Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,270)

Search Parameters:
Keywords = G12 mutations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 625 KB  
Review
The Yin and Yang of Antibodies in Viral Infectious Diseases
by Jianning He, Yiu-Wing Kam and Fok-Moon Lum
Diseases 2025, 13(10), 341; https://doi.org/10.3390/diseases13100341 - 15 Oct 2025
Abstract
Antibodies are a cornerstone of the adaptive immune response, serving as key defenders against viral infections; however, they can also act as a double-edged sword, contributing to immune-mediated pathologies. This review advances a “Yin-Yang” framework to integrate the dual activities of antibodies. The [...] Read more.
Antibodies are a cornerstone of the adaptive immune response, serving as key defenders against viral infections; however, they can also act as a double-edged sword, contributing to immune-mediated pathologies. This review advances a “Yin-Yang” framework to integrate the dual activities of antibodies. The protective ‘Yin’ functions are driven by high-affinity antibodies generated through processes like somatic hypermutation and class-switch recombination. These antibodies execute viral neutralization, activate the complement system, and engage Fc receptors (FcRs) to drive antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis. These mechanisms form the immunological basis of effective vaccines, which aim to elicit durable and functionally specialized antibody isotypes like IgG and mucosal IgA. Conversely, the pathogenic ‘Yang’ of the response can be detrimental. This includes antibody-dependent enhancement (ADE) of infection, notably observed with flaviviruses, and the development of autoimmunity through mechanisms like molecular mimicry and bystander activation, which can lead to conditions such as multiple sclerosis and Guillain-Barré Syndrome. The balance between protection and pathology is tipped by a confluence of factors. These include viral evasion strategies like antigenic mutation and glycan shielding, as well as host-based determinants such as genetic polymorphisms in FcRs, immune history, and the gut microbiome. Understanding these molecular determinants informs the rational design of next-generation interventions. Promising strategies, such as Fc-region glyco-engineering and the design of tolerogenic vaccines, aim to selectively promote protective functions while minimizing pathological risks, offering a clear path forward in combating viral threats. Full article
Show Figures

Figure 1

17 pages, 2234 KB  
Article
Coffee Extracts and Chlorogenic Acid Inhibit the Proliferation of HepG2 Cells and c-Myc Expression Without Significant Modulation of Wnt/β-Catenin Signaling
by Manuel Moreno-Ceballos, Fabian M. Cortes-Mancera, Han Moshage and Johanna C. Arroyave-Ospina
Livers 2025, 5(4), 49; https://doi.org/10.3390/livers5040049 - 15 Oct 2025
Abstract
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with poor clinical prognosis and high mortality, despite the advances related to therapeutic options for HCC. Therefore, exploring alternative therapeutic options and their associated mechanisms is relevant and [...] Read more.
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with poor clinical prognosis and high mortality, despite the advances related to therapeutic options for HCC. Therefore, exploring alternative therapeutic options and their associated mechanisms is relevant and urgently needed. Natural products may be an important source of novel anti-cancer compounds. Coffee consumption is associated with protective effects against liver diseases, but the molecular mechanisms underlying these benefits remain poorly understood. Objectives: In this study, we evaluated the in vitro effects of green (GC) and roasted coffee (RC) extracts, alongside chlorogenic acid (CGA), on the proliferation of HepG2 hepatocellular carcinoma cells. Results: Both coffee extracts and CGAs significantly reduced HepG2 cell viability and cell proliferation in a dose-dependent manner. GC at 500 µg/mL and CGA at 400 and 800 µM significantly induced caspase-3 activity. In addition, HepG2 cells treated with coffee extracts (500 and 1000 µg/mL) resulted in dose-dependent membrane permeabilization, leading to an increased number of necrotic cells. Despite these anti-proliferative effects, TOP/FOP luciferase assays revealed minimal activation of the Wnt/β-catenin signaling pathway. Among canonical Wnt target genes, only c-Myc expression was notably downregulated after treatment. Moreover, β-catenin protein levels and subcellular localization remained largely unchanged. Conclusions: These findings suggest that coffee extracts and chlorogenic acids inhibit HepG2 cell proliferation, highlighting their hepatoprotective properties, even in cells containing mutations that constitutively activate Wnt signaling. Full article
(This article belongs to the Topic Signaling Pathways in Liver Disease 2nd Edition)
Show Figures

