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Abstract: In this paper, we incorporate two known polynomials to introduce so-called 2-variable
q-generalized tangent based Apostol type Frobenius–Euler polynomials. Next we present a number
of properties and formulas for these polynomials such as explicit expressions, series representations,
summation formulas, addition formula, q-derivative and q-integral formulas, together with numerous
particular cases of the new polynomials and their associated formulas demonstrated in two tables.
Further, by using computer-aided programs (for example, Mathematica or Matlab), we draw graphs
of some particular cases of the new polynomials, mainly, in order to observe in several angles how
zeros of these polynomials are distributed and located. Lastly we provide numerous observations
and questions which naturally arise amid the present investigation.
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1. Introduction

A remarkably large number of a variety of polynomials, numbers and functions, and
their generalizations and variants have been introduced and investigated, due mainly
to their potential usefulness and direct applications in a wide range of research subjects
(see, e.g., [1–19] and the references therein). Among a recent deluge of various extensions
of known polynomials, numbers, functions, and newly introduced polynomials, many
researchers’s particular attentions have been paid to q-analogues of polynomials, num-
bers, and functions (see, e.g., [7,9,10,17,19–22] and the references therein). q-Bernstein
polynomials amid some discrete q-operators are presented in [20] (Chapter 2). Fractional
derivatives of five elementary functions including exponential function, together with their
graphs, are illustrated in [21]. Certain q-orthogonal polynomials including the little and
big q-Jacobi polynomials are studied in [22] (Chapter 7). Apostol type q-Frobenius–Euler
polynomials are introduced and investigated in [7]. The generalized q-Apostol-Bernoulli,
q-Apostol–Euler, and q-Apostol–Genocchi polynomials in two variables and their num-
bers are defined and studied in [9]. q-Bernoulli, q-Euler, and q-Genocchi polynomials
and their numbers are investigated in [10]. New (p, q)-Stirling polynomials of the second
kind fitting for the (p, q)-analogue of Bernstein polynomials are introduced and studied
in [17], which includes an extensive list of references about q-and (p, q)-extenstions of
some known polynomials and numbers, in particular, q-and (p, q)-Stirling polynomials
and q-and (p, q)-Bernstein polynomials.

Moreover, the tangent polynomials and numbers, and their diverse extensions in-
cluding their q-analogues have many applications in a number of research areas such
as analytic number theory and physics (see, e.g., [3,12,13,19] and the references therein).
For example, a new class of q-generalized tangent-based Appell polynomials by welding
2-variable q-generalized tangent polynomials and q-Appell polynomials is introduced and
investigated in [19].
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In this paper, we couple the polynomials in Definitions 1 and 5 to introduce new poly-
nomials which are called the 2-variable q-generalized tangent based Apostol type Frobenius–
Euler polynomials of order α in the variables u and v, denoted by CH

(α,m)
n,q (u, v; ρ; λ), in

Definition 6. Then we provide a number of properties and formulas for these polynomials
such as explicit representations, series representations, summation formulas, addition for-
mula, q-derivative, q-integral formulas, numerous particular cases of the new polynomials
and their related formulas illustrated with Tables 1 and 2. Moreover, we use computer-
aided programs (for example, Mathematica or Matlab) to draw graphs of some particular
cases of the new polynomials, mainly, in order to observe in several angles how zeros of
these polynomials are distributed and located. Finally we give a number of observations
and questions which naturally occurs amid this investigation.

2. Preliminaries

In this section, we recall certain standard notations for q-analogues (or extensions),
definitions, and some required properties (see, e.g., [22–28]), together with a remark.

The q-analogues of a number a ∈ C and the factorial n! are given, respectively, by

[a]q =
1− qa

1− q
(q ∈ C \ {1}), (1)

and

[n]q! =
n

∏
m=1

[m]q = [1]q[2]q[3]q · · · [n]q (n ∈ N), [0]q! := 1. (2)

Here and in the following, let C, R, R+, Z, and N denote the sets of complex numbers,
real numbers, positive real numbers, integers, and positive integers, respectively, and let
N0 := N∪ {0}. The q-binomial coefficient [nk]q is defined by (see, e.g., [23] (p. 484))

[
n
k

]
q

:=
[n]q!

[k]q![n− k]q!
=

(q; q)n

(q; q)k (q; q)n−k
=

[
n

n− k

]
q

(n ∈ N0, k = 0, 1, 2, . . . , n). (3)

Here (a; q)n is the q-shifted factorial defined by (see, e.g., [22,23,26,28])

(a; q)n :=


1 (n = 0),
n−1
∏

k=0

(
1− a qk

)
(n ∈ N), (4)

where a, q ∈ C and it is assumed that a 6= q−m (m ∈ N0). We also recall

(a; q)∞ :=
∞

∏
k=0

(
1− a qk

)
(a, q ∈ C, |q| < 1). (5)

The q-analogue of the binomial expansion is given by (see, e.g., [23] (p. 484), [9]
(Equation (4)))

(u + v)n
q =

n

∑
k=0

[
n
k

]
q
qk(k−1)/2un−kvk (n ∈ N0, u, v ∈ C). (6)

Recall two q-exponential functions (see, e.g., [23] (p. 492), [9] (Equations (6) and (7)), [28]
(p. 488))

eq(u) =
∞

∑
k=0

uk

[k]q!

(
0 < |q| < 1, |u| < |1− q|−1

)
, (7)

and

Eq(u) =
∞

∑
k=0

qk(k−1)/2 uk

[k]q!
(0 < |q| < 1, u ∈ C). (8)
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They satisfy the following relation

eq(t)Eq(−t) = eq(−t)Eq(t) = 1. (9)

The relation (9) can be proved by using the following Euler’s formulae (see, e.g., [23]
(p. 490), [9] (Equations (6) and (7)), [28] (p. 487)):

∞

∑
n=0

zn

(q; q)n
=

1
(z; q)∞

(|q| < 1, |z| < 1) (10)

and
∞

∑
n=0

(−1)n q(
n
2) zn

(q; q)n
= (z; q)∞ (|q| < 1, z ∈ C). (11)

F. H. Jackson [29] may be recognized as the first researcher to develop q-calculus in a
systematic way. The q-derivative of a function f (t) is defined by

Dq{ f (t)} :=
dq f (t)

dqt
=

f (qt)− f (t)
(q− 1)t

. (12)

Obviously

lim
q→1

Dq{ f (t)} = d
dt
{ f (t)},

if f (t) is differentiable. The q-derivative of functions eq(u) and Eq(u) with respect to u are
given by

Dq,ueq(ut) = teq(ut), Dq,uEq(ut) = tEq(qut). (13)

Here and throughout, Dq,u denotes the q-derivative of a function of several variables with
respect to u. The following q-derivative formulas for product and quotient of functions
f (u) and g(u) are satisfied:

Dq( f (u)g(u)) = f (qu)Dqg(u) + g(u)Dq f (u) = f (u)Dqg(u) + g(qu)Dq f (u), (14)

and

Dq

(
f (u)
g(u)

)
=

g(qu)Dq f (u)− f (qu)Dqg(u)
g(u)g(qu)

=
g(u)Dq f (u)− f (u)Dqg(u)

g(u)g(qu)
. (15)

Suppose that 0 ≤ a < b < ∞. The (Jackson’s) definite q-integral is defined as follows
(see, e.g., [26] (Section 19), [28] (Chapter 6)), [29]:

∫ b

0
f (t) dqt = (1− q)

∞

∑
j=0

qjb f
(

qjb
)

(16)

and ∫ b

a
f (t) dqt =

∫ b

0
f (t) dqt−

∫ a

0
f (t) dqt. (17)

A fundamental theorem of q-calculus is recalled as in the following lemma (see, e.g., [26]
(p. 74, Corollary 20.1)).

Lemma 1. If f ′(t) exists in a neighborhood of t = 0 and is continuous at t = 0, where f ′(t)
denotes the ordinary derivative of f (t), we have

∫ b

a
Dq f (t) dqt = f (b)− f (a), (18)

where 0 ≤ a < b < ∞.
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We recall the q-generalized tangent polynomials and numbers in [18] (Definition 2.1)
whose restrictions may be slightly amended as in the following definition.

Definition 1. (cf. [18]) The q-generalized tangent polynomials Cn,m,q(u) in the variable u
(abbreviated as qGTP) are defined by means of the generating function(

2
eq(mt) + 1

)
eq(ut) =

∞

∑
n=0

Cn,m,q(u)
tn

[n]q!
(19)

(
q, u ∈ C, m ∈ R+, 0 < |q| < 1, max{|ut|, |mt|} < |1− q|−1, |t| < ξ

)
.

Here ξ is the smallest one among the absolute values of all complex zeros of eq(mt) + 1 = 0. The
cases Cn,m,q := Cn,m,q(0) are called q-generalized tangent numbers.

Note that the following two particular cases

lim
m→1

Cn,m,q(u) = En,q(u) (20)

and
lim
m→2

Cn,m,q(u) = Tn,q(u) (21)

are called q-Euler polynomials (see [16]) and q-tangent polynomials (see [12]), respectively.
Further the q-Apostol-Bernoulli polynomials, q-Apostol–Euler polynomials, q-Apostol–

Genocchi polynomials, and Apostol-type q-Frobenius–Euler polynomials have recently
been actively introduced and investigated (see, e.g., [2,7–9,14–16] and the references
therein). They are recalled in the following definitions.

Definition 2. (see [9]) The q-Apostol-Bernoulli polynomials B(α)
n,q (u, v; λ) of order α in vari-

ables u and v (abbreviated as qABP) are defined by means of the generating function(
t

λeq(t)− 1

)α

eq(ut)Eq(vt) =
∞

∑
n=0

B
(α)
n,q (u, v; λ)

tn

[n]q!
(22)

(q, u, v ∈ C, α ∈ N, 0 < |q| < 1, |t + log λ| < 2π).

Here B(α)
n,q (λ) := B

(α)
n,q (0, 0; λ) are called the q-Apostol-Bernoulli numbers.

Definition 3. (see [9]) The q-Apostol–Euler polynomials E(α)
n,q (u, v; λ) of order α in variables u

and v (abbreviated as qAEP) are defined by means of the generating function(
2

λeq(t) + 1

)α

eq(ut)Eq(vt) =
∞

∑
n=0

E
(α)
n,q (u, v; λ)

tn

[n]q!
(23)

(q, u, v ∈ C, α ∈ N, 0 < |q| < 1, |t + log(−λ)| < π).

Here E(α)
n,q (λ) := E

(α)
n,q (0, 0; λ) are called the q-Apostol–Euler numbers.

Definition 4. (see [9]) The q-Apostol–Genocchi polynomials G(α)n,q (u, v; λ) of order α in vari-
ables u and v (abbreviated as qAGP) are defined by means of the generating function(

2t
λeq(t) + 1

)α

eq(ut)Eq(vt) =
∞

∑
n=0
G(α)n,q (u, v; λ)

tn

[n]q!
(24)

(q, u, v ∈ C, α ∈ N, 0 < |q| < 1, |t + log(−λ)| < π).

Here G(α)n,q (λ) := G(α)n,q (0, 0; λ) are called the q-Apostol–Genocchi numbers.
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Definition 5. (see [7]) The Apostol type q-Frobenius–Euler polynomials H(α)
n,q (u, v; ρ; λ) of

order α in the variables u and v (abbreviated as ATqFEP) are defined by means of the generat-
ing function (

1− ρ

λeq(t)− ρ

)α

eq(ut)Eq(vt) =
∞

∑
n=0

H(α)
n,q (u, v; ρ; λ)

tn

[n]q!
(25)

(
q, λ, ρ, u, v ∈ C, α ∈ N,

∣∣ < 1, 0 < |q| < 1, ρ 6= 1, |λ/ρ| < 1
)
.

Here the Apostol type q-Frobenius–Euler numbers H(α)
n,q (ρ; λ) := H(α)

n,q (0, 0; ρ; λ) of order α are
defined by (

1− ρ

λeq(t)− ρ

)α

=
∞

∑
n=0

H(α)
n,q (ρ; λ)

tn

[n]q!
(26)

(
q, λ, ρ ∈ C, α ∈ N,

∣∣ < 1, 0 < |q| < 1, ρ 6= 1, |λ/ρ| < 1
)
.

Remark 1. The constraints in Definitions 2–5 should and can be modified as those in Definition 6
(see also Definition 1).

