Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis
Abstract
1. Introduction
1.1. Epidemiology of Parkinson’s Disease
1.2. Classification of Types of PD
1.3. Environmental Factors
1.3.1. Diets
1.3.2. Calcium
1.3.3. Vitamin D
1.3.4. Alcohol Intake
1.4. Genetic Factors
1.5. PARK8/LRRK2 Gene and Environmental Factors
1.6. Research Question
2. Materials and Methods
2.1. Definition of GP in the All of Us Data
2.2. Preliminary Analysis
2.3. Power Analysis
2.3.1. Simple Logistic Regression for PD and GPs
2.3.2. Multivariable Logistic Regression for PD, GPs, and Environmental Factors
2.4. Data Processing
3. Results
3.1. PD and LRRK2 Gene GPs
3.2. Other Bases That Have Similar ORs and p-Values of G2019S
3.3. PD and Environmental Factors
Factors and Statistical Power
3.4. Adjusted ORs of PD, GPs, and Environmental Factors
3.4.1. Comparison of OR and AOR to Access the Environmental Factors’ Adjustment
3.4.2. AOR of GPs Adjusted by Environmental Factors
4. Discussion
4.1. Main Findings
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PD | Parkinson’s disease |
OR | Odds ratio |
AOR | Adjusted odds ratio |
AD | Alzheimer’s disease |
GRCh38.p14 | Genome Reference Consortium Human build 38 patch 14 |
References
- Jimenez-Ferrer, I.; Swanberg, M. Immunogenetics of Parkinson’s Disease. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane, Australia, 2018. [Google Scholar]
- Warner, T.T.; Schapira, A.H.V. Genetic and Environmental Factors in the Cause of Parkinson’s Disease. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2003, 53, S16–S25. [Google Scholar] [CrossRef]
- Post, B.; Van Den Heuvel, L.; Van Prooije, T.; Van Ruissen, X.; Van De Warrenburg, B.; Nonnekes, J. Young Onset Parkinson’s Disease: A Modern and Tailored Approach. J. Park. Dis. 2020, 10, S29–S36. [Google Scholar] [CrossRef]
- Haaxma, C.A.; Bloem, B.R.; Borm, G.F.; Oyen, W.J.G.; Leenders, K.L.; Eshuis, S.; Booij, J.; Dluzen, D.E.; Horstink, M.W.I.M. Gender Differences in Parkinson’s Disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef]
- World Health Organization. Parkinson Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease (accessed on 3 May 2025).
- Willis, A.; Roberts, E.; Beck, J.; Fiske, B.; Ross, W.; Savica, R.; Van Den Eeden, S.; Tanner, C.; Marras, C. Incidence of Parkinson Disease in North America. NPJ Park. Dis. 2022, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, N.; Albin, R.L. Update: Descriptive Epidemiology of Parkinson Disease. Park. Relat. Disord. 2024, 120, 106000. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s Disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef] [PubMed]
- DeSalvo, K.B. Public Health 3.0: A Call to Action for Public Health to Meet the Challenges of the 21st Century. Prev. Chronic Dis. 2017, 14, E78. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Skorvanek, M.; Henriksen, T.; Lindvall, S.; Domingos, J.; Alobaidi, A.; Kandukuri, P.L.; Chaudhari, V.S.; Patel, A.B.; Parra, J.C.; et al. Impact of Advanced Parkinson’s Disease on Caregivers: An International Real-World Study. J. Neurol. 2023, 270, 2162–2173. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, Y.; Zhang, L.; Zhang, Q.; Balbuena, L.; Ungvari, G.S.; Zang, Y.-F.; Xiang, Y.-T. Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Comparative Studies. CNS Neurosci. Ther. 2021, 27, 270–279. [Google Scholar] [CrossRef]
- Zhong, Q.-Q.; Zhu, F. Trends in Prevalence Cases and Disability-Adjusted Life-Years of Parkinson’s Disease: Findings from the Global Burden of Disease Study 2019. Neuroepidemiology 2022, 56, 261–270. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Estimates: Leading Causes of DALYs. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/global-health-estimates-leading-causes-of-dalys (accessed on 3 May 2025).