Figure 1

11 pages, 207 KB  
Article
Haemoglobinopathies: Integrated Biochemical and Molecular Diagnosis in 5243 Patients
by Domenico Dell’Edera, Brunilde Persia, Francesco La Rocca and Carmela Centoducati
Hemato 2025, 6(4), 36; https://doi.org/10.3390/hemato6040036 - 14 Oct 2025
Abstract
Background: Haemoglobinopathies are among the most common monogenic disorders worldwide. Early identification of asymptomatic carriers through reliable screening and molecular diagnostics is crucial for prevention programmes, especially in high-prevalence regions such as Southern Italy. Methods: A total of 5243 individuals were analysed between [...] Read more.
Background: Haemoglobinopathies are among the most common monogenic disorders worldwide. Early identification of asymptomatic carriers through reliable screening and molecular diagnostics is crucial for prevention programmes, especially in high-prevalence regions such as Southern Italy. Methods: A total of 5243 individuals were analysed between 2013 and 2024 using both biochemical and genetic parameters. First-level screening included full blood count, iron status, and high-performance liquid chromatography (HPLC) for haemoglobin variant quantification. Molecular analyses were performed using next-generation sequencing (NGS) for the HBA1, HBA2, and HBB genes. Results: We identified 267 individuals (11.2%) as carriers of α-thalassaemia and 473 individuals (16.7%) as carriers of β-thalassaemia. Among them, 5 were compound heterozygotes and 3 homozygous for the α-3.7 deletion. A rare case of HbG Philadelphia in association with a triplicated α-gene was also observed. The most common β-globin mutations included c.118C>T039, 44%), IVS-I-110 (17.7%), IVS-I-6 (12.7%), and IVS-I-1 (12.3%). Among α-globin mutations, the most prevalent were 3.7 (48%), α2 IVS1 -5nt (15.4%), -20.5 Kb (14.2%), and triplicated α (11%). In total, 18.7% of individuals were found to carry either α- or β-thalassaemia traits. Conclusion: Our findings highlight the limitations of traditional diagnostic methods—such as the osmotic fragility test—and the importance of integrating haematological, biochemical, and molecular data to accurately identify thalassaemia carriers. The variability of genotype–phenotype correlations, especially in the context of immigration and genetic diversity, underscores the need for comprehensive molecular analysis. We propose a three-step diagnostic algorithm combining first-level screening, iron status assessment, and NGS-based sequencing for inconclusive cases. Full article
(This article belongs to the Section Non Neoplastic Blood Disorders)
16 pages, 1338 KB  
Article
Newly Identified TPI Deficiency Treatments Function for Novel Disease-Causing Allele, TPI1R5G
by Joseph R. Figura, Presley Roberts, Riley Sawka, Maci Chambers, Marcelo Claudio, Laura L. Vollmer, Andreas Vogt, Gregg E. Homanics, Eduard van Beers, Mylene Donge, Emmanuel Scalais, Arthur Sorlin, Ariana J. Jou, Andrew P. VanDemark and Michael J. Palladino
Genes 2025, 16(10), 1205; https://doi.org/10.3390/genes16101205 - 14 Oct 2025
Abstract
Background/Objectives: Triosephosphate Isomerase (TPI) is a glycolytic enzyme known to be associated with TPI deficiency, a severe form of childhood-onset glycolytic enzymopathy associated with hemolytic anemia, neuromuscular impairment and early death. Most often the disease results from the common TPI1E105D mutation, which [...] Read more.
Background/Objectives: Triosephosphate Isomerase (TPI) is a glycolytic enzyme known to be associated with TPI deficiency, a severe form of childhood-onset glycolytic enzymopathy associated with hemolytic anemia, neuromuscular impairment and early death. Most often the disease results from the common TPI1E105D mutation, which can be either homozygous or compound heterozygous with another allele. Methods: We purified TPIR5G protein, studied mutant protein biochemistry, established and characterized TPIR5G/f.s.patient cells, and investigated newly identified compounds for their efficacy in vitro using Western blot and TPI activity assays. Results: We identified novel TPI1 alleles that result in TPI Deficiency with an atypical presentation lacking anemia and with more slowly developing neurologic and locomotor impairment. The patient was found to be compound heterozygous with a missense mutation resulting in an R5G amino acid substitution and a frameshift mutation that is a predicted null allele. To better understand disease pathogenesis in this patient, we expressed and purified the TPIR5G human protein and studied it biochemically in addition to studying TPIR5G/f.s.patient cells. We discovered that purified TPIR5G protein has wildtype activity with modestly increased dimer stability. We also discovered that steady-state TPI protein levels were markedly reduced, suggesting that the instability of the mutant protein underlies disease pathogenesis. We tested compounds recently identified in a screen for novel TPI Df therapies for their efficacy in TPIR5G/f.s.patient cells. All three compounds significantly increased TPI protein levels in patient cells. As expected, since the mutant protein retains essentially wild type activity, the increase in TPI protein levels also resulted in a significant increase in TPI activity. Conclusions: These results establish TPIR5G as a TPI Df allele, demonstrate that reduced stability of the mutant protein underlies pathogenesis akin to other disease-causing alleles, and suggest that recently discovered developing therapies will likely function broadly and should be developed as potential TPI Df therapies. Full article
Show Figures