The polynomials H(α)
n,q (u, v; ρ; λ) in Definition 5 are found to reduce to yield

• H(α)
n,q (u, v;−1; λ) = H(α)

n,q (u, v; λ) (q-Apostol Euler polynomials [7]);

• H(α)
n,q (u, v; ρ; 1) = F (α)

n,q (u; v; ρ) (q-Frobenius–Euler polynomials [14,15]);

• H(α)
n,q (u, v;−1; 1) = E (α)n,q (u, v) (q-Euler polynomials [8]);

• H(α)
n,q (u, 0; ρ; λ) = H(α)

n,q (u; ρ; λ) (q-Apostol type Frobenius–Euler polynomials [16]);

• lim
q→1−

H(α)
n,q (u, 0; ρ; λ) = H(α)

n (u; ρ; λ) (Apostol type Frobenius–Euler polynomials [2]).

The five above-right-hand sided polynomials when α = 1 are simply written as follows:

H(1)
n,q (u, v; λ) : = Hn,q(u, v; λ);

F (1)
n,q (u; v; ρ) : = Fn,q(u; v; ρ);

E (1)n,q (u, v) : = En,q(u, v);

H(1)
n,q (u; ρ; λ) : = Hn,q(u; ρ; λ);

H(1)
n (u; ρ; λ) : = Hn(u; ρ; λ).

3. q-Generalized Tangent-Apostol Type Frobenius–Euler Polynomials and Their
Related Formulas

In this section, we introduce the q-generalized tangent based Apostol type Frobenius–
Euler polynomials CH

(α,m)
n,q (u, v; ρ; λ) and investigate some of their properties.

Definition 6. The 2-variable q-generalized tangent based Apostol type Frobenius–Euler polynomi-
als CH

(α,m)
n,q (u, v; ρ; λ) of order α in the variables u and v (abbreviated as qGTATFEP) are defined

by means of the following generating function

(
1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
eq(ut)Eq(vt) =

∞

∑
n=0

CH
(α,m)

n,q (u, v; ρ; λ)
tn

[n]q!
(27)

(
α ∈ N, m ∈ R+, u, v, q ∈ C, ρ ∈ C \ {1}, λ ∈ C \ {0}, λ 6= ρ,

0 < |q| < 1, |ut| < |1− q|−1, |t| < min{ξ/m, η}
)
,

(28)

where ξ is the same as in the restrictions of Definition 1 and η is the smallest nonzero one among
the absolute values of all complex zeros of eq(t)− ρ/λ = 0. Here

CH
(α,m)

n,q (ρ; λ) := CH
(α,m)

n,q (0, 0; ρ; λ) (29)
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are called the q-generalized tangent-Apostol type Frobenius–Euler numbers of order α.

By selecting suitable parameters in generating function (27), we obtain several mem-
bers belonging to the family of qGTATFEP CH

(α,m)
n,q (u, v; ρ; λ), which are listed in Table 1.

Table 1. Particular cases of the CH
(α,m)

n,q (u, v; ρ; λ).

S. No. Relations between the CH
(α,m)

n,q (u, v; ρ; λ) and
Its Particular Cases

Names of the Resultant q-Special
Polynomials

Generating Functions of the Resultant
q-Special Polynomials

I. CH
(α,m)

n,q (u, v;−1; λ) = CH
(α,m)

n,q (u, v; λ) q-generalized tangent-Apostol
(

2
λeq(t)+1

)α(
2

eq(mt)+1

)
eq(ut)Eq(vt)

Euler polynomials (qGTAEP) = ∑∞
n=0 CH

(α,m)
n,q (u, v; λ) tn

[n]q !

II. CH
(α,m)

n,q (u, v; ρ; 1) = CF
(α,m)
n,q (u, v; ρ) q-generalized tangent-Frobenius

(
1−ρ

eq(t)−ρ

)α(
2

eq(mt)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qGTFEP) = ∑∞
n=0 CF

(α,m)
n,q (u, v; ρ) tn

[n]q !

III. CH
(α,m)

n,q (u, v;−1; 1) = CE
(α,m)
n,q (u, v) q-generalized tangent

(
2

eq(t)+1

)α(
2

eq(mt)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qGTEP) = ∑∞
n=0 CE

(α,m)
n,q (u, v) tn

[n]q !

IV. CH
(α,2)

n,q (u, v; ρ; λ) = T H(α)
n,q (u, v; ρ; λ) q-tangent-Apostol Frobenius

(
1−ρ

λeq(t)−ρ

)α(
2

eq(2t)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qTAFEP) = ∑∞
n=0 T H(α)

n,q (u, v; ρ; λ) tn

[n]q !

V. CH
(α,2)

n,q (u, v;−1; λ) = T H(α)
n,q (u, v; λ) q-tangent-Apostol

(
2

λeq(t)+1

)α(
2

eq(2t)+1

)
eq(ut)Eq(vt)

Euler polynomials (qTAEP) = ∑∞
n=0 T H(α)

n,q (u, v; λ) tn

[n]q !

VI. CH
(α,2)

n,q (u, v; ρ; 1) = TF
(α)
n,q (u, v; ρ) q-tangent-Frobenius

(
1−ρ

eq(t)−ρ

)α(
2

eq(2t)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qTFEP) = ∑∞
n=0 TF

(α)
n,q (u, v; ρ) tn

[n]q !

VII. CH
(α,2)

n,q (u, v;−1; 1) = TE
(α)
n,q (u, v) q-tangent-Euler

(
2

eq(t)+1

)α(
2

eq(2t)+1

)
eq(ut)Eq(vt)

polynomials (qTEP) = ∑∞
n=0 TE

(α)
n,q (u, v) tn

[n]q !

VIII. CH
(α,1)

n,q (u, v; ρ; λ) = EH(α)
n,q (u, v; ρ; λ) q-Euler-Apostol Frobenius

(
1−ρ

λeq(t)−ρ

)α(
2

eq(t)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qEAFEP) = ∑∞
n=0 EH(α)

n,q (u, v; ρ; λ) tn

[n]q !

IX. CH
(α,1)

n,q (u, v;−1; λ) = EH(α,m)
n,q (u, v; λ) q-Euler-Apostol

(
2

λeq(t)+1

)α(
2

eq(t)+1

)
eq(ut)Eq(vt)

Euler polynomials (qEAEP) = ∑∞
n=0 EH(α)

n,q (u, v; λ) tn

[n]q !

X. CH
(α,1)

n,q (u, v; ρ; 1) = EF
(α,m)
n,q (u, v; ρ) q-Euler-Frobenius

(
1−ρ

eq(t)−ρ

)α(
2

eq(t)+1

)
eq(ut)Eq(vt)

-Euler polynomials (qEFEP) = ∑∞
n=0 EF

(α)
n,q (u, v; ρ) tn

[n]q !

XI. CH
(α,1)

n,q (u, v;−1; 1) = EE
(α,m)
n,q (u, v) 2-iterated q-Euler

(
2

eq(t)+1

)α+1
eq(ut)Eq(vt)

polynomials (2IqEP) = ∑∞
n=0 EE

(α)
n,q (u, v) tn

[n]q !

For simplicity, let

Gq(α, m; u, v; ρ; λ) :=
(

1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
eq(ut)Eq(vt) (30)

be the generating function in (27).
We present two series representations for the polynomials qGTATFEP by using se-

ries manipulation techniques in some combinations of the polynomials and numbers in
Section 1 as in the following theorem.
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Theorem 1. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[
n
k

]
q
Cn−k,m,q H(α)

k,q (u, v; ρ; λ), (31)

and

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

k

∑
r=0

[
n
k

]
q

[
k
r

]
q
qr(r−1)/2 H(α)

k−r,q(ρ; λ) vrCn−k,m,q(u). (32)

Proof. We find from (27) and (30) that

Gq(α, m; u, v; ρ; λ) =

(
2

eq(mt) + 1

)
·
(

1− ρ

λeq(t)− ρ

)α

eq(ut)Eq(vt)

=
∞

∑
n=0

Cn,m,q
tn

[n]q!
·

∞

∑
k=0

H(α)
k,q (u, v; ρ; λ)

tk

[k]q!

=
∞

∑
n=0

n

∑
k=0

Cn−k,m,q

[n− k]q![k]q!
H(α)

k,q (u, v; ρ; λ),

(33)

where a series rearrangement technique (or Cauchy product for double series) of a double
sequence An,k of real or complex numbers (see, e.g., [30]):

∞

∑
n=0

∞

∑
k=0

An,k =
∞

∑
n=0

n

∑
k=0

An−k,k,

the middle double series being absolutely convergent under the given conditions, is used
to give the last equality. Then, identifying the right-hand sides of (27) and (33), and
equating the coefficients of tn on both sides of the resulting identity, we obtain the desired
identity (31).

Similarly, factoring the right member of (30) so that (8), (19) and (26) can be used, we
may get (32). The details are omitted.

We establish three summation formulae for the polynomials CH
(α,m)

n,q (u, v; ρ; λ) as in
Theorem 2.

Theorem 2. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[
n
k

]
q

CH
(α,m)

n−k,q (ρ; λ) (u + v)k
q; (34)

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[
n
k

]
q

CH
(α,m)

n−k,q (0, v; ρ; λ)uk; (35)

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[
n
k

]
q

CH
(α,m)

n−k,q (u, 0; ρ; λ)vk. (36)

Proof. For (34), we factor the generating function (30) so that (29), (7) and (8) can be used
in order and use series rearrangement technique, with the aid of (6), to get

Gq(α, m; u, v; ρ; λ) =

(
1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
· eq(ut) · Eq(vt)

=
∞

∑
n=0

CH
(α,m)

n,q (ρ; λ)
tn

[n]q!

∞

∑
k=0

1
[k]q!

(u + v)k
qtk.

(37)
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Now a similar process of the proof of Theorem 1 may be applied in (37) to obtain (34). The
remaining details and proofs of the other two identities are omitted.

In view of Table 1 (I, II and III), selecting suitable parameters in Theorems 1 and 2 the
corresponding results for qGTAEP CH

(α,m)
n,q (u, v; λ), qGTFEP CF

(α,m)
n,q (u, v; ρ) and qGTEP

CE
(α,m)
n,q (u, v) are obtained and listed in Table 2.

Table 2. Corresponding results for CH
(α,m)

n,q (u, v; λ), CF
(α,m)
n,q (u, v; ρ), and CE

(α,m)
n,q (u, v).

Results CH
(α,m)

n,q (u, v; λ) CF (α,m)
n,q (u, v; ρ) CE (α,m)

n,q (u, v)

CH
(α,m)

n,q (u, v; λ) CF
(α,m)
n,q (u, v; ρ) CE

(α,m)
n,q (u, v)

I. Series = ∑n
k=0 [

n
k]qCn−k,m,q H(α)

k,q (u, v; λ) = ∑n
k=0 [

n
k]qCn−k,m,qF

(α)
k,q (u, v; ρ) = ∑n

k=0 [
n
k]qCn−k,m,qE

(α)
k,q (u, v)

expansions

CH
(α,m)

n,q (u, v; λ) CF
(α,m)
n,q (u, v; ρ) CE

(α,m)
n,q (u, v)

= ∑n
k=0 ∑k

r=0 [
n
k]q[

k
r]q = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]q = ∑n

k=0 ∑k
r=0 [

n
k]q[

k
r]q

× qr(r−1)/2 H(α)
k−r,q(λ)v

rCn−k,m,q(u) × qr(r−1)/2 F (α)
k−r,q(ρ)v

rCn−k,m,q(u) × qr(r−1)/2 E (α)k−r,qvrCn−k,m,q(u)

CH
(α,m)

n,q (u, v; λ) CF
(α,m)
n,q (u, v; ρ) CE

(α,m)
n,q (u, v)

= ∑n
k=0 [

n
k]qCH

(α,m)
n−k (λ)(u + v)k

q = ∑n
k=0 [

n
k]qCF

(α,m)
n−k (ρ)(u + v)k

q = ∑n
k=0 [

n
k]qCE

(α,m)
n−k (u + v)k

q

II. Summation CH
(α,m)

n,q (u, v; λ) CF
(α,m)
n,q (u, v; ρ) CE

(α,m)
n,q (u, v)

Formulae = ∑n
k=0 [

n
k]qCH

(α,m)
n−k (0, v; λ)uk = ∑n

k=0 [
n
k]qCF

(α,m)
n−k (0, v; ρ)uk = ∑n

k=0 [
n
k]qCE

(α,m)
n−k (0, v)uk

CH
(α,m)

n,q (u, v; λ) CF
(α,m)
n,q (u, v; ρ) CE

(α,m)
n,q (u, v)

= ∑n
k=0 [

n
k]qCH

(α,m)
n−k (u, 0; λ)vk = ∑n

k=0 [
n
k]qCF

(α,m)
n−k (u, 0, ρ)vk = ∑n

k=0 [
n
k]qCE

(α,m)
n−k (u, 0)vk

Remark 2. The cases of the qGTATFEP CH
(α,m)

n,q (u, v; ρ; λ) when m = 2 and m = 1 reduce, re-

spectively, to qTAFEP T H(α)
n,q (u, v; ρ; λ) (see Table 1 (IV)) and qEAFEP EH(α)

n,q (u, v; ρ; λ) (see
Table 1 (VIII)). Moreover, in view of Table 1 (V, VI, VII) and Table 1 (IX, X, XI), the iden-
tities in Table 2 provide the corresponding results of qTAFEP T H(α)

n,q (u, v; ρ; λ) and qEAFEP

EH(α)
n,q (u, v; ρ; λ), respectively.