- Pitz, V.; Makarious, M.B.; Bandres-Ciga, S.; Iwaki, H.; Singleton, A.B.; Nalls, M.; Heilbron, K.; Blauwendraat, C. Analysis of Rare Parkinson’s Disease Variants in Millions of People. NPJ Park. Dis. 2024, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Valente, A.X.; Liao, Q.; Rohkin, G.; Bouça-Machado, R.; Guedes, L.C.; Ferreira, J.J.; Lee, S.M.-Y. Mitochondrial Methylation Two-Peak Profile Absent in Parkinson’s Disease Patient. bioRxiv 2017. [Google Scholar] [CrossRef]
- Lesage, S.; Brice, A. Parkinson’s Disease: From Monogenic Forms to Genetic Susceptibility Factors. Hum. Mol. Genet. 2009, 18, R48–R59. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Bloem, B.R. Parkinson’s Disease Is Predominantly an Environmental Disease. J. Park. Dis. 2024, 14, 451–465. [Google Scholar] [CrossRef]
- Maraki, M.I.; Yannakoulia, M.; Stamelou, M.; Stefanis, L.; Xiromerisiou, G.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Anastasiou, C.A.; et al. Mediterranean Diet Adherence Is Related to Reduced Probability of Prodromal Parkinson’s Disease. Mov. Disord. 2019, 34, 48–57. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Gu, Y.; Mejia-Santana, H.; Cote, L.; Marder, K.S.; Scarmeas, N. The Association between Mediterranean Diet Adherence and Parkinson’s Disease. Mov. Disord. 2012, 27, 771–774. [Google Scholar] [CrossRef]
- Bianchi, V.E.; Rizzi, L.; Somaa, F. The Role of Nutrition on Parkinson’s Disease: A Systematic Review. Nutr. Neurosci. 2023, 26, 605–628. [Google Scholar] [CrossRef]
- Chu, C.-Q.; Yu, L.; Chen, W.; Tian, F.-W.; Zhai, Q.-X. Dietary Patterns Affect Parkinson’s Disease via the Microbiota-Gut-Brain Axis. Trends Food Sci. Technol. 2021, 116, 90–101. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K.; Rüb, U.; De Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Omotosho, A.O.; Tajudeen, Y.A.; Oladipo, H.J.; Yusuff, S.I.; AbdulKadir, M.; Muili, A.O.; Egbewande, O.M.; Yusuf, R.O.; Faniran, Z.O.; Afolabi, A.O.; et al. Parkinson’s Disease: Are Gut Microbes Involved? Brain Behav. 2023, 13, e3130. [Google Scholar] [CrossRef] [PubMed]
- Tehrani, S.S.; Sarfi, M.; Yousefi, T.; Ahangar, A.A.; Gholinia, H.; Ahangar, R.M.; Maniati, M.; Saadat, P. Comparison of the Calcium-Related Factors in Parkinson’s Disease Patients with Healthy Individuals. Casp. J. Intern. Med. 2020, 11, 28–33. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.; Lang, W.; Li, H.; Cui, P.; Zhang, N.; Jiang, W. Serum Calcium Levels and Parkinson’s Disease: A Mendelian Randomization Study. Front. Genet. 2020, 11, 824. [Google Scholar] [CrossRef]
- Eleni, A.; Panagiotis, P. A Systematic Review and Meta-Analysis of Vitamin D and Calcium in Preventing Osteoporotic Fractures. Clin. Rheumatol. 2020, 39, 3571–3579. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.; Tan, X.; Peng, X.; Bai, R.; Xiao, Q.; Zou, T.; Tan, J.; Zhang, H.; Wang, C. The Relationships of Vitamin D, Vitamin D Receptor Gene Polymorphisms, and Vitamin D Supplementation with Parkinson’s Disease. Transl. Neurodegener. 2020, 9, 34. [Google Scholar] [CrossRef]
- Rimmelzwaan, L.M.; van Schoor, N.M.; Lips, P.; Berendse, H.W.; Eekhoff, E.M.W. Systematic Review of the Relationship between Vitamin D and Parkinson’s Disease. J. Park. Dis. 2016, 6, 29–37. [Google Scholar] [CrossRef]
- Fullard, M.E.; Duda, J.E. A Review of the Relationship between Vitamin D and Parkinson Disease Symptoms. Front. Neurol. 2020, 11, 454. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.; Fiore, A.; Yurasek, A.M.; Cook, R.L.; Boissoneault, J. Association of Therapeutic and Recreational Reasons for Alcohol Use with Alcohol Demand. Exp. Clin. Psychopharmacol. 2023, 31, 106–115. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. Information about Alcohol. In NIH Curriculum Supplement Series; National Institutes of Health: Rockville, MD, USA, 2007. [Google Scholar]
- Kamal, H.; Tan, G.C.; Ibrahim, S.F.; Shaikh, M.F.; Mohamed, I.N.; Mohamed, R.M.P.; Hamid, A.A.; Ugusman, A.; Kumar, J. Alcohol Use Disorder, Neurodegeneration, Alzheimer’s and Parkinson’s Disease: Interplay between Oxidative Stress, Neuroimmune Response and Excitotoxicity. Front. Cell. Neurosci. 2020, 14, 282. [Google Scholar] [CrossRef]
- Kouli, A.; Torsney, K.M.; Kuan, W.-L. Parkinson’s Disease: Etiology, Neuropathology, and Pathogenesis. In Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane, Australia, 2018. [Google Scholar]
- Kasten, M.; Hartmann, C.; Hampf, J.; Schaake, S.; Westenberger, A.; Vollstedt, E.-J.; Balck, A.; Domingo, A.; Vulinovic, F.; Dulovic, M.; et al. Genotype-Phenotype Relations for the Parkinson’s Disease Genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov. Disord. 2018, 33, 730–741. [Google Scholar] [CrossRef]
- Klein, C.; Westenberger, A. Genetics of Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a008888. [Google Scholar] [CrossRef]
- Lucking, C.B.; Durr, A.; Bonifati, V.; Vaughan, J.; De Michele, G.; Gasser, T.; Harhangi, B.S.; Meco, G.; Denefle, P.; Wood, N.W. Association between Early-Onset Parkinson’s Disease and Mutations in the Parkin Gene. N. Engl. J. Med. 2000, 342, 1560–1567. [Google Scholar] [CrossRef]
- Stefanis, L. α-Synuclein in Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a009399. [Google Scholar] [CrossRef]
- Sharma, M.; Burré, J. α-Synuclein in Synaptic Function and Dysfunction. Trends Neurosci. 2023, 46, 153–166. [Google Scholar] [CrossRef]
- Cookson, M.R. α-Synuclein and Neuronal Cell Death. Mol. Neurodegener. 2009, 4, 9. [Google Scholar] [CrossRef]
- Krzisch, M.; Yuan, B.; Chen, W.; Osaki, T.; Fu, D.; Garrett-Engele, C.; Svoboda, D.; Andrykovich, K.; Sur, M.; Jaenisch, R. The A53T Mutation in α-Synuclein Enhances pro-Inflammatory Activation in Human Microglia. bioRxiv 2023. [Google Scholar] [CrossRef]
- Zilocchi, M.; Colugnat, I.; Lualdi, M.; Meduri, M.; Marini, F.; Corasolla Carregari, V.; Moutaoufik, M.T.; Phanse, S.; Pieroni, L.; Babu, M.; et al. Exploring the Impact of PARK2 Mutations on the Total and Mitochondrial Proteome of Human Skin Fibroblasts. Front. Cell Dev. Biol. 2020, 8, 423. [Google Scholar] [CrossRef] [PubMed]
- Hershko, A.; Ciechanover, A. The Ubiquitin System. Annu. Rev. Biochem. 1998, 67, 425–479. [Google Scholar] [CrossRef] [PubMed]
- MedlinePlus. UBE3A Gene. Available online: https://medlineplus.gov/genetics/gene/ube3a/ (accessed on 3 May 2025).
