Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Fritillaria identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17592 KiB  
Article
Functional Identification of Acetyl-CoA C-Acetyltransferase Gene from Fritillaria unibracteata
by Zichun Ma, Qiuju An, Xue Huang, Hongting Liu, Feiying Guo, Han Yan, Jiayu Zhou and Hai Liao
Horticulturae 2025, 11(8), 913; https://doi.org/10.3390/horticulturae11080913 (registering DOI) - 4 Aug 2025
Abstract
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active [...] Read more.
Fritillaria unibracteata is a rare and endangered medicinal plant in the Liliaceae family, whose bulbs have been used in traditional Chinese traditional medicine for over 2000 years. The mevalonate (MVA) pathway is involved in the growth, development, response to environmental stress, and active ingredient production of plants; however, the functional characterization of MVA-pathway genes in the Liliaceae family remains poorly documented. In this study, an Acetyl-CoA C-acetyltransferase gene (FuAACT) was first cloned from F. unibracteata. It exhibited structural features of the thiolase family and showed the highest sequence identity with the Dioscorea cayenensis homolog. The Km, Vmax, and Kcat of the recombinant FuAACT were determined to be 3.035 ± 0.215 μM, 0.128 ± 0.0058 μmol/(min·mg), and 1.275 ± 0.0575 min−1, respectively. The optimal catalytic conditions for FuAACT were ascertained to be 30 °C and pH 8.9. It was stable below 50 °C. His361 was confirmed to be a key amino acid residue to enzymatic catalysis by site-directed mutagenesis. Subsequent subcellular localization experiments demonstrated that FuAACT was localized in chloroplasts and cytoplasm. FuAACT-overexpressing transgenic Arabidopsis thaliana plants showed higher drought tolerance than wild-type plants. This phenotypic difference was corroborated by significant differences in seed germination rate, lateral root number, plant height, and leaf number (p < 0.05). Furthermore, the FuAACT transgenic plants resulted in the formation of a more developed fibrous root system. These results indicated that the FuAACT gene revealed substantial biological activity in vitro and in vivo, hopefully providing the basis for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

17 pages, 4446 KiB  
Article
Isolation and Identification of Alkaloid Genes from the Biomass of Fritillaria taipaiensis P.Y. Li
by Nong Zhou, Chun-Mei Mei, Fu-Gui Chen, Yu-Wei Zhao, Ming-Guo Ma and Wei-Dong Li
Metabolites 2024, 14(11), 590; https://doi.org/10.3390/metabo14110590 - 31 Oct 2024
Viewed by 1487
Abstract
Background/Objectives: Fritillaria taipaiensis P.Y. Li is a valuable traditional Chinese medicinal herb that utilizes bulbs as medicine, which contain multiple alkaloids. Biomass, as a sustainable resource, has promising applications in energy, environmental, and biomedical fields. Recently, the biosynthesis and regulatory mechanisms of the [...] Read more.
Background/Objectives: Fritillaria taipaiensis P.Y. Li is a valuable traditional Chinese medicinal herb that utilizes bulbs as medicine, which contain multiple alkaloids. Biomass, as a sustainable resource, has promising applications in energy, environmental, and biomedical fields. Recently, the biosynthesis and regulatory mechanisms of the main biomass components of biomass have become a prominent research topic. Methods: In this article, we explored the differences in the heterosteroidal alkaloid components of F. taipaiensis biomass using liquid chromatography–mass spectrometry and high-throughput transcriptome sequencing. Results: The experimental results demonstrated significant differences in the eight types of heterosteroidal alkaloid components among the biomass of F. taipaiensis, including peimisine, imperialine, peimine, peiminine, ebeinone, ebeiedine, ebeiedinone, and forticine. Transcriptomic analysis revealed substantial significant differences in gene expression patterns in the various samples. Three catalytic enzyme-coding genes, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), and terpene synthase (TPS), were speculated to contribute to the regulation of the differential accumulation of alkaloid synthesis in F. taipaiensis bulbs. A strong positive correlation was observed between the transcriptional level of the TPS gene and the alkaloid content of F. taipaiensis biomass, suggesting that TPS may be a key gene in the biosynthesis pathway of alkaloids. This finding can be used for subsequent gene function verification and molecular regulatory network analysis. Conclusions: This work provides fundamental data and novel insights for the subsequent research on alkaloid biosynthesis in F. taipaiensis. Full article
(This article belongs to the Special Issue Plant Metabolic Genetic Engineering)
Show Figures