Theorem 3. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then

H
(α,m)

n,q (u,−u; ρ; λ) = H
(α,m)

n,q (−u, u; ρ; λ) = CH
(α,m)

n,q (ρ; λ). (38)

Proof. The identity (38) follows easily by considering those in (9), (27) and (29).

Theorem 4. (Addition formula) Let n ∈ N0 and β ∈ R+. Moreover, let the other parameters
and variables in the identities below be assumed to satisfy the restrictions (28). Then

CH
(α+β,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[
n
k

]
q

CH
(α,m)

n,q (u, v; ρ; λ) H(β)
k,q (ρ; λ)

=
n

∑
k=0

[
n
k

]
q

CH
(α,m)

n,q (ρ; λ) H(β)
k,q (u, v; ρ; λ).

(39)
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Proof. Factor the generating function

∞

∑
n=0

CH
(α+β,m)

n,q (u, v; ρ; λ)
tn

[n]q!

=

(
1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
eq(ut)Eq(vt) ·

(
1− ρ

λeq(t)− ρ

)β

=

(
1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
·
(

1− ρ

λeq(t)− ρ

)β

eq(ut)Eq(vt).

Then, with the aid of (25)–(27) and (29), using the similar process of the proofs of the
previous theorems, we can obtain (39). The details are omitted.

A relationship between H(α)
n,q (u, v; ρ; λ) and CH

(α,m)
n,q (u, v; ρ; λ) is provided in the fol-

lowing theorem.

Theorem 5. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then

H(α)
n,q (u, v; ρ; λ) =

1
2 CH

(α,m)
n,q (u, v; ρ; λ) +

1
2

n

∑
k=0

[
n
k

]
q

mk
CH

(α,m)
n−k,q (u, v; ρ; λ). (40)

Proof. Consider the identity

2
eq(mt) + 1

= 2−
2eq(mt)

eq(mt) + 1
(41)

in the generating function (27) of the polynomials CH
(α,m)

n,q (u, v; ρ; λ). Then a similar
process of the previous proofs can give the relation (40). The details are omitted.

4. Explicit Representations

In this section, we present explicit expressions for some numbers and polynomials
which are chosen from the previous sections as in the following remarks.

Remark 3. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then the q-generalized tangent numbers Cn,m,q in
Definition 1 are explicitly given by

Cn,m,q = ∑
[n]q!

`1!`2! · · · `n!
(−1)kk!

2k

n

∏
j=1

(
mj

[j]q!

)`j

, (42)

where the sum is over all nonnegative integers `1, `1, . . ., `n that satisfy `1 + 2`2 + · · ·+ n`n = n,
and k = `1 + `2 + · · ·+ `n. The first few of them are

C0,m,q = 1, C1,m,q = −m
2

, C2,m,q =
q− 1

4
m2, C3,m,q = −1

8

(
1− 2q− 2q2 + q3

)
m3.

Remark 4. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below
be assumed to satisfy the restrictions (28). Then the Apostol type q-Frobenius–Euler numbers
H(α)

n,q (ρ; λ) of order α in Definition 5 are explicitly given by

H(α)
n,q (ρ; λ) =

(
1− ρ

λ− ρ

)α

∑
[n]q! (α)k

`1!`2! · · · `n!

(
λ

ρ− λ

)k n

∏
j=1

(
1

[j]q!

)`j

, (43)
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where the sum is over all nonnegative integers `1, `1, . . ., `n that satisfy `1 + 2`2 + · · ·+ n`n = n,
and k = `1 + `2 + · · ·+ `n. Here (α)k (α ∈ C) is the Pochhammer symbol defined by (α)0 = 1
and (α)k = α(α + 1) · · · (α + k− 1) (k ∈ N). The first few of them are

H(α)
0,q (ρ; λ) =

(
1− ρ

λ− ρ

)α

, H(α)
1,q (ρ; λ) =

αλ

ρ− λ

(
1− ρ

λ− ρ

)α

,

H(α)
2,q (ρ; λ) =

αλ

ρ− λ

(
1− ρ

λ− ρ

)α(
1 +

λ(1 + α)(1 + q)
2(ρ− λ)

)
,

H(α)
3,q (ρ; λ) =

αλ

ρ− λ

(
1− ρ

λ− ρ

)α
(

1 +
λ(α + 1) [3]q

ρ− λ
+

(α + 1)(α + 2)[3]q!
6

(
λ

ρ− λ

)2
)

.

For (42) and (43), one may use Faà Di Bruno’s formula (see, e.g., [31] (p. 5)).

Remark 5. Let n ∈ N0. Moreover, let the other parameters and variables in the identities below be
assumed to satisfy the restrictions (28). Then, from Definition 6, the q-generalized tangent-Apostol
type Frobenius–Euler numbers CH

(α,m)
n,q (ρ; λ) of order α are given by

CH
(α,m)

n,q (ρ; λ) =
n

∑
k=0

[
n
k

]
q
Cn−k,m,q H(α)

k,q (ρ; λ) (n ∈ N0). (44)

The first few of them are

CH
(α,m)

0,q (ρ; λ) =

(
1− ρ

λ− ρ

)α

, CH
(α,m)

1,q (ρ; λ) =

(
1− ρ

λ− ρ

)α( α λ

ρ− λ
− m

2

)
,

CH
(α,m)

2,q (ρ; λ) =

(
1− ρ

λ− ρ

)α
(
(q− 1)m2

4
+

(
2− (1 + q)m

)
αλ

2(ρ− λ)
+

α(1 + α)(1 + q)λ2

2(ρ− λ)2

)
.

