Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (431)

Search Parameters:
Keywords = Fuzzy-Hybrid Analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 7263 KiB  
Article
Time Series Prediction and Modeling of Visibility Range with Artificial Neural Network and Hybrid Adaptive Neuro-Fuzzy Inference System
by Okikiade Adewale Layioye, Pius Adewale Owolawi and Joseph Sunday Ojo
Atmosphere 2025, 16(8), 928; https://doi.org/10.3390/atmos16080928 (registering DOI) - 31 Jul 2025
Abstract
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) [...] Read more.
The time series prediction of visibility in terms of various meteorological variables, such as relative humidity, temperature, atmospheric pressure, and wind speed, is presented in this paper using Single-Variable Regression Analysis (SVRA), Artificial Neural Network (ANN), and Hybrid Adaptive Neuro-fuzzy Inference System (ANFIS) techniques for several sub-tropical locations. The initial method used for the prediction of visibility in this study was the SVRA, and the results were enhanced using the ANN and ANFIS techniques. Throughout the study, neural networks with various algorithms and functions were trained with different atmospheric parameters to establish a relationship function between inputs and visibility for all locations. The trained neural models were tested and validated by comparing actual and predicted data to enhance visibility prediction accuracy. Results were compared to assess the efficiency of the proposed systems, measuring the root mean square error (RMSE), coefficient of determination (R2), and mean bias error (MBE) to validate the models. The standard statistical technique, particularly SVRA, revealed that the strongest functional relationship was between visibility and RH, followed by WS, T, and P, in that order. However, to improve accuracy, this study utilized back propagation and hybrid learning algorithms for visibility prediction. Error analysis from the ANN technique showed increased prediction accuracy when all the atmospheric variables were considered together. After testing various neural network models, it was found that the ANFIS model provided the most accurate predicted results, with improvements of 31.59%, 32.70%, 30.53%, 28.95%, 31.82%, and 22.34% over the ANN for Durban, Cape Town, Mthatha, Bloemfontein, Johannesburg, and Mahikeng, respectively. The neuro-fuzzy model demonstrated better accuracy and efficiency by yielding the finest results with the lowest RMSE and highest R2 for all cities involved compared to the ANN model and standard statistical techniques. However, the statistical performance analysis between measured and estimated visibility indicated that the ANN produced satisfactory results. The results will find applications in Optical Wireless Communication (OWC), flight operations, and climate change analysis. Full article
(This article belongs to the Special Issue Atmospheric Modeling with Artificial Intelligence Technologies)
Show Figures

Figure 1

27 pages, 881 KiB  
Article
Review of Methods and Models for Forecasting Electricity Consumption
by Kamil Misiurek, Tadeusz Olkuski and Janusz Zyśk
Energies 2025, 18(15), 4032; https://doi.org/10.3390/en18154032 - 29 Jul 2025
Viewed by 142
Abstract
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four [...] Read more.
This article presents a comprehensive review of methods used for forecasting electricity consumption. The studies analyzed by the authors encompass both classical statistical models and modern approaches based on artificial intelligence, including machine-learning and deep-learning techniques. Electricity load forecasting is categorized into four time horizons: very short term, short term, medium term, and long term. The authors conducted a comparative analysis of various models, such as autoregressive models, neural networks, fuzzy logic systems, hybrid models, and evolutionary algorithms. Particular attention was paid to the effectiveness of these methods in the context of variable input data, such as weather conditions, seasonal fluctuations, and changes in energy consumption patterns. The article emphasizes the growing importance of accurate forecasts in the context of the energy transition, integration of renewable energy sources, and the management of the evolving electricity system, shaped by decentralization, renewable integration, and data-intensive forecasting demands. In conclusion, the authors highlight the lack of a universal forecasting approach and the need for further research on hybrid models that combine interpretability with high predictive accuracy. This review can serve as a valuable resource for decision-makers, grid operators, and researchers involved in energy system planning. Full article
(This article belongs to the Special Issue Electricity Market Modeling Trends in Power Systems: 2nd Edition)
Show Figures