Figure 1

15 pages, 262 KB  
Review
How Close Are We to Achieving Durable and Efficacious Gene Therapy for Hemophilia A and B?
by Patrycja Sosnowska-Sienkiewicz and Danuta Januszkiewicz-Lewandowska
Genes 2025, 16(10), 1200; https://doi.org/10.3390/genes16101200 - 14 Oct 2025
Abstract
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising [...] Read more.
Hemophilia, an X-linked recessive bleeding disorder, results from mutations in the F8 or F9 genes, leading to factor VIII (hemophilia A) or factor IX (hemophilia B) deficiency. While conventional treatment relies on regular factor replacement therapy, gene therapy has emerged as a promising alternative, offering the potential for sustained endogenous factor production after a single administration. This review provides an in-depth analysis of recent advances in gene therapy for both hemophilia A and B, with a focus on AAV-mediated liver-directed approaches and other approved modalities. Key limitations—such as vector immunogenicity, hepatic toxicity, waning transgene expression, and limited re-dosing capacity—are discussed. Additional gene delivery platforms, including lentiviral and retroviral vectors, genome editing techniques (e.g., CRISPR/Cas9), and non-viral systems like transposons and lipid nanoparticles, are also examined. Although gene therapy for hemophilia B demonstrates greater clinical durability, hemophilia A presents unique challenges due to factor VIII’s size, poor expression efficiency, and the need for higher vector doses. Future efforts will focus on overcoming immune barriers, improving delivery technologies, and developing approaches suitable for pediatric patients and individuals with pre-existing immunity. This review provides not only a descriptive overview but also a critical comparison of gene therapy approaches for hemophilia A and B. We emphasize that the durability of response is currently superior in hemophilia B, whereas hemophilia A still faces unique barriers, including declining FVIII expression and higher immunogenicity. By analyzing cross-platform challenges (AAV, lentiviral, CRISPR, and emerging LNPs), we highlight the most promising strategies for overcoming these limitations and provide a forward-looking perspective on the future of gene therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
34 pages, 8250 KB  
Review
From Cytokines to Biomarkers: Mapping the Immunopathology of Inflammatory Bowel Disease
by Sarah Baum, Kamron Hamedi, Caroline Loftus, Gannett Loftus, Emily-Rose Zhou and Sergio Arce
Cells 2025, 14(20), 1589; https://doi.org/10.3390/cells14201589 - 13 Oct 2025
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastrointestinal tract, characterized by dysregulated inflammatory responses throughout the gastrointestinal tract. It includes two major phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC), which present with varying gastrointestinal and systemic symptoms. The [...] Read more.
Inflammatory bowel disease (IBD) is a chronic immune-mediated condition of the gastrointestinal tract, characterized by dysregulated inflammatory responses throughout the gastrointestinal tract. It includes two major phenotypes, Crohn’s disease (CD) and ulcerative colitis (UC), which present with varying gastrointestinal and systemic symptoms. The pathophysiology of IBD is multifactorial including genetic predisposition, mucosal and epithelial dysfunction, environmental injury, and both innate and adaptive immune response abnormalities. Several predisposing genetic factors have been associated with IBD explaining the strong hereditary risk for both CD and UC. For example, Caspase Recruitment Domain 9 (CARD9) variant rs10781499 increases risk for IBD, while other variants are specific to either CD or UC. CD is related to loss-of-function mutations in the nucleotide oligomerization domain containing the protein 2 (NOD2) gene and Autophagy-Related 16-like 1 (ATG16L1) gene. UC risk is increased particularly in Chinese populations by the A-1661G polymorphism of the Cytotoxic T-lymphocyte antigen 4 (CTLA-4) gene. This abnormal CTLA-4 interferes with B- and T-cell responses causing predisposition to autoimmune conditions. Previous studies suggested that IBD results from breakdown of the adaptive immune system, primarily of T-cells. However, new evidence suggests that a primary breakdown of the innate immune system in both CD and UC increases susceptibility to invasion by viruses and bacteria, with a compensatory overactivation of the adaptive immune system as a result. When this viral and microbial invasion continues, further damage is incurred, resulting in a downward cycle of further cytokine activation and epithelial damage. Released biomarkers also affect the permeability of the epithelial membrane, including lactoferrin, nitric oxide (NO), myeloperoxidase (MPO) and its activation of hypochlorous acid, matrix metalloproteinases (MMPs), especially MMP-9, omentin-1, and others. Increased macrophage and dendritic cell dysfunction, increased neutrophil activity, increased numbers of innate lymphoid cells, increased T-cells with decreased regulatory T-cells (Tregs), and changes in B-cell populations and immunoglobulin (Ig) functions are all associated with IBD. Finally, treatment of IBD has typically consisted of medical management (e.g., aminosalicylates and corticosteroids) and lifestyle modification, and surgical intervention in extreme cases. New classes of medications with more favorable side effect profiles include anti-integrin antibodies, vedolizumab, etrolizumab, and carotegrast methyl. Additionally, fecal microbiota transplant (FMT) is a newer area of research for treatment of IBD along with TNF-blockers, JAK inhibitors, and S1PR modulators. However, expense and long preparation time have limited the usefulness of FMT. Full article
Show Figures