- Liang, Y.; Zhong, G.; Ren, M.; Sun, T.; Li, Y.; Ye, M.; Ma, C.; Guo, Y.; Liu, C. The Role of Ubiquitin–Proteasome System and Mitophagy in the Pathogenesis of Parkinson’s Disease. Neuromolecular Med. 2023, 25, 471–488. [Google Scholar] [CrossRef]
- Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; et al. Mapping of a Gene for Parkinson’s Disease to Chromosome 4q21-Q23. Science 1996, 274, 1197–1199. [Google Scholar] [CrossRef]
- Deng, H.; Wang, P.; Jankovic, J. The Genetics of Parkinson Disease. Ageing Res. Rev. 2018, 42, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s Disease: An Introspection of Its Journey towards Precision Medicine. Neurobiol. Dis. 2020, 137, 104782. [Google Scholar] [CrossRef]
- Satake, W.; Nakabayashi, Y.; Mizuta, I.; Hirota, Y.; Ito, C.; Kubo, M.; Kawaguchi, T.; Tsunoda, T.; Watanabe, M.; Takeda, A.; et al. Genome-Wide Association Study Identifies Common Variants at Four Loci as Genetic Risk Factors for Parkinson’s Disease. Nat. Genet. 2009, 41, 1303–1307. [Google Scholar] [CrossRef]
- Tucci, A.; Nalls, M.A.; Houlden, H.; Revesz, T.; Singleton, A.B.; Wood, N.W.; Hardy, J.; Paisán-Ruiz, C. Genetic Variability at the PARK16 Locus. Eur. J. Hum. Genet. 2010, 18, 1356–1359. [Google Scholar] [CrossRef]
- Funayama, M.; Hasegawa, K.; Kowa, H.; Saito, M.; Tsuji, S.; Obata, F. A New Locus for Parkinson’s Disease (PARK8) Maps to Chromosome 12p11. 2–Q13. 1. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2002, 51, 296–301. [Google Scholar] [CrossRef]
- Genome Reference Consortium. The Genome Reference Consortium. Available online: https://www.ncbi.nlm.nih.gov/grc (accessed on 3 May 2025).
- National Library of Medicine. dbSNP. Available online: https://www.ncbi.nlm.nih.gov/snp/rs34637584 (accessed on 3 May 2025).
- Taymans, J.-M.; Fell, M.; Greenamyre, T.; Hirst, W.D.; Mamais, A.; Padmanabhan, S.; Peter, I.; Rideout, H.; Thaler, A. Perspective on the Current State of the LRRK2 Field. NPJ Park. Dis. 2023, 9, 104. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Missense Mutation. Available online: https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/missense-mutation (accessed on 3 May 2025).
- Department of Health and Human Services. All of Us Research Hub. Available online: https://www.researchallofus.org/ (accessed on 2 May 2025).
- All of Us Research Program. Controlled CDR Directory (Archived C2022Q4R13 CDRv7). Available online: https://support.researchallofus.org/hc/en-us/articles/4616869437204-Controlled-CDR-Directory-Archived-C2022Q4R13-CDRv7 (accessed on 2 May 2025).
- Python. Python Source Releases. Available online: https://www.python.org/downloads/source/ (accessed on 3 May 2025).
- Hail Team. Install Hail on GNU/Linux. Available online: https://hail.is/docs/0.2/install/linux.html (accessed on 3 May 2025).
- Pandas. Installation. Available online: https://pandas.pydata.org/docs/getting_started/install.html (accessed on 3 May 2025).
- Jupyter. Installing Jupyter. Available online: https://jupyter.org/install (accessed on 3 May 2025).
- Department of Health and Human Services. All of Us Controlled Tier Dataset v7 CDR Release Notes (C2022Q4R13). Available online: https://docs.google.com/document/d/1tr-WqlUsJicbF9QeCkvhvQmMiSiwEg4vSLiQ0A5zR_4/edit?tab=t.0#heading=h.k6xpincu6nx5 (accessed on 3 May 2025).
- Buchner, A.; Erdfelder, E.; Faul, F.; Lang, A.-G. G*Power. Available online: https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower (accessed on 3 May 2025).
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Johns Hopkins University. Young-Onset Parkinson’s Disease. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/parkinsons-disease/youngonset-parkinsons-disease (accessed on 3 May 2025).
- Kukkle, P.L.; Geetha, T.S.; Chaudhary, R.; Sathirapongsasuti, J.F.; Goyal, V.; Kandadai, R.M.; Kumar, H.; Borgohain, R.; Mukherjee, A.; Oliver, M.; et al. Genome-Wide Polygenic Score Predicts Large Number of High Risk Individuals in Monogenic Undiagnosed Young Onset Parkinson’s Disease Patients from India. Adv. Biol. 2022, 6, 2101326. [Google Scholar] [CrossRef]
- University of California San Francisco. Calcium Blood Test. Available online: https://www.ucsfhealth.org/medical-tests/calcium-blood-test (accessed on 3 May 2025).
- National Institutes of Health. Calcium. Available online: https://ods.od.nih.gov/factsheets/Calcium-HealthProfessional/ (accessed on 3 May 2025).
- University of Florida. 25-Hydroxy Vitamin D Test. Available online: https://ufhealth.org/conditions-and-treatments/25-hydroxy-vitamin-d-test (accessed on 3 May 2025).