Figure 1

33 pages, 7261 KiB  
Article
Comparative Analysis of Explainable AI Methods for Manufacturing Defect Prediction: A Mathematical Perspective
by Gabriel Marín Díaz
Mathematics 2025, 13(15), 2436; https://doi.org/10.3390/math13152436 - 29 Jul 2025
Viewed by 304
Abstract
The increasing complexity of manufacturing processes demands accurate defect prediction and interpretable insights into the causes of quality issues. This study proposes a methodology integrating machine learning, clustering, and Explainable Artificial Intelligence (XAI) to support defect analysis and quality control in industrial environments. [...] Read more.
The increasing complexity of manufacturing processes demands accurate defect prediction and interpretable insights into the causes of quality issues. This study proposes a methodology integrating machine learning, clustering, and Explainable Artificial Intelligence (XAI) to support defect analysis and quality control in industrial environments. Using a dataset based on empirical industrial distributions, we train an XGBoost model to classify high- and low-defect scenarios from multidimensional production and quality metrics. The model demonstrates high predictive performance and is analyzed using five XAI techniques (SHAP, LIME, ELI5, PDP, and ICE) to identify the most influential variables linked to defective outcomes. In parallel, we apply Fuzzy C-Means and K-means to segment production data into latent operational profiles, which are also interpreted using XAI to uncover process-level patterns. This approach provides both global and local interpretability, revealing consistent variables across predictive and structural perspectives. After a thorough review, no prior studies have combined supervised learning, unsupervised clustering, and XAI within a unified framework for manufacturing defect analysis. The results demonstrate that this integration enables a transparent, data-driven understanding of production dynamics. The proposed hybrid approach supports the development of intelligent, explainable Industry 4.0 systems. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

31 pages, 1247 KiB  
Review
A Review of Water Quality Forecasting and Classification Using Machine Learning Models and Statistical Analysis
by Amar Lokman, Wan Zakiah Wan Ismail and Nor Azlina Ab Aziz
Water 2025, 17(15), 2243; https://doi.org/10.3390/w17152243 - 28 Jul 2025
Viewed by 315
Abstract
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models [...] Read more.
The prediction and management of water quality are critical to ensure sustainable water resources, particularly in regions like Malaysia, where rivers face increasing pollution from industrialisation, agriculture, and urban expansion. This review aims to provide a comprehensive analysis of machine learning (ML) models and statistical methods applied in forecasting and classification of water quality. A particular focus is given to hybrid models that integrate multiple approaches to improve predictive accuracy and robustness. This study also reviews water quality standards and highlights the environmental context that necessitates advanced predictive tools. Statistical techniques such as residual analysis, principal component analysis (PCA), and feature importance assessment are also explored to enhance model interpretability and reliability. Comparative tables of model performance, strengths, and limitations are presented alongside real-world applications. Despite recent advancements, challenges remain in data quality, model interpretability, and integration of spatio-temporal and fuzzy logic techniques. This review identifies key research gaps and proposes future directions for developing transparent, adaptive, and accurate models. The findings can also guide researchers and policymakers towards the development of smart water quality management systems that enhance decision-making and ecological sustainability. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