We find from (7) and (8) that

eq(ut)Eq(vt) =
∞

∑
n=0

En,q(u, v) tn, (45)

where

En,q(u, v) =
n

∑
k=0

qk(k−1)/2

[n− k]q! [k]q!
un−kvk. (46)

The first few of En,q(u, v) are

E0,q(u, v) = 1, E1,q(u, v) = u + v, E2,q(u, v) =
u2

1 + q
+ uv +

q
1 + q

v2,

E3,q(u, v) =
u3

1 + 2q + 2q2 + q3 +
u2v

1 + q
+

q
1 + q

uv2 +
q3

1 + 2q + 2q2 + q3 v3.

From Definition 6, we find that the 2-variable q-generalized tangent based Apostol type
Frobenius–Euler polynomials CH

(α,m)
n,q (u, v; ρ; λ) of order α in the variables u and v are given by

CH
(α,m)

n,q (u, v; ρ; λ) =
n

∑
k=0

[n]q!
[k]q! CH

(α,m)
k,q (ρ; λ) En−k,q(u, v). (47)

The first few of them are

CH
(α,m)

0,q (u, v; ρ; λ) =

(
1− ρ

λ− ρ

)α

, CH
(α,m)

1,q (u, v; ρ; λ) =

(
1− ρ

λ− ρ

)α( α λ

ρ− λ
− m

2
+ u + v

)
,
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CH
(α,m)

2,q (u, v; ρ; λ) =

(
1− ρ

λ− ρ

)α{ (q− 1)m2

4
+

(
2− (1 + q)m

)
α λ

2(ρ− λ)
+

α(α + 1)(1 + q)λ2

2(ρ− λ)2

+ (1 + q)
(

αλ

ρ− λ
− m

2

)
(u + v) + u2 + (1 + q)uv + q v2

}
.

5. q-Derivative and q-Integral Formulas

In this section, we establish q-derivative and q-integral formulas for the polynomials

CH
(α,m)

n,q (u, v; ρ; λ), which are in the following theorems.

Theorem 6. Let n, `, r ∈ N0. Moreover, let the other parameters and variables in the identities
below be assumed to satisfy the restrictions (28). Then

Dq,u CH
(α,m)

n,q (u, v; ρ; λ) = [n]q CH
(α,m)

n−1,q (u, v; ρ; λ); (48)

Dr
q,u CH

(α,m)
n,q (u, v; ρ; λ) =

[n]q!
[n− r]q! CH

(α,m)
n−r,q (u, v; ρ; λ); (49)

Dq,v CH
(α,m)

n,q (u, v; ρ; λ) = [n]q CH
(α,m)

n−1,q (u, qv; ρ; λ); (50)

Dr
q,v CH

(α,m)
n,q (u, v; ρ; λ) =

[n]q!
[n− r]q!

q
r(r−1)

2 CH
(α,m)

n−r,q (u, qrv; ρ; λ); (51)

D`
q,uDr

q,v CH
(α,m)

n,q (u, v; ρ; λ)

=

(
[n]q!

)2

[n− r]q! [n− `]q!
q

r(r−1)
2 CH

(α,m)
n−r−`,q(u, qrv; ρ; λ).

(52)

Proof. Use (7) to expand the left member of (27), and q-differentiate both sides of the
resulting series term-by-term with respect to u with the aid of the first formula in (13), and
match the coefficients of tn on both sides of the last resultant identity to give (48).

A successive use of the process of the proof of (48), r times is found to easily pro-
vide (49). So the details of the proof of (49) including (50)–(52) are omitted.

A q-derivative formula of the polynomials CH
(α,m)

n,q (u, v; ρ; λ) with respect to m is
established as in the following theorem.

Theorem 7. Let n ∈ N. Moreover, let the other parameters and variables in the identities below be
assumed to satisfy the restrictions (28). Then

Dq,m

{
CH

(α,m)
n,q (u, v; ρ; λ)

}
= −[n]q CH

(α,m)
n−1,q (u, v; ρ; λ)

+
[n]q

2

n−1

∑
k=0

qk
[

n− 1
k

]
q

Ck,m,q CH
(α,m)

n−1−k,q(u, v; ρ; λ).
(53)

Proof. Using (13) and (15), we have

Dq,m

(
2

eq(mt) + 1

)
= − 2t

eq(qmt) + 1
+

2t(
eq(mt) + 1

)(
eq(qmt) + 1

) . (54)

Further, q-differentiating both sides of (27) termwise with respect to m, with the aid of (54),
Definition 1, and

CH
(α,m)

0,q (u, v; ρ; λ) =

(
1− ρ

λ− ρ

)α

, (55)
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we obtain

∞

∑
n=1

Dq,m

{
CH

(α,m)
n,q (u, v; ρ; λ)

} tn

[n]q!

= −t ·
(

1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
eq(ut)Eq(vt)

+
t
2
·
(

1− ρ

λeq(t)− ρ

)α( 2
eq(mt) + 1

)
eq(ut)Eq(vt) · 2(

eq(qmt) + 1
) .

Using Cn,m,q := Cn,m,q(0) in (19) and (27) in the last expression, we get

∞

∑
n=1

Dq,m

{
CH

(α,m)
n,q (u, v; ρ; λ)

} tn

[n]q!
= −

∞

∑
n=0

CH
(α,m)

n,q (u, v; ρ; λ)
tn+1

[n]q!

+
1
2

∞

∑
n=0

CH
(α,m)

n,q (u, v; ρ; λ)
tn+1

[n]q!
·

∞

∑
k=0

Ck,m,q
qktk

[k]q!
.

Setting n + 1 = n′ in the last summations and dropping the prime on n, we find

∞

∑
n=1

Dq,m

{
CH

(α,m)
n,q (u, v; ρ; λ)

} tn

[n]q!
= −

∞

∑
n=1

CH
(α,m)

n−1,q (u, v; ρ; λ)
tn

[n− 1]q!

+
1
2

∞

∑
n=1

CH
(α,m)

n−1,q (u, v; ρ; λ)
tn

[n− 1]q!
·

∞

∑
k=0

Ck,m,q
qktk

[k]q!
.

Employing the following series manipulation for a double sequence Bn,k of real or complex
numbers (both sides are absolutely convergent)

∞

∑
n=1

∞

∑
k=0

Bn,k =
∞

∑
n=1

n−1

∑
k=0

Bn−k,k

in the last double series, we get

∞

∑
n=1

Dq,m

{
CH

(α,m)
n,q (u, v; ρ; λ)

} tn

[n]q!
= −

∞

∑
n=1

CH
(α,m)

n−1,q (u, v; ρ; λ)
tn

[n− 1]q!