Figure 1

13 pages, 7063 KiB  
Article
Functional Identification of the Isopentenyl Diphosphate Isomerase Gene from Fritillaria unibracteata
by Xinyi Yu, Jiao Chen, Han Yan, Xue Huang, Jieru Chen, Zichun Ma, Jiayu Zhou and Hai Liao
Horticulturae 2024, 10(8), 887; https://doi.org/10.3390/horticulturae10080887 - 21 Aug 2024
Cited by 1 | Viewed by 1290
Abstract
Isopentenyl diphosphate isomerase (IPI) is a key enzyme in the synthesis of isoprenoids. In this paper, the in vivo biological activity of the IPI gene from Fritillaria unibracteata (FuIPI) was investigated. Combining a color complementation experiment with High-Performance Liquid Chromatography analysis [...] Read more.
Isopentenyl diphosphate isomerase (IPI) is a key enzyme in the synthesis of isoprenoids. In this paper, the in vivo biological activity of the IPI gene from Fritillaria unibracteata (FuIPI) was investigated. Combining a color complementation experiment with High-Performance Liquid Chromatography analysis showed that the FuIPI gene could accumulate β-carotene in Escherichia coli, and Glu190 was identified as a key residue for its catalytic activity. Bioinformatics analysis together with subcellular localization indicated that the FuIPI protein was localized in chloroplasts. Compared with wild-type Arabidopsis thaliana, FuIPI transgenic plants had higher abscisic acid content and strengthening tolerance to drought and salt stress. Overall, these results indicated that the FuIPI gene had substantial biological activity in vivo, hopefully laying a foundation for its further research and application in liliaceous ornamental and medicinal plants. Full article
(This article belongs to the Special Issue Tolerance and Response of Ornamental Plants to Abiotic Stress)
Show Figures

Figure 1

16 pages, 15526 KiB  
Article
Identification of Pathogen Causing Bulb Rot in Fritillaria taipaiensis P. Y. Li and Establishment of Detection Methods
by Shijie Wang, Keke Chen, Jiaqi Guo, Panwang Zhang, Yuchen Li, Zhenghao Xu, Langjun Cui and Yi Qiang
Plants 2024, 13(16), 2236; https://doi.org/10.3390/plants13162236 - 12 Aug 2024
Cited by 1 | Viewed by 1874
Abstract
Fritillaria taipaiensis P. Y. Li (F. taipaiensis) is a traditional Chinese herbal medicine that has been used for over two millennia to treat cough and expectoration. However, the increasing cultivation of F. taipaiensis has led to the spread of bulb rot [...] Read more.
Fritillaria taipaiensis P. Y. Li (F. taipaiensis) is a traditional Chinese herbal medicine that has been used for over two millennia to treat cough and expectoration. However, the increasing cultivation of F. taipaiensis has led to the spread of bulb rot diseases. In this study, pathogens were isolated from rotten F. taipaiensis bulbs. Through molecular identification, pathogenicity testing, morphological assessment, and microscopy, Fusarium solani was identified as the pathogen causing bulb rot in F. taipaiensis. The colonization of F. solani in the bulbs was investigated through microscopic observation. The rapid and accurate detection of this pathogen will contribute to better disease monitoring and control. Loop-mediated isothermal amplification (LAMP) and qPCR methods were established to quickly and specifically identify this pathogen. These results provide valuable insights for further research on the prediction, rapid detection, and effective prevention and control of bulb rot in F. taipaiensis. Full article
(This article belongs to the Collection Plant Disease Diagnostics and Surveillance in Plant Protection)
Show Figures