Figure 1

16 pages, 300 KB  
Article
Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis
by Kenta Abe and Karen Niemchick
Genes 2025, 16(10), 1197; https://doi.org/10.3390/genes16101197 - 13 Oct 2025
Abstract
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disease that develops with age and is related to a decline in motor function. Studies suggest that the causes may be based on genetic dysfunction including PARK gene mutations and environmental factors. Methods: To explore those [...] Read more.
Background/Objectives: Parkinson’s disease (PD) is a neurodegenerative disease that develops with age and is related to a decline in motor function. Studies suggest that the causes may be based on genetic dysfunction including PARK gene mutations and environmental factors. Methods: To explore those factors, we used multivariable logistic regression to obtain odds ratios (ORs) and adjusted ORs by using the All of Us Dataset which contains genomic, blood test, and other environmental data. Results: On Chromosome 12, there were 3709 candidate genetic polymorphisms (GPs) that are associated with PD. Of those GPs, fourteen GPs had high ORs which are similar to the OR of the PARK8 gene G2019S mutation. Of those 3709 GPs, a 2.00-fold change in OR was observed in five GPs located at bases 53,711,362 (OR = 4.86, 95% CI [1.46, 16.18]), 31,281,818 (OR = 4.37, 95% CI [1.02, 18.82]), 101,921,705 (OR = 5.38, 95% CI [1.23, 23.51]), 47,968,795 (OR = 7.82, 95% CI [1.81, 33.83]), and 112,791,809 (OR = 8.05, 95% CI [1.85, 35.05]) by calcium, Vitamin D, and alcohol intake and were statistically significant. Conclusions: The results suggest that the progression of some PD caused by certain GPs can be delayed or prevented by the environmental factors above. In February 2025, All of Us released the CT Dataset v.8 which has a 50% increase in the number of participants. Potentially, it may be possible to research more GPs and environmental factors. In future studies, we would like to explore other environmental factors and GPs on other chromosomes. It is believed that specific GPs may tailor current treatments and qualify patients for clinical trials. Additionally, genetic knowledge may help increase accuracy in clinical trials. Full article
10 pages, 2626 KB  
Case Report
A Novel Frameshift Variant in the SPAST Gene Causing Hereditary Spastic Paraplegia in a Bulgarian–Turkish Family
by Mariya Levkova, Mihael Tsalta-Mladenov and Ara Kaprelyan
Neurol. Int. 2025, 17(10), 167; https://doi.org/10.3390/neurolint17100167 - 11 Oct 2025
Viewed by 107
Abstract
Background: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive lower-limb spasticity and weakness. SPAST mutations are the most common cause of autosomal dominant HSP (SPG4). However, many pathogenic SPAST variants are unique and genetic [...] Read more.
Background: Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by progressive lower-limb spasticity and weakness. SPAST mutations are the most common cause of autosomal dominant HSP (SPG4). However, many pathogenic SPAST variants are unique and genetic data from underrepresented communities remain limited. Methods: Whole-exome sequencing (WES) was performed on the index patient with HSP. Variant annotation tools included Ensembl VEP, LOFTEE, CADD, SIFT, PolyPhen-2, MutationTaster, and SpliceAI. Variant interpretation followed ACMG/AMP guidelines. Clinical evaluation and family history supported phenotypic correlation and segregation. Results: A novel heterozygous frameshift variant in SPAST (c.339delG; p.Glu114Serfs*47) was identified. The variant was predicted to cause nonsense-mediated decay, resulting in loss of the microtubule-interacting and AAA ATPase domains of spastin. It was absent from population databases (gnomAD, TOPMed, 1000 Genomes) and public variant repositories (ClinVar, HGMD). The variant segregated with disease in two affected siblings and could be classified as likely pathogenic. Conclusions: This novel SPAST frameshift variant expands the mutational spectrum of SPG4-HSP and highlights the importance of including isolated or minority communities in genomic research to improve variant interpretation. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

12 pages, 698 KB  
Article
Mitochondrial Integrity and Kynurenine Pathway Enzyme Dynamics in the Hippocampus of Rats with Scopolamine-Induced Cognitive Deficits
by Mariola Herbet, Angelika Tkaczyk-Wlizło, Katarzyna Wicha-Komsta, Bartosz Twarowski, Brygida Ślaska, Tomasz Kocki, Krzysztof Kowal and Iwona Piątkowska-Chmiel
Int. J. Mol. Sci. 2025, 26(20), 9883; https://doi.org/10.3390/ijms26209883 (registering DOI) - 11 Oct 2025
Viewed by 137
Abstract
Cognitive impairments, particularly in the context of neurodegenerative diseases, are associated with disruptions in mitochondrial function and key metabolic pathways. This study investigates the impact of short-term scopolamine exposure on mitochondrial DNA (mtDNA) stability and the kynurenine pathway (KP) in the hippocampus, a [...] Read more.
Cognitive impairments, particularly in the context of neurodegenerative diseases, are associated with disruptions in mitochondrial function and key metabolic pathways. This study investigates the impact of short-term scopolamine exposure on mitochondrial DNA (mtDNA) stability and the kynurenine pathway (KP) in the hippocampus, a brain region central to learning and memory. We analyzed the mitochondrial D-loop region for mutations and heteroplasmy levels in hippocampal tissue from rats exposed to scopolamine (1 mg/kg/0.4 mL/cc i.p. x 14 days). Additionally, the expression of the KP enzymes kynurenine aminotransferase (KAT I, KAT II) and kynurenine 3-monooxygenase (KMO) and receptors aryl hydrocarbon receptor (Ahr) and G protein-coupled receptor 35 (GPR35) was evaluated using quantitative PCR. Neither significant mutation nor heteroplasmy changes were observed in the mtDNA D-loop region between the scopolamine-treated and control groups. Similarly, the hippocampal expression levels of the kat I, kat II, kmo and ahr and gpr35 genes remained unchanged, indicating no activation of this metabolic pathway under short-term scopolamine exposure. These findings suggest that the mitochondrial genome in the hippocampus remains stable under acute pharmacological stress induced by scopolamine, with no significant activation of the KP. These results underline the distinction between transient, reversible cognitive deficits and chronic neurodegenerative processes, providing insights for therapeutic approaches targeting specific stages of cognitive change. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