- Holick, M.F. Vitamin D Status: Measurement, Interpretation, and Clinical Application. Ann. Epidemiol. 2009, 19, 73–78. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. NM_198578.4(LRRK2):C.6055G>A (p.Gly2019Ser) AND Young-Onset Parkinson Disease. Available online: https://www.ncbi.nlm.nih.gov/clinvar/RCV001195216/ (accessed on 3 May 2025).
- National Library of Medicine. CALCOCO1 Calcium Binding and Coiled-Coil Domain 1 [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/57658 (accessed on 3 May 2025).
- Chen, W.; Ouyang, X.; Chen, L.; Li, L. Multiple Functions of CALCOCO Family Proteins in Selective Autophagy. J. Cell. Physiol. 2022, 237, 3505–3516. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Sykes, A.M.; Mellick, G.D. ER-Phagy in Neurodegeneration. J. Neurosci. Res. 2023, 101, 1611–1623. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Qi, L.; Wu, J.-C.; Qin, Z.-H. DRAM1 Regulates Autophagy Flux through Lysosomes. PLoS ONE 2013, 8, e63245. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. DRAM1 DNA Damage Regulated Autophagy Modulator 1 [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/55332 (accessed on 3 May 2025).
- Morita, E. Membrane Closure in Stress Induced-Autophagosome Formation. Cell Stress 2018, 2, 122. [Google Scholar] [CrossRef]
- National Library of Medicine. SINHCAF SIN3-HDAC Complex Associated Factor [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/58516 (accessed on 3 May 2025).
- Soudy, M.; Bars, S.L.; Glaab, E. Sex-Dependent Molecular Landscape of Alzheimer’s Disease Revealed by Large-Scale Single-Cell Transcriptomics. Alzheimer’s Dement. 2025, 21, e14476. [Google Scholar] [CrossRef]
- Jiao, H.-S.; Yuan, P.; Yu, J.-T. TMEM106B Aggregation in Neurodegenerative Diseases: Linking Genetics to Function. Mol. Neurodegener. 2023, 18, 54. [Google Scholar] [CrossRef]
- National Library of Medicine. RPH3A Rabphilin 3A [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/22895 (accessed on 3 May 2025).
- Wang, H.; Dou, S.; Wang, C.; Gao, W.; Cheng, B.; Yan, F. Identification and Experimental Validation of Parkinson’s Disease with Major Depressive Disorder Common Genes. Mol. Neurobiol. 2023, 60, 6092–6108. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, J. CSF α-Synuclein, Tau, and Amyloid β in Parkinson’s Disease. Lancet Neurol. 2011, 10, 681–683. [Google Scholar] [CrossRef]
- Ablinger, C.; Geisler, S.M.; Stanika, R.I.; Klein, C.T.; Obermair, G.J. Neuronal A2δ Proteins and Brain Disorders. Pflügers Arch.-Eur. J. Physiol. 2020, 472, 845–863. [Google Scholar] [CrossRef] [PubMed]
- Tröger, J.; Moutty, M.C.; Skroblin, P.; Klussmann, E. A-Kinase Anchoring Proteins as Potential Drug Targets. Br. J. Pharmacol. 2012, 166, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Perot, B.P.; Ménager, M.M. Tetraspanin 7 and Its Closest Paralog Tetraspanin 6: Membrane Organizers with Key Functions in Brain Development, Viral Infection, Innate Immunity, Diabetes and Cancer. Med. Microbiol. Immunol. 2020, 209, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Cruchaga, C.; Bradley, J.; Western, D.; Wang, C.; Da Fonseca, E.L.; Neupane, A.; Kurup, J.; Ray, N.; Jean-Francois, M.; Gorijala, P.; et al. Novel Early-Onset Alzheimer-Associated Genes Influence Risk through Dysregulation of Glutamate, Immune Activation, and Intracell Signaling Pathways. Alzheimer’s Dement 2025, 21, e70377. [Google Scholar] [CrossRef]
- National Library of Medicine. LALBA Lactalbumin Alpha [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/3906 (accessed on 3 May 2025).
- National Library of Medicine. RACGAP1 Rac GTPase Activating Protein 1 [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/29127 (accessed on 3 May 2025).