30 pages, 435 KiB  
Article
Dombi Aggregation of Trapezoidal Neutrosophic Number for Charging Station Decision-Making
by Mohammed Alqahtani
Symmetry 2025, 17(8), 1195; https://doi.org/10.3390/sym17081195 - 26 Jul 2025
Viewed by 162
Abstract
In engineering and decision sciences, trapezoidal-valued neutrosophic fuzzy numbers (TzVNFNs) have become effective tools for managing imprecision and uncertainty in multi-attribute group decision-making (MAGDM) problems. This work introduces accumulation operators based on the Dombi t-norm [...] Read more.
In engineering and decision sciences, trapezoidal-valued neutrosophic fuzzy numbers (TzVNFNs) have become effective tools for managing imprecision and uncertainty in multi-attribute group decision-making (MAGDM) problems. This work introduces accumulation operators based on the Dombi t-norm (DTn) and Dombi t-conorm (DTcn) specifically designed for TzVNFNs. These operators enhance the flexibility, consistency, and fairness of the aggregation process. To demonstrate their practical applicability, we propose three novel geometric aggregation operator’s namely, the trapezoidal-valued neutrosophic fuzzy Dombi weighted geometric (TzVNFDWG), the trapezoidal-valued neutrosophic fuzzy Dombi ordered weighted geometric (TzVNFDOWG), and the trapezoidal-valued neutrosophic fuzzy Dombi hybrid Geometric (TzVNFDHG) operators. These are incorporated into a systematic MAGDM framework to support the selection of optimal locations for charging stations. Comparative analysis with current decision-making methodologies highlights the efficacy and benefits of the suggested method. The suggested method provides a flexible and mathematically based choice framework designed for uncertain condition. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

23 pages, 5107 KiB  
Article
Linear Rolling Guide Surface Wear-State Identification Based on Multi-Scale Fuzzy Entropy and Random Forest
by Conghui Nie, Changguang Zhou, Tieqiang Wang, Xiaoyi Wang, Huaxi Zhou and Hutian Feng
Lubricants 2025, 13(8), 323; https://doi.org/10.3390/lubricants13080323 - 24 Jul 2025
Viewed by 229
Abstract
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, [...] Read more.
As a critical precision transmission element in numerical control (NC) machines, the linear rolling guide (LRG) suffers from surface wear degradation, which significantly impairs machining accuracy and operational reliability. Despite its importance, effective identification methods for LRG degradation remain limited. In this study, a hybrid approach combining multi-scale fuzzy entropy (MFE) with a gray wolf-optimized random forest (GWO-RF) algorithm was proposed to identify the surface wear state of the LRG. Preload degradation and vibration signals were collected at three surface wear stages throughout the LGR’s service life. The vibration signals were decomposed and reconstructed using complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), followed by multi-scale fuzzy entropy analysis of the reconstructed signals. After dimensionality reduction via kernel principal component analysis (KPCA), the processed features were fed into the GWO-RF model for classification. Experimental results demonstrated a recognition accuracy of 97.9%. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

39 pages, 936 KiB  
Article
Prioritizing ERP System Selection Challenges in UAE Ports: A Fuzzy Delphi and Relative Importance Index Approach
by Nadin Alherimi, Alyaa Alyaarbi, Sara Ali, Zied Bahroun and Vian Ahmed
Logistics 2025, 9(3), 98; https://doi.org/10.3390/logistics9030098 - 23 Jul 2025
Viewed by 404
Abstract
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which [...] Read more.
Background: Selecting enterprise resource planning (ERP) systems for complex port environments is a significant challenge. This study addresses a key research gap by identifying and prioritizing the critical factors for ERP selection within the strategic context of United Arab Emirates (UAE) ports, which function as vital hubs in global trade. Methods: A hybrid methodology was employed, first using the Fuzzy Delphi Method (FDM) to validate thirteen challenges with five industry experts. Subsequently, the Relative Importance Index (RII) was used to rank these challenges based on survey data from 48 UAE port professionals. Results: The analysis revealed “Cybersecurity concerns” as the highest-ranked challenge (RII = 0.896), followed by “Engagement with external stakeholders” (RII = 0.842), and both “Process optimization” and “Technical capabilities” (RII = 0.808). Notably, factors traditionally seen as critical in other sectors, such as “Organizational readiness” (RII = 0.746), were ranked significantly lower. Conclusions: The findings indicate a strategic shift in ERP selection priorities toward digital resilience and external integration rather than internal organizational factors. This research provides a sector-specific decision-support framework and offers actionable insights for port authorities, vendors, and policymakers to enhance ERP implementation in the maritime industry. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

19 pages, 3236 KiB  
Article
Performance Evaluation of a Hybrid Power System for Unmanned Aerial Vehicles Applications
by Tiberius-Florian Frigioescu, Gabriel-Petre Badea, Mădălin Dombrovschi and Maria Căldărar
Electronics 2025, 14(14), 2873; https://doi.org/10.3390/electronics14142873 - 18 Jul 2025
Viewed by 279
Abstract
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, [...] Read more.
While electric unmanned aerial vehicles (UAVs) offer advantages in noise reduction, safety, and operational efficiency, their endurance is limited by current battery technology. Extending flight autonomy without compromising performance is a critical challenge in UAV system development. Previous studies introduced hybrid micro-turbogenerator architectures, but limitations in control stability and output power constrained their practical implementation. This study aimed to finalize the design and experimental validation of an optimized hybrid power system featuring a micro-turboprop engine mechanically coupled to an upgraded electric generator. A fuzzy logic-based control algorithm was implemented on a single-board computer to enable autonomous voltage regulation. The test bench architecture was reinforced and instrumented to allow stable multi-stage testing across increasing power levels. Results demonstrated stable voltage control at 48 VDC and electrical power outputs up to 3 kW, with an estimated maximum of 3.5 kW at full throttle. Efficiency was calculated at approximately 67%, and analysis of the generator’s KV constant revealed that using a lower KV variant (KV80) could reduce required rotational speed (RPM) and improve performance. These findings underscore the value of adaptive hybridization in UAVs and suggest that tuning generator electromechanical parameters can significantly enhance overall energy efficiency and platform autonomy. Full article
Show Figures

Figure 1

23 pages, 6850 KiB  
Article
Optimizing Energy Consumption in Public Institutions Using AI-Based Load Shifting and Renewable Integration
by Otilia Elena Dragomir, Florin Dragomir and Marius Păun
J. Sens. Actuator Netw. 2025, 14(4), 74; https://doi.org/10.3390/jsan14040074 - 15 Jul 2025
Viewed by 317
Abstract
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption [...] Read more.
This paper details the development and implementation of an intelligent energy efficiency system for an electrical grid that incorporates renewable energy sources, specifically photovoltaic systems. The system is applied in a small locality of approximately 8000 inhabitants and aims to optimize energy consumption in public institutions by scheduling electrical appliances during periods of surplus PV energy production. The proposed solution employs a hybrid neuro-fuzzy approach combined with scheduling techniques to intelligently shift loads and maximize the use of locally generated green energy. This enables appliances, particularly schedulable and schedulable non-interruptible ones, to operate during peak PV production hours, thereby minimizing reliance on the national grid and improving overall energy efficiency. This directly reduces the cost of electricity consumption from the national grid. Furthermore, a comprehensive power quality analysis covering variables including harmonic distortion and voltage stability is proposed. The results indicate that while photovoltaic systems, being switching devices, can introduce some harmonic distortion, particularly during peak inverter operation or transient operating regimes, and flicker can exceed standard limits during certain periods, the overall voltage quality is maintained if proper inverter controls and grid parameters are adhered to. The system also demonstrates potential for scalability and integration with energy storage systems for enhanced future performance. Full article
(This article belongs to the Section Network Services and Applications)
Show Figures