17 pages, 2727 KB  
Article
Novel Silent Mutations in the HIRA Gene Associated with Litter Size in Sonid Sheep
by Chen Wang, Zhana Naren, He Bu, Ming Cang, Guifang Cao, Buhe Nashun and Bin Tong
Animals 2025, 15(20), 2936; https://doi.org/10.3390/ani15202936 - 10 Oct 2025
Viewed by 217
Abstract
Improving ovine reproductive efficiency is an important breeding goal that could substantially enhance economic viability in the sheep industry. The histone cell cycle regulator (HIRA) gene has been functionally validated as a reproductive regulator in model organisms such as Drosophila and [...] Read more.
Improving ovine reproductive efficiency is an important breeding goal that could substantially enhance economic viability in the sheep industry. The histone cell cycle regulator (HIRA) gene has been functionally validated as a reproductive regulator in model organisms such as Drosophila and murine species; however, research on the effects of HIRA on the prolificacy in sheep remains scarce. Thus, this study aimed to investigate the association between genetic variants of HIRA and litter size in sheep. In brief, we identified 15 novel exonic mutations in the Sonid sheep breed via direct sequencing. Notably, a linkage disequilibrium including the c.1521C>G, c.1572C>T, and c.1578G>A mutations on exon 14 of HIRA exhibited a significant association with litter size in Sonid sheep (p < 0.01). Meanwhile, it was predicted that mutations play a major role in enhancing the stability of the mRNA secondary structure by lowering the minimum free energy, and mutations were also thought to change the mRNA secondary structure of ovine HIRA. Therefore, these findings may provide potentially useful molecular markers for optimizing reproductive performance in Sonid sheep. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

18 pages, 931 KB  
Article
Rare BLK, CEL, KLF11, PDX1, and PAX4 Gene Variants in Russian Patients with Monogenic Diabetes: Clinical and Molecular Characterization
by Rita I. Khusainova, Ildar R. Minniakhmetov, Dmitry N. Laptev, Mariya P. Koltakova, Roman V. Deev, Bulat I. Yalaev, Yaroslav V. Dvoryanchikov, Elena A. Sechko and Natalia G. Mokrysheva
Biomedicines 2025, 13(10), 2452; https://doi.org/10.3390/biomedicines13102452 - 9 Oct 2025
Viewed by 238
Abstract
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics [...] Read more.
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics become increasingly accessible, an expanding number of novel genetic variants are being identified. Objectives: The aim of this study was to characterize the clinical and genetic features of patients carrying rare variants in the BLK, KLF11, PAX4, PDX1, and CEL genes, with attention to population-specific aspects, family history, and treatment outcomes. Methods: Targeted next-generation sequencing (NGS) using a custom-designed panel covering 27 genes implicated in MODY, neonatal diabetes, and related hereditary syndromes was performed on the Illumina NovaSeq 6000 platform (Illumina). Results: We identified 21 variants in five genes associated with rare MODY subtypes among 24 unrelated patients. MODY9 was diagnosed in two unrelated patients of Russian ethnicity harboring an identical heterozygous missense mutation in exon 5 of the PAX4 gene (HG38, chr7:127615049G>A, c.191C>T, p.Thr64Ile), which has not been previously described in patients with diabetes. MODY11 was diagnosed in a patient carrying the c.773-1G>A variant in the BLK gene. A patient with a de novo c.40_41dupGC (p.Val15Glnfs*41) variant in the KLF11 gene was clinically diagnosed with type 1 diabetes. Conclusion: Our findings expand the current understanding of rare MODY subtypes and contribute to the growing body of evidence on the spectrum and frequency of potentially pathogenic variants in BLK, CEL, KLF11, PDX1, and PAX4 genes across ethnically diverse populations worldwide. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

13 pages, 1564 KB  
Article
Pan-Resistant HIV-1 Drug Resistance Among Highly Treated Patients with Virological Failure on Dolutegravir-Based Antiretroviral Therapy in Zimbabwe
by Tendai Washaya, Benjamin Chimukangara, Justin Mayini, Sandra Bote, Nyasha Chin’ombe, Shungu Munyati and Justen Manasa
Viruses 2025, 17(10), 1348; https://doi.org/10.3390/v17101348 - 8 Oct 2025
Viewed by 859
Abstract
The HIV-1 epidemic continues to challenge global public health, especially in sub-Saharan Africa. The rise in drug-resistant viruses, particularly pan-resistant strains, threatens treatment effectiveness, hindering progress toward UNAIDS viral suppression goals. This is critical in low-to-middle income countries (LMICs) like Zimbabwe, where treatment [...] Read more.
The HIV-1 epidemic continues to challenge global public health, especially in sub-Saharan Africa. The rise in drug-resistant viruses, particularly pan-resistant strains, threatens treatment effectiveness, hindering progress toward UNAIDS viral suppression goals. This is critical in low-to-middle income countries (LMICs) like Zimbabwe, where treatment options and access to drug resistance testing are limited. This cross-sectional study analyzed 102 genotypes from patients with HIV-1 RNA ≥ 1000 copies/mL after at least 6 months on a dolutegravir (DTG)-based ART. HIV-1 genotyping and drug resistance interpretation were performed using the Stanford HIV Drug Resistance Database. Overall, 62% of genotypes harbored at least one drug resistance mutation, with 27% showing integrase strand transfer inhibitor (INSTI)-associated mutations. High-level resistance to DTG and cabotegravir was found in 14% and 23% of integrase sequences, respectively, primarily driven by G118R and E138K/T mutations. Pan-resistance was observed in 18% of complete genotypes, with one case of four class resistance. These results highlight the emergence of INSTI resistance in LMICs. The study underscores the urgent need for enhanced HIV drug resistance testing, continuous surveillance, and strategic optimization of ART regimens in resource-constrained settings to ensure effective HIV management. Full article
Show Figures