Figure 1

21 pages, 6462 KiB  
Article
The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism
by Huiqiang Hu, Zhenyu Xu, Yunpeng Wei, Tingting Wang, Yuping Zhao, Huaxing Xu, Xiaobo Mao and Luqi Huang
Foods 2023, 12(22), 4153; https://doi.org/10.3390/foods12224153 - 16 Nov 2023
Cited by 8 | Viewed by 1866
Abstract
Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identification. To address this [...] Read more.
Combining deep learning and hyperspectral imaging (HSI) has proven to be an effective approach in the quality control of medicinal and edible plants. Nonetheless, hyperspectral data contains redundant information and highly correlated characteristic bands, which can adversely impact sample identification. To address this issue, we proposed an enhanced one-dimensional convolutional neural network (1DCNN) with an attention mechanism. Given an intermediate feature map, two attention modules are constructed along two separate dimensions, channel and spectral, and then combined to enhance relevant features and to suppress irrelevant ones. Validated by Fritillaria datasets, the results demonstrate that an attention-enhanced 1DCNN model outperforms several machine learning algorithms and shows consistent improvements over a vanilla 1DCNN. Notably under VNIR and SWIR lenses, the model obtained 98.97% and 99.35% for binary classification between Fritillariae Cirrhosae Bulbus (FCB) and other non-FCB species, respectively. Additionally, it still achieved an extraordinary accuracy of 97.64% and 98.39% for eight-category classification among Fritillaria species. This study demonstrated the application of HSI with artificial intelligence can serve as a reliable, efficient, and non-destructive quality control method for authenticating Fritillaria species. Moreover, our findings also illustrated the great potential of the attention mechanism in enhancing the performance of the vanilla 1DCNN method, providing reference for other HSI-related quality controls of plants with medicinal and edible uses. Full article
(This article belongs to the Topic Advances in Spectroscopic and Chromatographic Techniques)
Show Figures

Figure 1

14 pages, 2699 KiB  
Article
LC–MS/MS Coupled with Chemometric Analysis as an Approach for the Differentiation of Fritillariae cirrhosae Bulbus and Fritillariae pallidiflorae Bulbus
by Xiaomu Zhu, Ting Zhou, Shu Wang, Bengui Ye, Rajeev K. Singla, Devesh Tewari, Atanas G. Atanasov, Dongdong Wang and Simei Liu
Separations 2023, 10(2), 75; https://doi.org/10.3390/separations10020075 - 21 Jan 2023
Cited by 2 | Viewed by 2968
Abstract
Fritillariae cirrhosae bulbus (FCB) is one of the most important traditional Chinese medicines (TCM) for the treatment of cough and phlegm. Due to increasing demand and the complexity of FCB’s botanical origin, various substitutes have appeared in the market, resulting in a major [...] Read more.
Fritillariae cirrhosae bulbus (FCB) is one of the most important traditional Chinese medicines (TCM) for the treatment of cough and phlegm. Due to increasing demand and the complexity of FCB’s botanical origin, various substitutes have appeared in the market, resulting in a major challenge to distinguish FCB and its substitutes (F. pallidiflorae bulbus, FPB). Therefore, discriminating FCB from FPB has becoming an urgent necessity. In this study, an ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC–ESI–MS/MS) method was developed for the simultaneous quantification of nine steroidal alkaloids (imperialine-3-β-D-glucoside, imperialine, verticine, verticinone, peimisine, yibeinoside A, delavine, delavinone, ebeidinone) within 8 min. According to the composition and content of the above nine compounds, multivariate chemometric analyses were applied for the classification of FCB and FPB. The quantitative results showed that there were both similarities and differences in the content of nine steroidal alkaloids between FCB and FPB, and it was difficult to directly distinguish these two species. Fortunately, with the aid of chemometric analyses, FCB and FPB were successfully differentiated by partial least squares discrimination analysis (PLS-DA) and orthogonal partial least squares discrimination analysis (OPLS-DA) models based on the nine alkaloids’ content. Moreover, four compounds (yibeinoside A, ebeiedinone, delavinone and imperialine) were discovered as potential markers for the identification and differentiation of FCB and FPB. Additionally, compared to other studies, this work collected a large number of samples (49 batches of FCB and 17 batches of FPB) to ensure the reliability of the results. In conclusion, this work established a new approach for the authentication of FCB based on its active components, which provides a good reference for the quality control of FCB and will help us to understand the chemical composition differences between FCB and its adulterants further. Full article
Show Figures

