliang Xu, Yihang Chen, Yulin Zhou, Zhanhui Wang, Xueke Wu, Bo Li, Jiang Sun, Junzhao Zhang and Da Li
Plasma 2025, 8(3), 29; https://doi.org/10.3390/plasma8030029 - 22 Jul 2025
Viewed by 126
Abstract
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes [...] Read more.
The mechanisms by which rotation influences zonal flows (ZFs) in plasma are incompletely understood, presenting a significant challenge in the study of plasma dynamics. This research addresses this gap by investigating the role of non-inertial effects—specifically centrifugal and Coriolis forces—on Geodesic Acoustic Modes (GAMs) and ZFs in rotating tokamak plasmas. While previous studies have linked centrifugal convection to plasma toroidal rotation, they often overlook the Coriolis effects or inconsistently incorporate non-inertial terms into magneto-hydrodynamic (MHD) equations. In this work, we derive self-consistent drift-ordered two-fluid equations from the collisional Vlasov equation in a non-inertial frame, and we modify the Hermes cold ion code to simulate the impact of rotation on GAMs and ZFs. Our simulations reveal that toroidal rotation enhances ZF amplitude and GAM frequency, with Coriolis convection playing a critical role in GAM propagation and the global structure of ZFs. Analysis of simulation outcomes indicates that centrifugal drift drives parallel velocity growth, while Coriolis drift facilitates radial propagation of GAMs. This work may provide valuable insights into momentum transport and flow shear dynamics in tokamaks, with implications for turbulence suppression and confinement optimization. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

9 pages, 1701 KiB  
Proceeding Paper
Phenological Evaluation in Ravine Forests Through Remote Sensing and Topographic Analysis: Case of Los Nogales Nature Sanctuary, Metropolitan Region of Chile
by Jesica Garrido-Leiva, Leonardo Durán-Gárate, Dylan Craven and Waldo Pérez-Martínez
Eng. Proc. 2025, 94(1), 9; https://doi.org/10.3390/engproc2025094009 - 22 Jul 2025
Viewed by 202
Abstract
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We [...] Read more.
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We calculated the Normalized Difference Vegetation Index (NDVI), the Topographic Position Index (TPI), and Diurnal Anisotropic Heat (DAH) to assess vegetation dynamics across different topographic and thermal gradients. Generalized Additive Models (GAM) revealed that tree species exhibited more stable, regular seasonal NDVI trajectories, while shrubs showed moderate fluctuations, and herbaceous species displayed high interannual variability, likely reflecting sensitivity to climatic events. Spatial analysis indicated that trees predominated on steep slopes and higher elevations, herbs were concentrated in low-lying, moisture-retaining areas, and shrubs were more common in areas with higher thermal load. These findings highlight the significant role of terrain and temperature in shaping plant phenology and distribution, underscoring the utility of remote sensing and topographic indices for monitoring ecological processes in complex mountainous environments. Full article
Show Figures

Figure 1

18 pages, 2311 KiB  
Article
A Rapid Method for Identifying Plant Oxidative Stress and Implications for Riparian Vegetation Management
by Mizanur Rahman, Takashi Asaeda, Kiyotaka Fukahori, Md Harun Rashid, Hideo Kawashima, Junichi Akimoto and Refah Tabassoom Anta
Environments 2025, 12(7), 247; https://doi.org/10.3390/environments12070247 - 17 Jul 2025
Viewed by 572
Abstract
Native and invasive plants of the riverain region undergo a range of environmental stresses that result in excess reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a relatively stable and quickly quantifiable way among different ROS. The herbaceous species [...] Read more.
Native and invasive plants of the riverain region undergo a range of environmental stresses that result in excess reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a relatively stable and quickly quantifiable way among different ROS. The herbaceous species including Artemisia princeps, Sicyos angulatus, and Solidago altissima were selected. The H2O2 and photosynthetic pigment of leaves were measured, soil samples were analyzed to quantify macronutrients such as total nitrogen (TN), total phosphorus (TP), and soil moisture, and photosynthetic photon flux density (PPFD) was also recorded at different observed sites of Arakawa Tarouemon, Japan. The H2O2 concentration of S. altissima significantly increased with high soil moisture content, whereas A. Princeps and S. angulatus significantly decreased with high soil moisture. In each species, H2O2 was negatively correlated with chlorophyll a (chl a) and chlorophyll b (chl a). When comparing different parameters involving TN, TP, PPFD, and soil moisture content with H2O2 utilizing the general additive model (GAM), only soil moisture content is significantly correlated with H2O2. Hence, this study suggests that H2O2 would be an effective biomarker for quantifying environmental stress within a short time, which can be applied for riparian native and invasive plant species vegetation regulation. Full article
Show Figures

Figure 1

20 pages, 2707 KiB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 460
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

29 pages, 19566 KiB  
Article
Estimating Urban Linear Heat (UHIULI) Effect Along Road Typologies Using Spatial Analysis and GAM Approach
by Elahe Mirabi, Michael Chang, Georgy Sofronov and Peter Davies
Atmosphere 2025, 16(7), 864; https://doi.org/10.3390/atmos16070864 - 15 Jul 2025
Viewed by 225
Abstract
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines [...] Read more.
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines the relationship between canopy cover percentage, normalized difference vegetation index, land use types, and three road typologies (local, regional, and state) with land surface temperature. This study is based on data from the city of Adelaide, Australia, using spatial analysis, and statistical modelling. The results reveal strong negative correlations between land surface temperature and both canopy cover percentage and normalized difference vegetation index. Additionally, land surface temperature tends to increase with road width. Among land use types, land surface temperature varies from highest to lowest in the order of parkland, industrial, residential, educational, medical, and commercial areas. Notably, the combined influence of the road typology and land use produces varying effects on land surface temperature. Canopy cover percentage and normalized difference vegetation index consistently serve as dominant cooling factors. The results highlight a complex interplay between built and natural environments, emphasizing the need for multi-factor analyses and a framework based on the local climate and the type of roads (local, regional, and state) to effectively evaluate UHIULI mitigation approaches. Full article
Show Figures

Figure 1

18 pages, 8113 KiB  
Article
An Interpretable Machine Learning Model Based on Inflammatory–Nutritional Biomarkers for Predicting Metachronous Liver Metastases After Colorectal Cancer Surgery
by Hao Zhu, Danyang Shen, Xiaojie Gan and Ding Sun
Biomedicines 2025, 13(7), 1706; https://doi.org/10.3390/biomedicines13071706 - 12 Jul 2025
Viewed by 392
Abstract
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods [...] Read more.
Objective: Tumor progression is regulated by systemic immune status, nutritional metabolism, and the inflammatory microenvironment. This study aims to investigate inflammatory–nutritional biomarkers associated with metachronous liver metastasis (MLM) in colorectal cancer (CRC) and develop a machine learning model for accurate prediction. Methods: This study enrolled 680 patients with CRC who underwent curative resection, randomly allocated into a training set (n = 477) and a validation set (n = 203) in a 7:3 ratio. Feature selection was performed using Boruta and Lasso algorithms, identifying nine core prognostic factors through variable intersection. Seven machine learning (ML) models were constructed using the training set, with the optimal predictive model selected based on comprehensive evaluation metrics. An interactive visualization tool was developed to interpret the dynamic impact of key features on individual predictions. The partial dependence plots (PDPs) revealed a potential dose–response relationship between inflammatory–nutritional markers and MLM risk. Results: Among 680 patients with CRC, the cumulative incidence of MLM at 6 months postoperatively was 39.1%. Multimodal feature selection identified nine key predictors, including the N stage, vascular invasion, carcinoembryonic antigen (CEA), systemic immune–inflammation index (SII), albumin–bilirubin index (ALBI), differentiation grade, prognostic nutritional index (PNI), fatty liver, and T stage. The gradient boosting machine (GBM) demonstrated the best overall performance (AUROC: 0.916, sensitivity: 0.772, specificity: 0.871). The generalized additive model (GAM)-fitted SHAP analysis established, for the first time, risk thresholds for four continuous variables (CEA > 8.14 μg/L, PNI < 44.46, SII > 856.36, ALBI > −2.67), confirming their significant association with MLM development. Conclusions: This study developed a GBM model incorporating inflammatory-nutritional biomarkers and clinical features to accurately predict MLM in colorectal cancer. Integrated with dynamic visualization tools, the model enables real-time risk stratification via a freely accessible web calculator, guiding individualized surveillance planning and optimizing clinical decision-making for precision postoperative care. Full article
(This article belongs to the Special Issue Advances in Hepatology)
Show Figures

Figure 1

24 pages, 3167 KiB  
Article
Effects of Vegetation Heterogeneity on Butterfly Diversity in Urban Parks: Applying the Patch–Matrix Framework at Fine Scales
by Dan Han, Cheng Wang, Junying She, Zhenkai Sun and Luqin Yin
Sustainability 2025, 17(14), 6289; https://doi.org/10.3390/su17146289 - 9 Jul 2025
Viewed by 265
Abstract
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July [...] Read more.
(1) Background: Urban parks play a critical role in conserving biodiversity within city landscapes, yet the effects of fine-scale microhabitat heterogeneity remain poorly understood. This study examines how land cover and vegetation unit type within parks influence butterfly diversity. (2) Methods: From July to September 2019 and June to September 2020, adult butterflies were surveyed in 27 urban parks across Beijing. We classified vegetation into units based on vertical structure and management intensity, and then applied the patch–matrix framework and landscape metrics to quantify fine-scale heterogeneity in vegetation unit composition and configuration. Generalized linear models (GLM), generalized additive models (GAM), and random forest (RF) models were applied to identify factors influencing butterfly richness (Chao1 index) and abundance. (3) Results: In total, 10,462 individuals representing 37 species, 28 genera, and five families were recorded. Model results revealed that the proportion of park area covered by spontaneous herbaceous areas (SHA), wooded spontaneous meadows (WSM), and the Shannon diversity index (SHDI) of vegetation units were positively associated with butterfly species richness. In contrast, butterfly abundance was primarily influenced by the proportion of park area covered by cultivated meadows (CM) and overall green-space coverage. (4) Conclusions: Fine-scale vegetation patch composition within urban parks significantly influences butterfly diversity. Our findings support applying the patch–matrix framework at intra-park scales and suggest that integrating spontaneous herbaceous zones—especially wooded spontaneous meadows—with managed flower-rich meadows will enhance butterfly diversity in urban parks. Full article
Show Figures

Figure 1

16 pages, 1550 KiB  
Article
Wildfire Severity Reduction Through Prescribed Burning in the Southeastern United States
by C. Wade Ross, E. Louise Loudermilk, Steven A. Flanagan, Grant Snitker, J. Kevin Hiers and Joseph J. O’Brien
Sustainability 2025, 17(13), 6230; https://doi.org/10.3390/su17136230 - 7 Jul 2025
Viewed by 391
Abstract
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods [...] Read more.
With wildfires becoming more frequent and severe in fire-prone regions affected by warmer and drier climate conditions, reducing hazardous fuels is increasingly recognized as a preventative strategy for promoting sustainability and safeguarding valued resources. Prescribed fire is one of the most cost-effective methods for reducing hazardous fuels and hence wildfire severity, yet empirical research on its effectiveness at minimizing damage to highly valued resources and assets (HVRAs) remains limited. The overarching objective of this study was to evaluate wildfire severity under differing weather conditions across various HVRAs characterized by diverse land uses, vegetation types, and treatment histories. The findings from this study reveal that wildfire severity was generally lower in areas treated with prescribed fire, although the significance of this effect varied among HVRAs and diminished as post-treatment duration increased. The wildland–urban interface experienced the greatest initial reduction in wildfire severity following prescribed fire, but burn severity increased more rapidly over time relative to other HVRAs. Elevated drought conditions had a significant effect, increasing wildfire severity across all HVRAs. The implications of this study underscore the role of prescribed fire in promoting sustainable land management by reducing wildfire severity and safeguarding both natural and built environments, particularly in the expanding wildland–urban interface. Full article
Show Figures

Figure 1

Back to TopTop