Figure 1

15 pages, 9626 KB  
Article
Development of Resistance to Damping-Off in Rice, Oryza sativa L., Using CRISPR/Cas9
by Seung-Kyo Jeong, Jae-Ryoung Park, Eun-Gyeong Kim and Kyung-Min Kim
Int. J. Mol. Sci. 2025, 26(19), 9761; https://doi.org/10.3390/ijms26199761 - 7 Oct 2025
Viewed by 359
Abstract
Damping-off disease hinders rice seedling growth and reduces yield. Current control methods, such as seed or soil sterilization, rely on chemicals that cause environmental pollution and promote pathogen resistance. As a sustainable alternative, we targeted the damping-off resistance-related gene OsDGTq1 using CRISPR/Cas9. Field [...] Read more.
Damping-off disease hinders rice seedling growth and reduces yield. Current control methods, such as seed or soil sterilization, rely on chemicals that cause environmental pollution and promote pathogen resistance. As a sustainable alternative, we targeted the damping-off resistance-related gene OsDGTq1 using CRISPR/Cas9. Field experiments first verified OsDGTq1’s significance in resistance. The CRISPR/Cas9 system, delivered via Agrobacterium-mediated transformation, was used to edit OsDGTq1 in rice cultivar Ilmi. Lesions from major damping-off pathogens, Rhizoctonia solani and Pythium graminicola, were observed on G0 plants. All 37 regenerated plants contained T-DNA insertions. Among them, edits generated by sgRNA1-1, sgRNA1-2, and sgRNA1-3 resulted in the insertion of two thymine bases as target mutations. Edited lines were assigned names and evaluated for agronomic traits, seed-setting rates, and pathogen responses. Several lines with edited target genes showed distinct disease responses and altered gene expression compared to Ilmi, likely due to CRISPR/Cas9-induced sequence changes. Further studies in subsequent generations are needed to confirm the stability of these edits and their association with resistance. These results confirm that genome editing of OsDGTq1 alters resistance to damping-off. The approach demonstrates that gene-editing technology can accelerate rice breeding, offering an environmentally friendly strategy to develop resistant varieties. Such varieties can reduce chemical inputs, prevent pollution, and minimize seedling loss, ultimately enhancing food self-sufficiency and stabilizing rice supply. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 2572 KB  
Review
Molecular Mechanisms and Clinical Implications of Fibroblast Growth Factor Receptor 2 Signaling in Gastrointestinal Stromal Tumors
by Yanyun Hong, Xiaodong Wang, Chunhui Shou and Xiaosun Liu
Curr. Issues Mol. Biol. 2025, 47(10), 822; https://doi.org/10.3390/cimb47100822 - 5 Oct 2025
Viewed by 349
Abstract
Introduction: Gastrointestinal stromal tumors (GISTs) are primarily driven by mutations in KIT (KIT proto-oncogene receptor tyrosine kinase) or PDGFRA (platelet-derived growth factor receptor alpha), but resistance to tyrosine kinase inhibitors (TKIs) such as imatinib remains a major clinical challenge. Alterations [...] Read more.
Introduction: Gastrointestinal stromal tumors (GISTs) are primarily driven by mutations in KIT (KIT proto-oncogene receptor tyrosine kinase) or PDGFRA (platelet-derived growth factor receptor alpha), but resistance to tyrosine kinase inhibitors (TKIs) such as imatinib remains a major clinical challenge. Alterations in fibroblast growth factor receptor 2 (FGFR2), although rare, are emerging as important contributors to tumor progression and drug resistance. This review evaluates the molecular mechanisms, expression profiles, detection methods, and therapeutic implications of FGFR2 in GIST. Methods: We searched PubMed, Web of Science, Google Scholar, and ClinicalTrials.gov for studies published between January 2010 and June 2025, using combinations of keywords related to FGFR2, gastrointestinal stromal tumor, resistance mechanisms, gene fusion, amplification, polymorphisms, and targeted therapy. Eligible studies were critically assessed to distinguish GIST-specific data from