Figure 1

12 pages, 1037 KiB  
Article
Combining DNA Barcoding and HPLC Fingerprints to Trace Species of an Important Traditional Chinese Medicine Fritillariae Bulbus
by Yingchun Zhong, Haiying Wang, Qianhe Wei, Rui Cao, Hailong Zhang, Yongzhi He and Lizhi Wang
Molecules 2019, 24(18), 3269; https://doi.org/10.3390/molecules24183269 - 8 Sep 2019
Cited by 33 | Viewed by 4373
Abstract
Fritillariae Bulbus is a precious Chinese herbal medicine that is grown at high elevation and used to relieve coughs, remove phlegm, and nourish the lungs. Historically, Fritillariae Bulbus has been divided into two odourless crude drugs: Fritillariae Cirrhosae Bulbus and Fritillariae Thunbergii Bulbus. [...] Read more.
Fritillariae Bulbus is a precious Chinese herbal medicine that is grown at high elevation and used to relieve coughs, remove phlegm, and nourish the lungs. Historically, Fritillariae Bulbus has been divided into two odourless crude drugs: Fritillariae Cirrhosae Bulbus and Fritillariae Thunbergii Bulbus. However, now the Chinese Pharmacopoeia has described five Fritillariae Bulbus—the new additions include Fritillariae Pallidiflorae Bulbus, Fritillariae Ussuriensis Bulbus, and Fritillariae Hupehensis Bulbus. Because the morphology of dried Fritillariae Bulbus is similar, it is difficult to accurately identify the different types of Fritillariae Bulbus. In the current study, we develop a method combining DNA barcoding and high-performance liquid chromatography (HPLC) to help distinguish Fritillariae Cirrhosae Bulbus from other Fritillariae Bulbus and guarantee species traceability of the five types of Fritillariae Bulbus. We report on the validation of an integrated analysis method for plant species identification using DNA barcoding that is based on genetic distance, identification efficiency, inter- and intra-specific variation, calculated nearest distance, neighbour-joining tree and barcoding gap. Our results show that the DNA barcoding data successfully identified the five Fritillariae Bulbus by internal transcribed spacer region (ITS) and ITS2, with the ability to distinguish the species origin of these Fritillariae Bulbus. ITS2 can serve as a potentially useful DNA barcode for the Fritillaria species. Additionally, the effective chemical constituents are identified by HPLC combined with a chemical identification method to classify Fritillaria. The HPLC fingerprint data and HCA (hierarchical clustering analysis) show that Fritillariae Cirrhosae Bulbus is clearly different from Fritillariae Thunbergii Bulbus and Fritillariae Hupehensis Bulbus, but there is no difference between Fritillariae Cirrhosae Bulbus, Fritillariae Ussuriensis Bulbus, and Fritillariae Pallidiflorae Bulbus. These results show that DNA barcoding and HPLC fingerprinting can discriminate between the five Fritillariae Bulbus types and trace species to identify related species that are genetically similar. Full article
Show Figures

Figure 1

15 pages, 9115 KiB  
Article
The Complete Chloroplast Genome Sequences of Fritillaria ussuriensis Maxim. and Fritillaria cirrhosa D. Don, and Comparative Analysis with Other Fritillaria Species
by Inkyu Park, Wook Jin Kim, Sang-Min Yeo, Goya Choi, Young-Min Kang, Renzhe Piao and Byeong Cheol Moon
Molecules 2017, 22(6), 982; https://doi.org/10.3390/molecules22060982 - 13 Jun 2017
Cited by 69 | Viewed by 7296
Abstract
The genus Fritillaria belongs to the widely distributed Liliaceae. The bulbs of Fritillaria, F. ussuriensis and F. cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species are therefore [...] Read more.
The genus Fritillaria belongs to the widely distributed Liliaceae. The bulbs of Fritillaria, F. ussuriensis and F. cirrhosa are valuable herbaceous medicinal ingredients. However, they are still used indiscriminately in herbal medicine. Identification and molecular phylogenic analysis of Fritillaria species are therefore required. Here, we report the complete chloroplast (CP) genome sequences of F. ussuriensis and F. cirrhosa. The two Fritillaria CP genomes were 151,524 and 151,083 bp in length, respectively, and each included a pair of inverted repeated regions (52,678 and 52,156 bp) that was separated by a large single copy region (81,732 and 81,390 bp), and a small single copy region (17,114 and 17,537 bp). A total of 111 genes in F. ussuriensis and 112 in F. cirrhosa comprised 77 protein-coding regions in F. ussuriensis and 78 in F. cirrhosa, 30 transfer RNA (tRNA) genes, and four ribosomal RNA (rRNA) genes. The gene order, content, and orientation of the two Fritillaria CP genomes exhibited the general structure of flowering plants, and were similar to those of other Fritillaria species. Comparison of the six Fritillaria species’ CP genomes indicated seven highly divergent regions in intergenic spacers and in the matK, rpoC1, rpoC2, ycf1, ycf2, ndhD, and ndhF coding regions. We established the position of the six species through phylogenic analysis. The complete chloroplast genome sequences of the two Fritillaria species and a comparison study are useful genomic information for identifying and for studying the phylogenetic relationship among Fritillaria species within the Liliaceae. Full article
(This article belongs to the Section Molecular Diversity)
Show Figures

Figure 1

11 pages, 2269 KiB  
Article
Identification of Chinese Herbs Using a Sequencing-Free Nanostructured Electrochemical DNA Biosensor
by Yan Lei, Fan Yang, Lina Tang, Keli Chen and Guo-Jun Zhang
Sensors 2015, 15(12), 29882-29892; https://doi.org/10.3390/s151229773 - 30 Nov 2015
Cited by 12 | Viewed by 6289
Abstract
Due to the nearly identical phenotypes and chemical constituents, it is often very challenging to accurately differentiate diverse species of a Chinese herbal genus. Although technologies including DNA barcoding have been introduced to help address this problem, they are generally time-consuming and require [...] Read more.
Due to the nearly identical phenotypes and chemical constituents, it is often very challenging to accurately differentiate diverse species of a Chinese herbal genus. Although technologies including DNA barcoding have been introduced to help address this problem, they are generally time-consuming and require expensive sequencing. Herein, we present a simple sequencing-free electrochemical biosensor, which enables easy differentiation between two closely related Fritillaria species. To improve its differentiation capability using trace amounts of DNA sample available from herbal extracts, a stepwise electrochemical deposition of reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) was adopted to engineer a synergistic nanostructured sensing interface. By using such a nanofeatured electrochemical DNA (E-DNA) biosensor, two Chinese herbal species of Fritillaria (F. thunbergii and F. cirrhosa) were successfully discriminated at the DNA level, because a fragment of 16-mer sequence at the spacer region of the 5S-rRNA only exists in F. thunbergii. This E-DNA sensor was capable of identifying the target sequence in the range from 100 fM to 10 nM, and a detection limit as low as 11.7 fM (S/N = 3) was obtained. Importantly, this sensor was applied to detect the unique fragment of the PCR products amplified from F. thunbergii and F. cirrhosa, respectively. We anticipate that such a direct, sequencing-free sensing mode will ultimately pave the way towards a new generation of herb-identification strategies. Full article
(This article belongs to the Section Biosensors)
Show Figures

Graphical abstract

10 pages, 571 KiB  
Article
Authentication of Bulbus Fritillariae Cirrhosae by RAPD-Derived DNA Markers
by Gui-Zhong Xin, Yin-Ching Lam, Maitinuer Maiwulanjiang, Gallant K. L. Chan, Kevin Yue Zhu, Wai-Lun Tang, Tina Ting-Xia Dong, Zi-Qi Shi, Ping Li and Karl W. K. Tsim
Molecules 2014, 19(3), 3450-3459; https://doi.org/10.3390/molecules19033450 - 20 Mar 2014
Cited by 32 | Viewed by 9737
Abstract
Bulbus Fritillariae is the most commonly used antitussive herb in China. Eleven species of Fritillaria are recorded as Bulbus Fritillariae in the Chinese Pharmacopoeia. Bulbus Fritillariae Cirrhosae is a group of six Fritillaria species with higher efficiency and lower toxicity derived mainly from [...] Read more.
Bulbus Fritillariae is the most commonly used antitussive herb in China. Eleven species of Fritillaria are recorded as Bulbus Fritillariae in the Chinese Pharmacopoeia. Bulbus Fritillariae Cirrhosae is a group of six Fritillaria species with higher efficiency and lower toxicity derived mainly from wild sources. Because of their higher market price, five other Fritillaria species are often sold deceptively as Bulbus Fritillariae Cirrhosae in the herbal market. To ensure the efficacy and safety of medicinal herbs, the authentication of botanical resources is the first step in quality control. Here, a DNA based identification method was developed to authenticate the commercial sources of Bulbus Fritillariae Cirrhosae. A putative DNA marker (0.65 kb) specific for Bulbus Fritillariae Cirrhosae was identified using the Random Amplified Polymorphic DNA (RAPD) technique. A DNA marker representing a Sequence Characterized Amplified Region (SCAR) was developed from a RAPD amplicon. The SCAR marker was successfully applied to differentiate Bulbus Fritillariae Cirrhosae from different species of Fritillaria. Additionally, the SCAR marker was also useful in identifying the commercial samples of Bulbus Fritillariae Cirrhosae. Our results indicated that the RAPD-SCAR method was rapid, accurate and applicable in identifying Bulbus Fritillariae Cirrhosae at the DNA level. Full article
(This article belongs to the Special Issue Phytochemicals: Analytical and Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop