Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Frobenius–Euler polynomials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 392 KiB  
Article
Szász–Beta Operators Linking Frobenius–Euler–Simsek-Type Polynomials
by Nadeem Rao, Mohammad Farid and Shivani Bansal
Axioms 2025, 14(6), 418; https://doi.org/10.3390/axioms14060418 - 29 May 2025
Viewed by 293
Abstract
This manuscript associates with a study of Frobenius–Euler–Simsek-type Polynomials. In this research work, we construct a new sequence of Szász–Beta type operators via Frobenius–Euler–Simsek-type Polynomials to discuss approximation properties for the Lebesgue integrable functions, i.e., Lp[0,), [...] Read more.
This manuscript associates with a study of Frobenius–Euler–Simsek-type Polynomials. In this research work, we construct a new sequence of Szász–Beta type operators via Frobenius–Euler–Simsek-type Polynomials to discuss approximation properties for the Lebesgue integrable functions, i.e., Lp[0,), 1p<. Furthermore, estimates in view of test functions and central moments are studied. Next, rate of convergence is discussed with the aid of the Korovkin theorem and the Voronovskaja type theorem. Moreover, direct approximation results in terms of modulus of continuity of first- and second-order, Peetre’s K-functional, Lipschitz type space, and the rth-order Lipschitz type maximal functions are investigated. In the subsequent section, we present weighted approximation results, and statistical approximation theorems are discussed. To demonstrate the effectiveness and applicability of the proposed operators, we present several illustrative examples and visualize the results graphically. Full article
(This article belongs to the Special Issue Applied Mathematics and Numerical Analysis: Theory and Applications)
Show Figures

Figure 1

15 pages, 649 KiB  
Article
On the Approximations and Symmetric Properties of Frobenius–Euler–Şimşek Polynomials Connecting Szász Operators
by Nadeem Rao, Mohammad Farid and Mohd Raiz
Symmetry 2025, 17(5), 648; https://doi.org/10.3390/sym17050648 - 25 Apr 2025
Cited by 2 | Viewed by 309
Abstract
This study focuses on approximating continuous functions using Frobenius–Euler–Simsek polynomial analogues of Szász operators. Test functions and central moments are computed to study convergence uniformly, approximation order by these operators. Next, we investigate approximation order uniform convergence via Korovkin result and the modulus [...] Read more.
This study focuses on approximating continuous functions using Frobenius–Euler–Simsek polynomial analogues of Szász operators. Test functions and central moments are computed to study convergence uniformly, approximation order by these operators. Next, we investigate approximation order uniform convergence via Korovkin result and the modulus of smoothness for functions in continuous functional spaces. A Voronovskaja theorem is also explored approximating functions which belongs to the class of function having first and second order continuous derivative. Further, we discuss numerical error and graphical analysis. In the last, two dimensional operators are constructed to discuss approximation for the class of two variable continuous functions. Full article
Show Figures

Figure 1

15 pages, 507 KiB  
Article
Truncated-Exponential-Based General-Appell Polynomials
by Zeynep Özat, Bayram Çekim, Mehmet Ali Özarslan and Francesco Aldo Costabile
Mathematics 2025, 13(8), 1266; https://doi.org/10.3390/math13081266 - 11 Apr 2025
Cited by 3 | Viewed by 363
Abstract
In this paper, a new and general form of truncated-exponential-based general-Appell polynomials is introduced using the two-variable general-Appell polynomials. For this new polynomial family, we present an explicit representation, recurrence relation, shift operators, differential equation, determinant representation, and some other properties. Finally, two [...] Read more.
In this paper, a new and general form of truncated-exponential-based general-Appell polynomials is introduced using the two-variable general-Appell polynomials. For this new polynomial family, we present an explicit representation, recurrence relation, shift operators, differential equation, determinant representation, and some other properties. Finally, two special cases of this family, truncated-exponential-based Hermite-type and truncated-exponential-based Laguerre–Frobenius Euler polynomials, are introduced and their corresponding properties are obtained. Full article
(This article belongs to the Section C: Mathematical Analysis)
Show Figures