Figure 1

27 pages, 1502 KiB  
Article
A Strategic Hydrogen Supplier Assessment Using a Hybrid MCDA Framework with a Game Theory-Driven Criteria Analysis
by Jettarat Janmontree, Aditya Shinde, Hartmut Zadek, Sebastian Trojahn and Kasin Ransikarbum
Energies 2025, 18(13), 3508; https://doi.org/10.3390/en18133508 - 3 Jul 2025
Viewed by 234
Abstract
Effective management of the hydrogen supply chain (HSC), starting with supplier selection, is crucial for advancing the hydrogen industry and economy. Supplier selection, a complex Multi-Criteria Decision Analysis (MCDA) problem in an inherently uncertain environment, requires careful consideration. This study proposes a novel [...] Read more.
Effective management of the hydrogen supply chain (HSC), starting with supplier selection, is crucial for advancing the hydrogen industry and economy. Supplier selection, a complex Multi-Criteria Decision Analysis (MCDA) problem in an inherently uncertain environment, requires careful consideration. This study proposes a novel hybrid MCDA framework that integrates the Bayesian Best–Worst Method (BWM), Fuzzy Analytic Hierarchy Process (AHP), and Entropy Weight Method (EWM) for robust criteria weighting, which is aggregated using a game theory-based model to resolve inconsistencies and capture the complementary strengths of each technique. Next, the globally weighted criteria, emphasizing sustainability performance and techno-risk considerations, are used in the TODIM method grounded in prospect theory to rank hydrogen suppliers. Numerical experiments demonstrate the approach’s ability to enhance decision robustness compared to standalone MCDA methods. The comparative evaluation and sensitivity analysis confirm the stability and reliability of the proposed method, offering valuable insights for strategic supplier selection in the evolving hydrogen landscape in the HSC. Full article
(This article belongs to the Special Issue Renewable Energy and Hydrogen Energy Technologies)
Show Figures

Figure 1

25 pages, 8922 KiB  
Article
Hybrid Grey–Fuzzy Approach for Optimizing Circular Quality Responses in Plasma Jet Manufacturing of Aluminum Alloy
by Ivan Peko, Boris Crnokić, Jelena Čulić-Viskota and Tomislav Matić
Appl. Sci. 2025, 15(13), 7447; https://doi.org/10.3390/app15137447 - 2 Jul 2025
Viewed by 333
Abstract
Plasma jet cutting is a non-conventional process commonly used in modern industry for processing metal sheets and preparing them for subsequent technological steps. In this context it is very important to achieve the best possible final-quality workpiece to minimize additional post-processing costs, and [...] Read more.
Plasma jet cutting is a non-conventional process commonly used in modern industry for processing metal sheets and preparing them for subsequent technological steps. In this context it is very important to achieve the best possible final-quality workpiece to minimize additional post-processing costs, and time. This is especially challenging by the plasma jet processing of aluminum and its alloys. In this paper, a comprehensive analysis regarding the machinability and optimal circular quality of aluminum alloy 5083 was performed. Process parameters whose effects were analyzed are the cutting speed, arc current and cutting height. The circular quality was considered through responses: the circular kerf width, circular bevel angle, and circularity error on the top and bottom sheet of the metal side. To design functional relations between the process inputs and quality performances, an artificial intelligence fuzzy logic technique supported by ANOVA was applied. In order to define the process conditions that result in optimal cut quality responses, the multi-objective optimization of hybrid grey relational analysis (GRA) and the fuzzy logic approach was presented. Corresponding surface plots were created to determine the Pareto front of optimal solutions that simultaneously optimize all circular quality objective functions. The optimization procedure was confirmed through a test in which the mean absolute percentage error represented as the validation metric. Full article
(This article belongs to the Special Issue Advances in Manufacturing and Machining Processes)
Show Figures