- Liu, X.; Wang, H.; Bei, J.; Zhao, J.; Jiang, G.; Liu, X. The Protective Role of miR-132 Targeting HMGA2 through the PI3K/AKT Pathway in Mice with Alzheimer’s Disease. Am. J. Transl. Res. 2021, 13, 4632–4643. [Google Scholar] [PubMed]
- Ayers, K.L.; Eggers, S.; Rollo, B.N.; Smith, K.R.; Davidson, N.M.; Siddall, N.A.; Zhao, L.; Bowles, J.; Weiss, K.; Zanni, G.; et al. Variants in SART3 Cause a Spliceosomopathy Characterised by Failure of Testis Development and Neuronal Defects. Nat. Commun. 2023, 14, 3403. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. GATC Glutamyl-tRNA Amidotransferase Subunit C [Homo sapiens (Human)]. Available online: https://www.ncbi.nlm.nih.gov/gene/283459 (accessed on 3 May 2025).
- Shu, L.; Zhang, Y.; Sun, Q.; Pan, H.; Tang, B. A Comprehensive Analysis of Population Differences in LRRK2 Variant Distribution in Parkinson’s Disease. Front. Aging Neurosci. 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed]
Item | Category | Value | % |
---|---|---|---|
PD (n) | Positive | 369 | 1.08 |
Negative | 33,793 | 98.92 | |
Age (n) | <50 | 8310 | 24.33 |
≥50 | 25,852 | 75.67 | |
Sex (n) | Female | 24,201 | 70.84 |
Male | 9961 | 29.16 | |
Calcium (mg/dL) | <8.5 | 743 | 2.17 |
≥8.5 and <9.0 | 4831 | 14.14 | |
≥9.0 and <9.5 | 17,183 | 50.3 | |
≥9.5 | 11,405 | 33.39 | |
Vitamin D (ng/mL) | <20 | 5219 | 15.28 |
≥20 and <30 | 9999 | 29.27 | |
≥30 and <40 | 10,394 | 30.43 | |
≥40 | 8550 | 25.03 | |
Alcohol consumption (n) | Never | 6771 | 19.82 |
Monthly or less | 11,244 | 32.91 | |
2 to 4 per month | 7042 | 20.61 | |
2 to 3 per week | 4714 | 13.80 | |
4 or more per week | 4391 | 12.85 |
Item | Category | PD Positive (n = 369) | PD Negative (n = 33,793) | p-Value |
---|---|---|---|---|
Age (n) | <50 | 9 | 8301 | <0.000 1 |
≥50 | 360 | 25,492 | ||
Sex (n) | Female | 176 | 24,025 | <0.000 1 |
Male | 193 | 8301 | ||
Calcium (mg/dL) | <8.5 | 8 | 735 | <0.000 2 |
≥8.5 and <9.0 | 84 | 4747 | ||
≥9.0 and <9.5 | 180 | 17,003 | ||
≥9.5 | 97 | 111,308 | ||
Vitamin D (ng/mL) | <20 | 28 | 5191 | <0.000 2 |
≥20 and <30 | 85 | 9914 | ||
≥30 and <40 | 138 | 10,256 | ||
≥40 | 118 | 8432 | ||
Alcohol consumption (n) | Never | 103 | 6668 | 0.038 2 |
Monthly or less | 115 | 11,129 | ||
2 to 4 per month | 53 | 6989 | ||
2 to 3 per week | 48 | 4666 | ||
4 or more per week | 50 | 4341 |
Item | Category | AOR (95% CI) | p-Value |
---|---|---|---|
Age (n) | <50 | (Reference) | |
≥50 | 10.09 (5.18–19.64) | <0.000 | |
Sex (n) | Female | 0.41 (0.34–0.51) | <0.000 |
Male | (Reference) | ||
Calcium (mg/dL) | <8.5 | 0.63 (0.30–1.32) | 0.223 |
≥8.5 and <9.0 | (Reference) | ||
≥9.0 and <9.5 | 0.61 (0.47–0.79) | <0.000 | |
≥9.5 | 0.49 (0.37–0.67) | <0.000 | |
Vitamin D (ng/mL) | <20 | 0.70 (0.46–1.08) | 0.112 |
≥20 and <30 | (Reference) | ||
≥30 and <40 | 1.46 (1.11–1.92) | 0.007 | |
≥ 40 | 1.56 (1.17–2.07) | 0.002 | |
Alcohol consumption (n) | Never | (Reference) | |
Monthly or less | 0.89 (0.68–1.16) | 0.389 | |
2 to 4 per month | 0.59 (0.42–0.83) | 0.002 | |
2 to 3 per week | 0.73 (0.52–1.03) | 0.077 | |
4 or more per week | 0.66 (0.47–0.93) | 0.016 |
Base No. (GRCh38.p14) | OR (95% CI) | Original p-Value | Adjusted p-Value | Gene Name |
---|---|---|---|---|
1860203 | 5.58 (2.76–11.31) | <0.000 | <0.000 | CACNA2D4 |
4628152 | 5.43 (2.43–12.11) | <0.000 | <0.000 | AKAP3 |
11869533 | 5.94 (2.93–12.05) | <0.000 | <0.000 | ETV6 |
13537468 | 5.25 (2.97–9.27) | <0.000 | <0.000 | GRIN2B |
30983164 | 5.53 (2.60–11.76) | <0.000 | <0.000 | TSPAN11 |
38321345 | 5.77 (2.85–11.69) | <0.000 | <0.000 | ALG10B |
40340400 (G2019S) | 5.46 (2.90–10.27) | <0.000 | <0.000 | LRRK2 (PARK8) |
48569196 | 5.28 (2.61–10.70) | <0.000 | <0.000 | LALBA |
49990203 | 5.09 (2.26–11.48) | <0.000 | 0.002 | RACGAP1 |
52107506 | 5.33 (2.36–12.02) | <0.000 | 0.001 | SMIM41 |
65955867 | 5.06 (2.24–11.42) | <0.000 | 0.002 | HMGA2 |
66254622 | 5.87 (2.89–11.89) | <0.000 | <0.000 | IRAK3 |
81260048 | 5.30 (2.35–11.96) | <0.000 | 0.001 | ACSS3 |
108544453 | 5.01 (2.48–10.15) | <0.000 | <0.000 | SART3 |
120460300 | 5.69 (2.67–12.10) | <0.000 | <0.000 | GATC |
Base No. (GRCh38.p14) | OR (95% CI) | AOR (95% CI) | AOR p-Value | Gene Name |
---|---|---|---|---|
53711362 | 7.48 (2.30–24.37) | 5.00 (1.51–16.59) | 0.009 | CALCOCO1 |
31281818 | 6.57 (1.56–27.69) | 4.37 (1.02–18.78) | 0.047 | SINHCAF |
101921705 | 7.67 (1.81–32.56) | 5.51 (1.27–23.95) | 0.023 | DRAM1 |
47968795 | 4.97 (1.19–20.71) | 7.83 (1.82–33.62) | 0.006 | TMEM106C |
112791809 | 5.61 (1.34–23.44) | 8.19 (1.89–35.46) | 0.005 | RPH3A |
Base No. (GRCh38.p14) | OR (95% CI) | AOR (95% CI) | AOR p-Value | Gene Name |
---|---|---|---|---|
1860203 | 4.77 (1.49–15.29) | 4.60 (1.41–15.03) | 0.012 | CACNA2D4 |
13537468 | 5.68 (1.41–22.82) | 4.52 (1.12–18.23) | 0.034 | GRIN2B |
30983164 | 5.12 (1.59–16.45) | 4.41 (1.35–14.45) | 0.014 | TSPAN11 |
40340400 (G2019S) | 5.52 (2.00–15.21) | 5.56 (1.99–15.57) | 0.001 | LRRK2 (PARK8) |
49990203 | 5.89 (1.82–18.99) | 4.29 (1.31–14.08) | 0.016 | RACGAP1 |
81260048 | 5.03 (1.57–16.45) | 4.23 (1.30–13.83) | 0.017 | ACSS3 |
120460300 | 5.22 (1.62–16.77) | 4.32 (1.33–14.05) | 0.015 | GATC |
Item | Category | chr12:53711362 (n = 34,162) | chr12: 31281818 (n = 34,158) | chr12: 101921705 (n = 34,150) | chr12: 47968795 (n = 34,144) | chr12: 112791809 (n = 16,972) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value | ||
GP | Reference nucleotide | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | |||||
Polymorphic nucleotide | 4.86 (1.46–16.18) | 0.010 | 4.37 (1.02–18.82) | 0.048 | 5.38 (1.23–23.51) | 0.025 | 7.82 (1.81–33.83) | 0.006 | 8.05 (1.85–35.05) | 0.005 | |
Age (n) | <50 | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | |||||