Figure 1

15 pages, 660 KiB  
Article
Approximation Results: Szász–Kantorovich Operators Enhanced by Frobenius–Euler–Type Polynomials
by Nadeem Rao, Mohammad Farid and Mohd Raiz
Axioms 2025, 14(4), 252; https://doi.org/10.3390/axioms14040252 - 27 Mar 2025
Cited by 3 | Viewed by 382
Abstract
This research focuses on the approximation properties of Kantorovich-type operators using Frobenius–Euler–Simsek polynomials. The test functions and central moments are calculated as part of this study. Additionally, uniform convergence and the rate of approximation are analyzed using the classical Korovkin theorem and the [...] Read more.
This research focuses on the approximation properties of Kantorovich-type operators using Frobenius–Euler–Simsek polynomials. The test functions and central moments are calculated as part of this study. Additionally, uniform convergence and the rate of approximation are analyzed using the classical Korovkin theorem and the modulus of continuity for Lebesgue measurable and continuous functions. A Voronovskaja-type theorem is also established to approximate functions with first- and second-order continuous derivatives. Numerical and graphical analyses are presented to support these findings. Furthermore, a bivariate sequence of these operators is introduced to approximate a bivariate class of Lebesgue measurable and continuous functions in two variables. Finally, numerical and graphical representations of the error are provided to check the rapidity of convergence. Full article
(This article belongs to the Special Issue Numerical Methods and Approximation Theory)
Show Figures

Figure 1

23 pages, 539 KiB  
Article
On Convoluted Forms of Multivariate Legendre-Hermite Polynomials with Algebraic Matrix Based Approach
by Mumtaz Riyasat, Amal S. Alali, Shahid Ahmad Wani and Subuhi Khan
Mathematics 2024, 12(17), 2662; https://doi.org/10.3390/math12172662 - 27 Aug 2024
Viewed by 872
Abstract
The main purpose of this article is to construct a new class of multivariate Legendre-Hermite-Apostol type Frobenius-Euler polynomials. A number of significant analytical characterizations of these polynomials using various generating function techniques are provided in a methodical manner. These enactments involve explicit relations [...] Read more.
The main purpose of this article is to construct a new class of multivariate Legendre-Hermite-Apostol type Frobenius-Euler polynomials. A number of significant analytical characterizations of these polynomials using various generating function techniques are provided in a methodical manner. These enactments involve explicit relations comprising Hurwitz-Lerch zeta functions and λ-Stirling numbers of the second kind, recurrence relations, and summation formulae. The symmetry identities for these polynomials are established by connecting generalized integer power sums, double power sums and Hurwitz-Lerch zeta functions. In the end, these polynomials are also characterized Svia an algebraic matrix based approach. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

21 pages, 826 KiB  
Article
On Certain Properties of Parametric Kinds of Apostol-Type Frobenius–Euler–Fibonacci Polynomials
by Hao Guan, Waseem Ahmad Khan, Can Kızılateş and Cheon Seoung Ryoo
Axioms 2024, 13(6), 348; https://doi.org/10.3390/axioms13060348 - 24 May 2024
Viewed by 896
Abstract
This paper presents an overview of cosine and sine Apostol-type Frobenius–Euler–Fibonacci polynomials, as well as several identities that are associated with these polynomials. By applying a partial derivative operator to the generating functions, the authors obtain derivative formulae and finite combinatorial sums involving [...] Read more.
This paper presents an overview of cosine and sine Apostol-type Frobenius–Euler–Fibonacci polynomials, as well as several identities that are associated with these polynomials. By applying a partial derivative operator to the generating functions, the authors obtain derivative formulae and finite combinatorial sums involving these polynomials and numbers. Additionally, the paper establishes connections between cosine and sine Apostol-type Frobenius–Euler–Fibonacci polynomials of order α and several other polynomial sequences, such as the Apostol-type Bernoulli–Fibonacci polynomials, the Apostol-type Euler–Fibonacci polynomials, the Apostol-type Genocchi–Fibonacci polynomials, and the Stirling–Fibonacci numbers of the second kind. The authors also provide computational formulae and graphical representations of these polynomials using the Mathematica program. Full article
(This article belongs to the Special Issue Fractional and Stochastic Differential Equations in Mathematics)
Show Figures

Figure 1

15 pages, 737 KiB  
Article
Some Properties of Generalized Apostol-Type Frobenius–Euler–Fibonacci Polynomials
by Maryam Salem Alatawi, Waseem Ahmad Khan, Can Kızılateş and Cheon Seoung Ryoo
Mathematics 2024, 12(6), 800; https://doi.org/10.3390/math12060800 - 8 Mar 2024
Cited by 5 | Viewed by 1272
Abstract
In this paper, by using the Golden Calculus, we introduce the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials and numbers; additionally, we obtain various fundamental identities and properties associated with these polynomials and numbers, such as summation theorems, difference equations, derivative properties, recurrence relations, and more. [...] Read more.
In this paper, by using the Golden Calculus, we introduce the generalized Apostol-type Frobenius–Euler–Fibonacci polynomials and numbers; additionally, we obtain various fundamental identities and properties associated with these polynomials and numbers, such as summation theorems, difference equations, derivative properties, recurrence relations, and more. Subsequently, we present summation formulas, Stirling–Fibonacci numbers of the second kind, and relationships for these polynomials and numbers. Finally, we define the new family of the generalized Apostol-type Frobenius–Euler–Fibonacci matrix and obtain some factorizations of this newly established matrix. Using Mathematica, the computational formulae and graphical representation for the mentioned polynomials are obtained. Full article
Show Figures

Figure 1

17 pages, 321 KiB  
Article
Properties of Multivariate Hermite Polynomials in Correlation with Frobenius–Euler Polynomials
by Mohra Zayed, Shahid Ahmad Wani and Yamilet Quintana
Mathematics 2023, 11(16), 3439; https://doi.org/10.3390/math11163439 - 8 Aug 2023
Cited by 10 | Viewed by 1486
Abstract
A comprehensive framework has been developed to apply the monomiality principle from mathematical physics to various mathematical concepts from special functions. This paper presents research on a novel family of multivariate Hermite polynomials associated with Apostol-type Frobenius–Euler polynomials. The study derives the generating [...] Read more.
A comprehensive framework has been developed to apply the monomiality principle from mathematical physics to various mathematical concepts from special functions. This paper presents research on a novel family of multivariate Hermite polynomials associated with Apostol-type Frobenius–Euler polynomials. The study derives the generating expression, operational rule, differential equation, and other defining characteristics for these polynomials. Additionally, the monomiality principle for these polynomials is verified. Moreover, the research establishes series representations, summation formulae, and operational and symmetric identities, as well as recurrence relations satisfied by these polynomials. Full article
20 pages, 1302 KiB  
Article
Some Explicit Properties of Frobenius–Euler–Genocchi Polynomials with Applications in Computer Modeling
by Noor Alam, Waseem Ahmad Khan, Can Kızılateş, Sofian Obeidat, Cheon Seoung Ryoo and Nabawia Shaban Diab
Symmetry 2023, 15(7), 1358; https://doi.org/10.3390/sym15071358 - 4 Jul 2023
Cited by 10 | Viewed by 1479
Abstract
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this study, we define Frobenius–Euler–Genocchi polynomials and investigate some properties by giving [...] Read more.
Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric properties, have been studied in the literature with the help of generating functions and their functional equations. In this study, we define Frobenius–Euler–Genocchi polynomials and investigate some properties by giving many relations and implementations. We first obtain different relations and formulas covering addition formulas, recurrence rules, implicit summation formulas, and relations with the earlier polynomials in the literature. With the help of their generating function, we obtain some new relations, including the Stirling numbers of the first and second kinds. We also obtain some new identities and properties of this type of polynomial. Moreover, using the Faà di Bruno formula and some properties of the Bell polynomials of the second kind, we obtain an explicit formula for the Frobenius–Euler polynomials of order α. We provide determinantal representations for the ratio of two differentiable functions. We find a recursive relation for the Frobenius–Euler polynomials of order α. Using the Mathematica program, the computational formulae and graphical representation for the aforementioned polynomials are obtained. Full article
Show Figures