Figure 1

26 pages, 2588 KiB  
Article
Evaluating Sustainable Intermodal Transport Routes: A Hybrid Fuzzy Delphi-Factor Relationship (FARE)-Axial Distance Based Aggregated Measurement (ADAM) Model
by Snežana Tadić, Biljana Mićić and Mladen Krstić
Sustainability 2025, 17(13), 6071; https://doi.org/10.3390/su17136071 - 2 Jul 2025
Viewed by 315
Abstract
Intermodal transport (IT), which implies the combination of several different types of transport to achieve a more efficient and economical movement of goods, is of increasing importance in modern supply chains. In the conditions of globalization, growth of trade flows and increasingly pronounced [...] Read more.
Intermodal transport (IT), which implies the combination of several different types of transport to achieve a more efficient and economical movement of goods, is of increasing importance in modern supply chains. In the conditions of globalization, growth of trade flows and increasingly pronounced requirements for sustainability, effective planning and management of intermodal routes have become crucial, which is why their evaluation and ranking are essential for making strategic and operational decisions. Accordingly, this paper aims to identify the most favorable alternative for developing intermodal transport. Deciding on the choice of the most important intermodal route requires consideration of a large number of criteria, often of a mutually conflicting nature, which places this problem in the domain of multi-criteria decision-making (MCDM). Accordingly, this paper develops a hybrid decision-making model in a fuzzy environment, which combines fuzzy DELPHI (FDELPHI), fuzzy factor relationship (FFARE), and fuzzy axial-distance-based aggregated measurement (FADAM) methods. The model enables the identification and evaluation of relevant criteria, as well as the ranking of defined variants under the requirements and attitudes of various stakeholders. The practical application and effectiveness of the developed model were demonstrated and confirmed by a case study for Bosnia and Herzegovina (B&H). The sensitivity analysis showed that even with changes in the weights of the criteria or the elimination of the most important criteria, the solution remains consistent and reliable. This indicates the robustness of the model and suggests that changes in the parameters do not lead to significant changes in the final results. This confirms the validity of the proposed model and increases confidence in its applicability in practice. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

24 pages, 532 KiB  
Article
Can They Keep You Hooked? Impact of Streamers’ Social Capital on User Stickiness in E-Commerce Live Streaming
by Juan Tan, Yanling Dong, Wenjing Zhao, Qiong Tan and Rui Liu
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 158; https://doi.org/10.3390/jtaer20030158 - 1 Jul 2025
Viewed by 495
Abstract
Amid the rapid growth of social media and live streaming platforms, streamers, who serve as a crucial link between products and users, have garnered significant attention from both academia and industry. This study explores the impact of the streamer’s social capital (S) on [...] Read more.
Amid the rapid growth of social media and live streaming platforms, streamers, who serve as a crucial link between products and users, have garnered significant attention from both academia and industry. This study explores the impact of the streamer’s social capital (S) on user stickiness (R), as well as the mediating roles of perceived value and flow experience (O) in light of the Stimuli-Organism-Response (SOR) framework and social capital theory. A total of 322 valid samples were analyzed through Structural Equation Modeling (SEM) and Fuzzy-set Qualitative Comparative Analysis (fsQCA). The results from the SEM indicate that the structural capital, cognitive capital, and relational capital of streamers in e-commerce live streaming significantly influence users’ perceived value, while structural capital and relational capital substantially impact users’ flow experience. Furthermore, both perceived value and flow experience are found to have a significant effect on user stickiness, with chained mediating effects observed between perceived value and flow experience. The fsQCA results further identify three configurational paths influencing user stickiness: the perceived value-oriented path, the flow experience-oriented path, and a hybrid path. This study offers valuable insights and practical implications for e-commerce merchants and companies involved in live streaming activities. Full article
Show Figures