≥50 | 10.04 (5.16–19.55) | <0.000 | 10.08 (5.18–19.62) | <0.000 | 10.07 (5.17–19.60) | <0.000 | 10.10 (5.19–19.67) | <0.000 | 11.44 (4.22–31.01) | <0.000 | |
Sex (n) | Female | 0.42 (0.34–0.52) | <0.000 | 0.41 (0.34–0.51) | <0.000 | 0.42 (0.34–0.51) | <0.000 | 0.41 (0.33–0.51) | <0.000 | 0.55 (0.40–0.74) | <0.000 |
Male | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | ||||||
Calcium (mg/dL) | <8.5 | 0.56 (0.26–1.21) | 0.014 | 0.64 (0.30–1.32) | 0.227 | 0.64 (0.31–1.33) | 0.227 | 0.64 (0.30–1.32) | 0.226 | 0.66 (0.20–2.16) | 0.489 |
≥8.5 and <9.0 | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | ||||||
≥9.0 and <9.5 | 0.61 (0.47–0.79) | <0.000 | 0.61 (0.47–0.79) | <0.000 | 0.61 (0.47–0.79) | <0.000 | 0.61 (0.47–0.79) | <0.000 | 0.68 (0.46–1.00) | 0.050 | |
≥9.5 | 0.49 (0.37–0.67) | <0.000 | 0.50 (0.37–0.67) | <0.000 | 0.49 (0.37–0.67) | <0.000 | 0.49 (0.36–0.66) | <0.000 | 0.50 (0.32–0.78) | 0.002 | |
Vitamin D (ng/mL) | <20 | 0.71 (0.46–1.09) | 0.118 | 0.71 (0.46–1.09) | 0.115 | 0.71 (0.46–1.09) | 0.114 | 0.72 (0.46–1.10) | 0.130 | 0.50 (0.24–1.03) | 0.059 |
≥20 and <30 | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | ||||||
≥30 and <40 | 1.44 (1.10–1.90) | 0.009 | 1.45 (1.11–1.91) | 0.007 | 1.45 (1.11–1.91) | 0.007 | 1.48 (1.13–1.95) | 0.005 | 1.52 (1.02–2.26) | 0.040 | |
≥40 | 1.55 (1.16–2.05) | 0.003 | 1.55 (1.17–2.06) | 0.002 | 1.56 (1.17–2.07) | 0.002 | 1.59 (1.20–2.11) | 0.001 | 1.76 (1.18–2.64) | 0.006 | |
Alcohol consumption (n) | Never | (Reference) | (Reference) | (Reference) | (Reference) | (Reference) | |||||
Monthly or less | 0.89 (0.68–1.17) | 0.397 | 0.89 (0.67–1.16) | 0.377 | 0.89 (0.68–1.17) | 0.394 | 0.89 (0.68–1.16) | 0.391 | 0.99 (0.67–1.46) | 0.961 | |
2 to 4 per month | 0.59 (0.42–0.83) | 0.002 | 0.59 (0.42–0.83) | 0.002 | 0.59 (0.42–0.83) | 0.002 | 0.58 (0.41–0.81) | 0.002 | 0.66 (0.41–1.06) | 0.085 | |
2 to 3 per week | 0.71 (0.50–1.01) | 0.060 | 0.73 (0.52–1.04) | 0.079 | 0.73 (0.51–1.03) | 0.071 | 0.73 (0.51–1.03) | 0.072 | 0.66 (0.39–1.13) | 0.128 | |
4 or more per week | 0.65 (0.46–0.92) | 0.015 | 0.66 (0.47–0.93) | 0.016 | 0.66 (0.47–0.93) | 0.016 | 0.66 (0.47–0.93) | 0.017 | 0.70 (0.43–1.16) | 0.165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abe, K.; Niemchick, K. Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis. Genes 2025, 16, 1197. https://doi.org/10.3390/genes16101197
Abe K, Niemchick K. Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis. Genes. 2025; 16(10):1197. https://doi.org/10.3390/genes16101197
Chicago/Turabian StyleAbe, Kenta, and Karen Niemchick. 2025. "Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis" Genes 16, no. 10: 1197. https://doi.org/10.3390/genes16101197
APA StyleAbe, K., & Niemchick, K. (2025). Chromosome 12 and Environmental Factors in Parkinson’s Disease: An All of Us Data Analysis. Genes, 16(10), 1197. https://doi.org/10.3390/genes16101197