Figure 1

21 pages, 996 KiB  
Article
Explicit Properties of Apostol-Type Frobenius–Euler Polynomials Involving q-Trigonometric Functions with Applications in Computer Modeling
by Yongsheng Rao, Waseem Ahmad Khan, Serkan Araci and Cheon Seoung Ryoo
Mathematics 2023, 11(10), 2386; https://doi.org/10.3390/math11102386 - 20 May 2023
Cited by 7 | Viewed by 1487
Abstract
In this article, we define q-cosine and q-sine Apostol-type Frobenius–Euler polynomials and derive interesting relations. We also obtain new properties by making use of power series expansions of q-trigonometric functions, properties of q-exponential functions, and q-analogues of the [...] Read more.
In this article, we define q-cosine and q-sine Apostol-type Frobenius–Euler polynomials and derive interesting relations. We also obtain new properties by making use of power series expansions of q-trigonometric functions, properties of q-exponential functions, and q-analogues of the binomial theorem. By using the Mathematica program, the computational formulae and graphical representation for the aforementioned polynomials are obtained. By making use of a partial derivative operator, we derived some interesting finite combinatorial sums. Finally, we detail some special cases for these results. Full article
Show Figures

Figure 1

18 pages, 1853 KiB  
Article
Closed-Form Solution for the Natural Frequencies of Low-Speed Cracked Euler–Bernoulli Rotating Beams
by Belén Muñoz-Abella, Lourdes Rubio and Patricia Rubio
Mathematics 2022, 10(24), 4742; https://doi.org/10.3390/math10244742 - 14 Dec 2022
Cited by 2 | Viewed by 2064
Abstract
In this study, two closed-form solutions for determining the first two natural frequencies of the flapwise bending vibration of a cracked Euler–Bernoulli beam at low rotational speed have been developed. To solve the governing differential equations of motion, the Frobenius method of solution [...] Read more.
In this study, two closed-form solutions for determining the first two natural frequencies of the flapwise bending vibration of a cracked Euler–Bernoulli beam at low rotational speed have been developed. To solve the governing differential equations of motion, the Frobenius method of solution in power series has been used. The crack has been modeled using two undamaged parts of the beam connected by a rotational spring. From the previous results, two novel polynomial expressions have been developed to obtain the first two natural frequencies as a function of angular velocity, slenderness ratio, cube radius and crack characteristics (depth and location). These expressions have been formulated using multiple regression techniques. To the knowledge of the authors, there is no similar expressions in the literature, which calculate, in a simple way, the first two natural frequencies based on beam features and crack parameters, without the need to know or solve the differential equations of motion governing the beam. In summary, the derived natural frequency expressions provide an extremely simple, practical, and accurate instrument for studying the dynamic behavior of rotating cracked Euler–Bernoulli beams at low angular speed, especially useful, in the future, to establish small-scale wind turbines’ maintenance planes. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

13 pages, 273 KiB  
Article
Fourier Series Expansion and Integral Representation of Apostol-Type Frobenius–Euler Polynomials of Complex Parameters and Order α
by Cristina Corcino, Roberto Corcino and Jeremar Casquejo
Symmetry 2022, 14(9), 1860; https://doi.org/10.3390/sym14091860 - 6 Sep 2022
Cited by 3 | Viewed by 1956
Abstract
In this paper, the Fourier series expansions of Apostol-type Frobenius–Euler polynomials of complex parameters and order α are derived, and consequently integral representations of these polynomials are established. This paper provides some techniques in computing the symmetries of the defining equation of Apostol-type [...] Read more.
In this paper, the Fourier series expansions of Apostol-type Frobenius–Euler polynomials of complex parameters and order α are derived, and consequently integral representations of these polynomials are established. This paper provides some techniques in computing the symmetries of the defining equation of Apostol-type Frobenius–Euler polynomials resulting in their expansions and integral representations. Full article
26 pages, 997 KiB  
Article
A Note on Bell-Based Apostol-Type Frobenius-Euler Polynomials of Complex Variable with Its Certain Applications
by Noor Alam, Waseem Ahmad Khan and Cheon Seoung Ryoo
Mathematics 2022, 10(12), 2109; https://doi.org/10.3390/math10122109 - 17 Jun 2022
Cited by 18 | Viewed by 1908
Abstract
In this paper, we introduce new class of Bell-based Apostol-type Frobenius–Euler polynomials and investigate some properties of these polynomials. We derive some explicit and implicit summation formulas and their symmetric identities by using different analytical means and applying generating functions of generalized Apostol-type [...] Read more.
In this paper, we introduce new class of Bell-based Apostol-type Frobenius–Euler polynomials and investigate some properties of these polynomials. We derive some explicit and implicit summation formulas and their symmetric identities by using different analytical means and applying generating functions of generalized Apostol-type Frobenius-Euler polynomials and Bell-based Apostol-type Frobenius-Euler polynomials. In particular, parametric kinds of the Bell-based Apostol-type Frobenius-Euler polynomials are introduced and some of their algebraic and analytical properties are established. In addition, illustrative examples of these families of polynomials are shown, focusing on their numerical values and piloting some beautiful computer-aided graphs of them. Full article
(This article belongs to the Special Issue Advances on Complex Analysis)
Show Figures

Figure 1

12 pages, 290 KiB  
Article
On (p, q)-Sine and (p, q)-Cosine Fubini Polynomials
by Waseem Ahmad Khan, Ghulam Muhiuddin, Ugur Duran and Deena Al-Kadi
Symmetry 2022, 14(3), 527; https://doi.org/10.3390/sym14030527 - 4 Mar 2022
Cited by 6 | Viewed by 2182
Abstract
In recent years, (p,q)-special polynomials, such as p,q-Euler, p,q-Genocchi, p,q-Bernoulli, and p,q-Frobenius-Euler, have been studied and investigated by many mathematicians, as well physicists. It is important [...] Read more.
In recent years, (p,q)-special polynomials, such as p,q-Euler, p,q-Genocchi, p,q-Bernoulli, and p,q-Frobenius-Euler, have been studied and investigated by many mathematicians, as well physicists. It is important that any polynomial have explicit formulas, symmetric identities, summation formulas, and relations with other polynomials. In this work, the (p,q)-sine and (p,q)-cosine Fubini polynomials are introduced and multifarious abovementioned properties for these polynomials are derived by utilizing some series manipulation methods. p,q-derivative operator rules and p,q-integral representations for the (p,q)-sine and (p,q)-cosine Fubini polynomials are also given. Moreover, several correlations related to both the (p,q)-Bernoulli, Euler, and Genocchi polynomials and the (p,q)-Stirling numbers of the second kind are developed. Full article
22 pages, 5257 KiB  
Article
q-Generalized Tangent Based Hybrid Polynomials
by Ghazala Yasmin, Hibah Islahi and Junesang Choi
Symmetry 2021, 13(5), 791; https://doi.org/10.3390/sym13050791 - 3 May 2021
Cited by 5 | Viewed by 1800
Abstract
In this paper, we incorporate two known polynomials to introduce so-called 2-variable q-generalized tangent based Apostol type Frobenius–Euler polynomials. Next we present a number of properties and formulas for these polynomials such as explicit expressions, series representations, summation formulas, addition formula, q [...] Read more.
In this paper, we incorporate two known polynomials to introduce so-called 2-variable q-generalized tangent based Apostol type Frobenius–Euler polynomials. Next we present a number of properties and formulas for these polynomials such as explicit expressions, series representations, summation formulas, addition formula, q-derivative and q-integral formulas, together with numerous particular cases of the new polynomials and their associated formulas demonstrated in two tables. Further, by using computer-aided programs (for example, Mathematica or Matlab), we draw graphs of some particular cases of the new polynomials, mainly, in order to observe in several angles how zeros of these polynomials are distributed and located. Lastly we provide numerous observations and questions which naturally arise amid the present investigation. Full article
(This article belongs to the Special Issue Recent Advances in Special Functions and Their Applications)
Show Figures

Figure 1

Back to TopTop