+
1
2

∞

∑
n=1

n−1

∑
k=0

CH
(α,m)

n−1−k,q(u, v; ρ; λ)
qk Ck,m,q

[n− 1− k]q! [k]q!
tn.

(56)

Finally, upon matching the coefficients of tn on both sides of (56) yields (53).

Two q-integral formulas are presented in the following theorems.

Theorem 8. Let 0 ≤ a < b < ∞, 0 < q < 1, and n ∈ N. Moreover, let the other parameters and
variables in the identities below be assumed to satisfy the restrictions (28). Then

∫ b

a
CH

(α,m)
n−1,q (u, v; ρ; λ) dqu =

1
[n]q

{
CH

(α,m)
n,q (b, v; ρ; λ)− CH

(α,m)
n,q (a, v; ρ; λ)

}
. (57)

Proof. Employing the formula for a fundamental theorem of q-calculus (18) in the first
identity in (13), we can obtain

∫ b

a
eq(ut) dqu =

1
t
(
eq(bt)− eq(at)

)
. (58)
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On q-integrating both sides of (27) with respect to the variable u and using (58), we get

∞

∑
n=1

{
CH

(α,m)
n,q (b, v; ρ; λ)− CH

(α,m)
n,q (a, v; ρ; λ)

} tn

[n]q!

=
∞

∑
n=1

∫ b

a
CH

(α,m)
n−1,q (u, v; ρ; λ) dqu

tn

[n− 1]q!
.

(59)

Finally, equating the coefficients of tn on both sides of (59) leads to the formula (57).

Theorem 9. Let 0 ≤ a < b < ∞, 0 < q < 1, and n ∈ N. Moreover, let the other parameters and
variables in the identities below be assumed to satisfy the restrictions (28). Then

∫ b

a
CH

(α,m)
n−1,q (u, v; ρ; λ) dqv =

qn

[n]q

{
CH

(α,m)
n,q (u, b/q; ρ; λ)− CH

(α,m)
n,q (u, a/q; ρ; λ)

}
. (60)

Proof. Employing the formula for a fundamental theorem of q-calculus (18) in the second
identity in (13), we can obtain

∫ b

a
Eq(qvt) dqv =

1
t
(
Eq(bt)− Eq(at)

)
. (61)

On q-integrating both sides of (27) with respect to the variable v and using (61), we get

∞

∑
n=1

{
CH

(α,m)
n,q (u, b/q; ρ; λ)− CH

(α,m)
n,q (u, a/q; ρ; λ)

} qntn

[n]q!

=
∞

∑
n=1

∫ b

a
CH

(α,m)
n−1,q (u, v; ρ; λ) dqv

tn

[n− 1]q!
.

(62)

Hence, identifying the coefficients of tn on both sides of (62) produces the formula (60).

6. Graphical Representations and Locations of Zeros

In this section, by using Mathematica, we draw graphs of CH
(α,m)

n,q (u, v; ρ; λ) for some
chosen n and particular parameters to examine several of their properties such as shapes,
surface plot, zeros. In particular, we observe their zeros in several ways.

The graphs of CH
(1,2)

n,1/2(u, 0; 5; 1) (−6 ≤ u ≤ 6) for few even and odd values of n
(n = 1, 2, 3, · · · , 10) are displayed in Figure 1.
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Figure 1. Curves of CH
(1,2)

n,1/2(u, 0; 5; 1).
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The surface plot of CH
(1,2)

n,1/2(u, v; 5; 1) (u, v ∈ R) for n = 20 and n = 21 are shown in
Figure 2.
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2 ´ 1015

(b) n = 21

Figure 2. Surface plot of CH
(1,2)

20,1/2(u, v; 5; 1) and CH
(1,2)

21,1/2(u, v; 5; 1).

Graphs of the qGTATFEP CH
(α,m)

n,q (u, v; ρ; λ) for u = 0, − 15 ≤ v ≤ 15, n =
2 and for parameters α = 1, λ = 1, m = 2, ρ = 5 and for different values of q
(q = −1/4, − 1/8, 0, 1/8, 1/4) are given in Figure 3.

Further, graphs of the qGTATFEP CH
(α,m)

n,q (u, v; ρ; λ) for u = 0, − 100 ≤ v ≤ 100,
n = 3 and for parameters α = 1, λ = 1, m = 2, ρ = 5 and for different values of q
(q = −1/4, − 1/8, 0, 1/8, 1/4) are provided in Figure 4.

The numbers of real and complex zeros of CH
(1,2)

n,1/2(u, 0; 5; 1) along with its approxi-
mate values are listed in Table 3.

Figure 5 shows how the zeros of CH
(1,m)

20,1/2(u, 0; 5; 1) can be located in the complex
u-plane as the m grows from 10, 20, 30 and 40.

If each approximate real zeros of CH
(1,2)

n,1/2(u, 0; 5; 1), (u ∈ R) is piled up according to
the value of n for 1 ≤ n ≤ 20, it will appear as shown in Figure 6. The values of real zeros
for 1 ≤ n ≤ 9 are listed in Table 3.

A stack of zeros of CH
(1,2)

n,1/2(u, 0; 5; 1) for 1 ≤ n ≤ 20 which are displayed in the
3-dimensional space are presented in Figure 7.
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Figure 3. Graphs of qGTATFEP CH
(α,m)

n,q (u, v; ρ; λ) for n = 2 and different values of q.
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Figure 4. Graphs of qGTATFEP CH
(α,m)

n,q (u, v; ρ; λ) for n = 3 and different values of q.
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Table 3. Approximate solutions of CH
(1,2)

n,1/2(u, 0; 5; 1) = 0.

n Number of Real Zeros Real Zeros Number of Complex Zeros Complex Zeros

1 1 0.75 0 –
2 2 −0.3582, 1.4831 0 –
3 3 −0.5586, 0.0639, 1.8072 0 –
4 2 0.6511, 1.8944 2 −0.5697− 0.4243 i, −0.5697 + 0.4243 i
5 3 −0.5004, 1.0454, 1.8690 2 −0.4805− 0.5538 i, −0.4805 + 0.5538 i
6 4 −0.8306, 0.2763, 1.1839, 1.8317 2 −0.4924− 0.7502 i, −0.4924 + 0.7502 i
7 1 1.8552 6 −0.8088− 0.3258 i, −0.8088 + 0.3258 i,

−0.3704− 0.8985 i, −0.3704 + 0.8985 i,
0.9958− 0.3151 i, 0.9958 + 0.3151 i

8 2 −0.7503, 1.9017 6 −0.6958− 0.4644 i, −0.6958 + 0.4644 i,
−0.2647− 0.9521 i, −0.2647 + 0.9521 i,

1.1319− 0.5354 i, 1.1319 + 0.5354 i
9 3 −0.8649, − 0.1451, 1.9335 6 −0.7019− 0.5655 i, −0.7019 + 0.5655 i,

−0.2056− 0.9920 i, −0.2056 + 0.9920 i,
1.1943− 0.6182 i, 1.1943 + 0.6182 i
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Figure 5. Zeros of CH
(1,m)

20,1/2(u, 0; 5; 1).
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Figure 6. Real zeros of CH
(1,2)

n,1/2(u, 0; 5; 1) = 0.
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Figure 7. Stacks of zeros of CH
(1,2)

n,1/2(u, 0; 5; 1) = 0.

7. Concluding Remarks, Further Observations, and Posing Questions

Recently, due mainly to their importance and diverse applications, a growing number
of polynomials and numbers, and their variants and generalizations have been intro-
duced and investigated. In the wake of this trend, by combining the polynomials in
Definitions 1 and 5, we introduced the 2-variable q-generalized tangent based Apostol
type Frobenius–Euler polynomials CH

(α,m)
n,q (u, v; ρ; λ) of order α in the variables u and v.

Then we presented a number of properties and formulas for these polynomials such as
explicit representations, series representations, summation formulas, addition formula,
q-derivative and q-integral formulas. Moreover, using computer-aid programs (e.g., Mathe-
matica, or Matlab), we tried to draw graphs of certain specialized polynomials introduced
here. Through those graphs, a number of questions about certain unexpected properties of
the polynomials (for example, their zeros) are found to be naturally occurred.

We tried to apply these newly-introduced polynomials to a real world problem (for
example, computational fluid dynamics [32,33]). However, we find that it will take a longer
period to be familiar with such topics. It remains to be a future investigation.
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Observations and Questions

(i) It may be important to find complex zeros of the following equations

λeq(t)− ρ = 0 and eq(mt) + 1 = 0 (63)

from Definitions 1 and 6 (see also generating functions in Definitions 2, 3, and 5), in
particular, in order to determine the ξ and η there exactly. When q = 1, the zeros of
two equations in (63) are easily given, respectively, by

t = ln
∣∣∣ ρ

λ

∣∣∣+ i(ϑ + 2kπ) and t = i(2k + 1)
π

m
(k ∈ Z),

where ϑ is an argument of ρ
λ .

Question 1: Find or approximate the zeros of two equations in (63).
For Question 1, we tried to draw graph of λeq(t)− ρ (for λ = 1, q = 1

2 and ρ = 5)
as follow Figures 8 and 9:
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Figure 8. Graph of e1/2(t)− 5.

Graph of eq(mt) + 1 (for m = 2 and q = 1
2 ) as follows:
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Figure 9. Graph of e1/2(2t) + 1.

Certain approximate real and complex zeros of

e1/2(t)− 5 and e1/2(2t) + 1
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are given, respectively, as

1.21057, 16.4854, 31.929, 64.0045; 6.18528 + 1.69686i, 6.18528− 1.69686i

and

16.1688; 0.812222 + 1.45191i, 0.812222− 1.45191i, 6.60888 + 1.45013i,

6.60888− 1.45013i.

(ii) To approximate zeros of some functions or polynomials, we can use Newton-Raphson’s
theorem (see, e.g., [34] (pp. 262–263); for a use of this theorem, one may consult
with [11] (Section 6)).

(iii) It may follow from (47) that CH
(α,m)

n,q (u, v; ρ; λ) are polynomials in both u and v of the
same degree n.

(iv) As shown in Figure 5, all zeros of the polynomials CH
(α,m)

n,q (u, b; ρ; λ) (b ∈ R) with
the other parameters being real are found to be symmetrically located with respect
to the real axis of u (that is, =(u) = 0). Indeed, if u0 is among its zeros, then, in view
of (47), we have

0 = CH
(α,m)

n,q (u0, b; ρ; λ) =
n

∑
k=0

[n]q!
[k]q! CH

(α,m)
k,q (ρ; λ) En−k,q(u0, b),

which implies that the complex conjugate u0 of u0 is also zero.
One may also recall the reflection principle (see, e.g., [35] (p. 57)).

(v) In Figure 5, as m becomes larger, the corresponding absolute values (distances from

the origin) of zeros of CH
(1,m)

20,1/2(u, 0; 5; 1) are getting greater (become more distant
from the origin).
Question 2: Prove or disprove that this observation is true as m ↑ ∞.
Question 3: Prove or disprove truth of this observation for CH

(α,m)
n,q (u, 0; ρ; λ) where

m ∈ R+ becomes larger and (n ∈ N, 0 < q < 1, α, λ, ρ ∈ R).
This can be observed graphically. For several different values of m (−10,000, −1000,
1000, 10,000), graphs of zeros of CH

(1,2)
20,1/2(u, 0; 5; 1) are demonstrated in Figure 10.

(vi) From Figure 6, the number of real zeros of CH
(1,2)

n,1/2(u, 0; 5; 1) (1 ≤ n ≤ 20) is observed
to range from 1 to 4.
Question 4: Prove or disprove that this observation is true for general n ∈ N.
Question 5: Prove or disprove truth of this observation for CH

(α,m)
n,q (u, 0; ρ; λ) where

n ∈ N varies and (0 < q < 1, α, λ, ρ ∈ R, m ∈ R+).
For CH

(1,2)
n,1/2(u, 0; 5; 1), it is observed experimentally (Mathematica) for n up to 200

that for even values of n ≥ 10, number of real zeros are 2 and for odd values of
n ≥ 10, number of real zero is 1. For n < 10, number of zeros are mentioned in
Table 3.

(vii) In each of Definitions 1–5 and Definition 6, the ordinary Taylor (Maclaurin) se-
ries expansion is employed, even though each generating function is involved in
q-analogues.
Question 6: In the above definitions, it may be really interesting and speculative to see
the possible resulting series if the q-Taylor series expansion (see, e.g., [26,28] (Theorem
6.3)) is used, instead of the ordinary Taylor series expansion.
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Figure 10. Zeros of CH
(1,2)

20,1/2(u, 0; 5; 1) for different increasing values of m.
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