evidence extrapolated from other cancers. Results:FGFR2 is expressed in multiple normal tissues and at variable levels in mesenchymal-derived tumors, including GIST. Its alterations occur in approximately 1–2% of GIST cases, most commonly as gene fusions (e.g., FGFR2::TACC2, <1%) or amplifications (1–2%); point mutations and clinically significant polymorphisms are extremely rare. These alterations activate the MAPK/ERK and PI3K/AKT pathways, contribute to bypass signaling, and enhance DNA damage repair, thereby promoting TKI resistance. Beyond mutations, mechanisms such as amplification, ligand overexpression, and microenvironmental interactions also play roles. FGFR2 alterations appear mutually exclusive with KIT/PDGFRA mutations but occasional co-occurrence has been reported. Current clinical evidence is largely limited to small cohorts, basket trials, or case reports. Conclusions:FGFR2 is an emerging oncogenic driver and biomarker of resistance in a rare subset of GISTs. Although direct evidence remains limited, particularly regarding DNA repair and polymorphisms, FGFR2-targeted therapies (e.g., erdafitinib, pemigatinib) show potential, especially in combination with TKIs or DNA-damaging agents. Future research should prioritize GIST-specific clinical trials, the development of FGFR2-driven models, and standardized molecular diagnostics to validate FGFR2 as a therapeutic target. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 1222 KB  
Article
Codon Usage Bias of the Polyphenol Oxidase Genes in Camellia sinensis: A Comprehensive Analysis
by Yeşim Aktürk Dizman
Plants 2025, 14(19), 3074; https://doi.org/10.3390/plants14193074 - 4 Oct 2025
Viewed by 413
Abstract
Tea, a widely consumed beverage globally, is a vital agricultural product for many countries. Polyphenol oxidases (PPOs), copper-containing enzymes found in plants, fungi, and animals, are essential for physiological metabolism and enzymatic browning in tea plants (Camellia sinensis). Codon usage bias [...] Read more.
Tea, a widely consumed beverage globally, is a vital agricultural product for many countries. Polyphenol oxidases (PPOs), copper-containing enzymes found in plants, fungi, and animals, are essential for physiological metabolism and enzymatic browning in tea plants (Camellia sinensis). Codon usage bias (CUB), a key evolutionary characteristic, offers valuable insights into species evolution and gene function. However, the codon usage patterns of Camellia sinensis polyphenol oxidase (CsPPO) genes remain undocumented. In this study, we conducted, for the first time, a comprehensive analysis of CUB in 24 CsPPO genes, comparing their CUB profiles with those of other Camellia species (Camellia lanceoleosa, Camellia nitidissima, Camellia ptilophylla) and non-Camellia species (Actinidia chinensis, Cornus florida, Rhododendron vialii) to elucidate potential evolutionary relationships and functional constraints influencing CUB. Nucleotide composition analysis revealed an AT-rich bias, with a preference for G/C-ending codons at the third position. Codon usage indices indicated low expression levels and weak CUB. RSCU and RFSC analyses revealed that the preferred and high-frequency codons were mostly G/C-ending. Codon usage frequency analysis suggested Zea mays as a suitable host for CsPPO gene expression. ENC-GC3s, PR2, and neutrality plots showed natural selection had a stronger impact than mutation on CUB. Additionally, measure independent of length and composition (MILC) values confirmed low PPO gene expression levels, and correlation analyses demonstrated that both nucleotide composition and gene expression affect CUB. Overall, codon usage in CsPPO genes is mainly shaped by natural selection, with weak bias and low expression potential, providing useful insights for future genetic engineering and heterologous expression. Full article
(This article belongs to the Special Issue Plant Genetic Diversity and Molecular Evolution)
Show Figures

Figure 1

Back to TopTop