Figure 1

40 pages, 4643 KiB  
Article
An Innovative LFC System Using a Fuzzy FOPID-Enhanced via PI Controller Tuned by the Catch Fish Optimization Algorithm Under Nonlinear Conditions
by Saleh Almutairi, Fatih Anayi, Michael Packianather and Mokhtar Shouran
Sustainability 2025, 17(13), 5966; https://doi.org/10.3390/su17135966 - 28 Jun 2025
Viewed by 427
Abstract
Load frequency control (LFC) remains a critical challenge in ensuring the stability of modern power grids. The integration of nonlinear dynamics into LFC design is paramount to achieving robust performance, which directly underpins grid reliability. This study introduces a novel hybrid control strategy—a [...] Read more.
Load frequency control (LFC) remains a critical challenge in ensuring the stability of modern power grids. The integration of nonlinear dynamics into LFC design is paramount to achieving robust performance, which directly underpins grid reliability. This study introduces a novel hybrid control strategy—a fuzzy fractional-order proportional–integral–derivative (Fuzzy FOPID) controller augmented with a proportional–integral (PI) compensator—for LFC applications in two distinct dual-area interconnected power systems. To optimize the controller’s parameters, the recently developed Catch Fish Optimization Algorithm (CFOA) is employed, leveraging the Integral Time Absolute Error (ITAE) as the primary cost function for precision tuning. A comprehensive comparative analysis is conducted to benchmark the proposed controller against the existing methodologies documented in the literature. Nonlinear elements’ impact on the system stability is also investigated. The investigation evaluates the impact of critical nonlinearities, including governor dead band (GDB) and generation rate constraints (GRCs), on system performance. The simulation results demonstrate that the CFOA-tuned Fuzzy FOPID + PI controller exhibits superior robustness and dynamic response compared to conventional approaches, effectively mitigating frequency deviations and maintaining grid stability under nonlinear operating conditions. Furthermore, the CFOA demonstrates marginally superior convergence and tuning accuracy relative to the widely adopted Particle Swarm Optimization (PSO) algorithm. These findings underscore the proposed controller’s potential as a high-performance solution for real-world LFC systems, particularly in scenarios characterized by nonlinearities and interconnected grid complexities. This study advances the field by bridging the gap between fractional-order fuzzy control theory and practical power system applications, offering a validated strategy for enhancing grid resilience in dynamic environments. Full article
Show Figures

Figure 1

26 pages, 1823 KiB  
Article
Integrating Probability and Possibility Theory: A Novel Approach to Valuing Real Options in Uncertain Environments
by Bartłomiej Gaweł, Bogdan Rębiasz and Andrzej Paliński
Appl. Sci. 2025, 15(13), 7143; https://doi.org/10.3390/app15137143 - 25 Jun 2025
Viewed by 350
Abstract
The article presents a new method for evaluating investment projects in uncertain conditions, assuming that uncertainty may have two origins: aleatory (related to randomness) and epistemic (due to incomplete knowledge). Epistemic uncertainty is rarely considered in investment analysis, which can result in undervaluing [...] Read more.
The article presents a new method for evaluating investment projects in uncertain conditions, assuming that uncertainty may have two origins: aleatory (related to randomness) and epistemic (due to incomplete knowledge). Epistemic uncertainty is rarely considered in investment analysis, which can result in undervaluing the future opportunities and risks. Our contribution is built around a correlated random–fuzzy Geometric Brownian Motion, a hybrid Monte Carlo engine that propagates mixed uncertainty into a probability box, combined with three p-box-to-CDF transformations (pignistic, ambiguity-based and credibility-based) to reflect decision-maker attitudes. Our approach utilizes the Datar–Mathews method (DM method) to gather relevant information regarding the potential value of a real option. By combining probabilistic and possibilistic approaches, the proposed valuation model incorporates hybrid Monte Carlo simulation and a random–fuzzy Geometric Brownian Motion, considering the interdependence between parameters. The result of the hybrid simulation is a pair of upper and lower cumulative probability distributions, known as a p-box, which represents the uncertainty range of the Net Present Value (NPV). We propose three transformations of the p-box into a subjective probability distribution, which allow decision makers to incorporate their subjective beliefs and risk preferences when performing real option valuation. Thus, our approach allows the combination of objective available information about valuation of investment with the decision maker’s attitude in front of partial ignorance. To demonstrate the effectiveness of our approach in practical scenarios, we provide a numerical illustration that clearly showcases how our approach delivers a more precise valuation of real options. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop